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Abstract

This letter addresses a problem of Casimir apparatus in dense medium,
put in weak gravitational field. The falling of the apparatushas to be gov-
erned by the equivalence principle, with proper account forcontributions to
the weight of the apparatus from its material part and from distorted quan-
tum fields. We discuss general expression for the corresponding force in
metric with cylindrical symmetry. By way of example we compute explicit
expression for Archimedes force, acting on the Casimir apparatus of finite
size, immersed into thermal bath of free scalar field. It is shown that be-
sides universal term, proportional to the volume of the apparatus, there are
non-universal quantum corrections, depending on the boundary conditions.
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1 Introduction

Reflections about matter dynamics in gravitational field areamong the most fruit-
ful themes in the history of physics. Well known legends about Newton, inspired
by the falling apple in his mother’s garden, or about Galileo, dropping balls from
the top of the Leaning Tower of Pisa are good examples. In modern times, clas-
sical tests of General Relativity such as light deflection bythe Sun’s gravity;
weighting-the-photon experiments of Pound-Rebka type; Shapiro delay; neutron
interferometry in gravitational field; ALPHA, AEGIS and GBAR experiments at
CERN, exploring falling antimatter, continue the same lineof studies.

Of particular interest are quantum field theoretic physics in classical gravita-
tional field, where Hawking radiation is the best known phenomenon [1]. Need-
less to say that the problem of genuine gravitational interaction between parts
of intrinsically quantum object (for example, between two entangled photons)
cannot be addressed in semiclassical approach, leaving aside the fact that it is
beyond our current experimental abilities. It is to be stressed that we have no
direct experimental information how an elementary particle like proton gravita-
tionally interacts with another one at, say, distances∼ 10−10 meters. Therefore
naive extrapolation of Newton gravity law to the Planck distances∼ 10−35 meters
could be plainly wrong, as various extra dimensions scenarios suggest. In other
words, the ”ultimate” ultraviolet fundamental scale can well have nothing to do
with the conventional Planck distance (calculated from long-distance asymptotic
of the gravitational interaction, described by the Newton constantG).

Coming back to the case when semiclassical treatment is appropriate, the sim-
plest example is non-relativistic motion of a test body in external weak gravita-
tional field. The basic fact governing this type of motion is well known from
school textbooks: the force acting on the body is proportional to its mass and
directed along the free fall acceleration:

f = mg = ρVg (1)

whereρ = m/V is average density andV is the body’s volume. Simplicity of this
formula should not camouflage a highly nontrivial fact, thatthe force depends on
the only parameter of the body - its mass (and not, for example, on its chemical
composition, entropy etc). Combined with the Newton’s second law of motion
this fact has, of course, direct relation to the celebrated equivalence principle.

The situation gets more complex if the test body is immersed into gas or fluid.
The expression (1) is to be replaced in this case by

f = (ρ − ρ f )Vg (2)
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whereρ f is the fluid’s density, and the term proportional toρ f is known as Archi-
medes force. The expression (2) hides a few approximations and there are a few
relevant small parameters. First, the independence of thisforce on any character-
istic features of the body other than its volume is by no meanstrivial. It is based
on smallness of a ratio of gas/fluid molecules size to that of the body (and also
holes in the body’s surface etc), which makes continuous medium approximation
applicable.1 Another parameter is the Planck constant~ - the result (2) is of course
purely classical and may get quantum corrections, for example, if typical quantum
correlation length in the fluid is comparable with the body size. Also needless to
say that (2) is valid in non-relativistic and weak gravitational field approximations.
Last but not least, the expression (2) is invariant under shifts ρ → ρ + const. It
is ”self-renormalized” in this sense and piece of vacuum (orany other medium in
stationary case) with the ”mass”

1
c2

∫

dV 〈T00〉 (3)

does not ”fall” in external gravitational field, because there is compensating ”pres-
sure” on this piece of exactly the same magnitude from surroundings, directed
”upwards”.

This letter analyzes weighting of the Casimir apparatus in weak gravitational
field. The problem has attracted some attention in recent years [2, 3, 4, 5, 6, 7, 8,
9, 10] and there used to be controversy in the literature we will mention below. We
argue that the key point is physically correct definition of the weighting procedure,
since there is no possibility to weight Casimir energy alone- one always measure
the weight of Casimir apparatus as a whole. The weighting procedure and the
results are to be universal and applicable to any Casimir apparatus, not only to
two parallel plate Casimir cavity, usually taken as example. Our aim is to discuss
such procedure and to apply it to concrete case of Casimir cavity in thermal bath
of massless scalar field.

2 Archimedes Force

The basic ingredient is quantum field theoretical average ofenergy-momentum
tensor〈Tµν(x)〉, where average over fields is computed with the standard integra-
tion measureDΦ, normalized to have〈1〉 = 1. In geometric setup used by us in

1This is just what helped Archimedes to find out the volume of King’s Hiero crown in well
known legend.
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this paper,2 Casimir apparatus is encoded by somex-dependent measure defor-
mation,DΦ → D′Φ, corresponding to constraints the fields have to obey on the
boundary or in interior of the apparatus. For example, in classical Casimir setup
of two infinite ideally conducting parallel planes interacting with electromagnetic
field this deformation looks like[11]

DAρ(x) → DAρ(x) δ(F̃µ3(x3 = a1))δ(F̃
µ3(x3 = a2)) (4)

whereF̃µν is dual field strength,a1, a2 - coordinates of the planes along the third
axis (the axes 1 and 2 are in the planes). The form of the above expression is quite
general and in many cases one can writeD′Φ = DΦ ∆[Φ] with some functional
of the fields. One could think of Casimir plates as of ”passivedetectors”. In
other words, one selects only those field configurations, where parallel electric
and normal magnetic fields at the position of the plates are zero at all moments
of time. This is like having quantum or classical particle ina corridor made of
hard walls so that any subsequent measurement of the particle coordinate will
definitely return a result inside the corridor. Uncertaintyrelation causes pressure
on the boundaries (walls and plates in the examples above), which depends, in
particular, on how hard (conductive) they are.

Coming back to the Casimir apparatus in weak gravitational field, writing the
metric asgµν = ηµν + 2hµν, one gets for the energy shift at the leading order of
semiclassical approximation [4]

δEg = −
∫

d3x hµν(x)〈Tµν〉(x) (5)

In geometric setup the average〈Tµν〉(x) has two parts - the ”material” one, corre-
sponding to the objects (planes, cavities, robes, springs etc) the Casimir apparatus
is made of, and the ”field” part. For nonrelativistic case spatial components of the
energy-momentum tensor are suppressed by inverse powers ofthe speed of light,
∣

∣

∣T00
∣

∣

∣ ≫
∣

∣

∣T i j
∣

∣

∣ and only temporal component of the metric tensorh00(x) is relevant.
This can be correct approximation for the material part of〈Tµν〉(x), but certainly
not for its ”field” part we are interested in here. Consequently it is easy to check,
that various choices of the metrichµν lead to different answers forδEg, even if all
these choices correspond to uniform field with free fall accelerationg. Moreover,
the energy becomes orientation-dependent for some choices, in gross contradic-
tion with the equivalence principle and scalar nature of mass. This is physically
unacceptable and should be resolved.

2By the word ”geometric” we mean neglect of dynamical properties of the boundaries like
frequency-dependent reflectivity etc.

3



The source of the problem was identified in [4] as gauge non-invariance of (5).
Indeed, (5) is invariant under weak field gauge transformationhµν → hµν + ∂µξν +
∂νξµ only if ∂µTµν = 0. The energy-momentum tensor is covariantly conserved
for the combined ”material+ field” system

∇µTµν = 0 (6)

but not for the ”field” part alone. Thus two logically possible alternative paths
can be chosen: either one is to include the material part and carefully work with
the full energy-momentum tensor, obeying (6), or one is to argue, that this or that
choice of the metric is more physical than another choices and compute the force
using the distinguished metric. Mostly the latter path was followed in the literature
with the motivation for preferable role of Fermi metric choicec2h00 = gz ; hi j =

0 and the result for the weight of Casimir energy (in classical two plates case)

f = g
EC

c2
S where EC = −

π2
~c

720a3
(7)

andS stays for the plates area. The energy-momentum tensor of thesystem is
given by〈Tµν〉 = (EC/a) × diag(1,−1,−1, 3) between the plates and zero outside
[10].

Thus, the cavity feels small upward push and Casimir energy gravitates as any
other form of energy in accord with the equivalence principle. In a sense, the
answer (7) could have been written without any computations, if EC is known.
However, the arguments based on physically distinguishable role of a particular
parametrization of the metric are difficult if not impossible to generalize to other
cases. In particular, it is not clear how to write the next orderO(hµνhρσ) correction
to (7). It is also important, that the result (7) by its natureshould be quite general,
which, however, is also not clear taking into account that the methods used for its
derivation (see e.g. [3]) heavily use properties of particular two infinite parallel
planes geometry. This calls for systematic derivation applicable beyond the weak
field approximation and for arbitrary Casimir apparatus.

We argue here that weighting methodology suggested in [12] can be naturally
adopted to the Casimir apparatus weighting problem. Consider static metric of
the following form

ds2 = g00(x3)c
2dt2 + g33(x3)dx2

3 + dx2
⊥ (8)

with the choice ofx3-coordinate axes such thatg00(x3 = 0) = −1 (we denotex3

coordinate asz below for simplicity of notation). We are to weight, following
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Figure 1: Weighing of the Casimir apparatus (shown as dark ellipse in the right
box).

the symmetry of the above choice, two large identical boxes with some identical
boundary conditions for the fields on their internal boundaries (see Figure 1). We
put inside the box number 2 the Casimir apparatus of much smaller size, i.e. we
assume a set of conditions encoded by some functional

B[φ(x)] = 0 for x ∈ V (9)

put on the fields inside the volume of the apparatusV or, in particular case, only
on its boundaryS = ∂V. There is no apparatus in the box number 1.

Then, following [12] we consider a function:

wk(z) =
∫

Sk

d2x⊥
√−g00 · g33〈T33〉k (10)

The indexk = 1, 2 is the box label and integration goes over section of the boxes
at constantz (sections are assumed to be of arbitrary shape, butz-independent, i.e.
geometry is cylindrical). The measures〈...〉k take into account Casimir apparatus
conditions (9) in the box 2. For Minkowskii space with the metric gµν = ηµν =
diag(−1, 1, 1, 1) the function (10) is nothing but the integrated pressure,i.e. for
z = 0 it is the force acting on the bottom plane of the box. It is obvious that all
contributions to this force from ”material” parts of the boxes 1 and 2 are identical
by construction.

The difference of these integrated pressures atz= 0 we call, by definition, the
weight of our Casimir apparatus:

f = w2(0)− w1(0) (11)
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To express this force in terms of energy-momentum tensor integrals, we are to
take into account that the total energy-momentum tensor is covariantly conserved
inside each box. For the metric choice (8) the equation (6) reads

∂w(z)
∂z
=
∂
√−g00

∂z

∫

Sk

d2x⊥ g00〈T00〉 (12)

where we have used the definition (10). Integrating (12) overthe entire boxes
and assuming lim

z→∞
[〈T33〉2(z) − 〈T33〉1(z)] = 0 (which physically corresponds to

finiteness of the Casimir apparatus), we obtain the following final answer

f =
1
2

∫

d3x
√

−g00(z)

(

∂g00(z)
∂z

)

[

〈T00〉2(x) − 〈T00〉1(x)
]

(13)

We discuss this result in the next section.

3 Discussion and applications

The most important property of the expression (13) is its independence on spatial
components of the metric and energy-momentum tensors. To get that the partic-
ular form (8) of the metric tensor was crucial. It is clear, inparticular, that the
weighting procedure we use would not be operational for the case of transverse
coordinatesx1, x2 - dependent metric tensor. On the other hand, one has no need to
takeg33 = 1 and nowhere we have used weak field approximation. Therefore in is
legitimate to expand (13) over difference (−1−g00). The leading term corresponds
to the standard choiceg00 = −1+ 2gz/c2 + O(1/c4):

f0 = g
1
c2

∫

d3x
[

〈T00〉2(x) − 〈T00〉1(x)
]

(14)

For Casimir plates discussed above equation (14) reproduces the result (7). On
the other hand, in classical limit we come back to (2) taking into account that

∫

Vbody

d3x 〈T00〉2(x) = mc2 ;
∫

Vbody

d3x 〈T00〉1(x) = ρ f c
2Vbody (15)

and〈T00〉2(x) = 〈T00〉1(x) for x outside the body. Needless to say that this last con-
dition does not take place for quantum ”field part” of the total energy-momentum
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tensor, since the body distorts fields around it and its energy is delocalized in this
sense.

The important issue is UV-divergencies of (13). Since the force is physical
observable, we expect they all get cancelled. The detailed picture of such renor-
malization can be rather tricky, as examples [2, 6] clearly show. We have to take
care only about divergencies, related to the Casimir apparatus. General intuition
suggests that the former ones renormalize the nonrelativistic mass the the material
objects the apparatus is made of. From this point of view, while distinction be-
tween ”body” and ”medium” is clear in non-relativistic and non-quantum limits,
it is somehow lost in general case since the body in question -Casimir appara-
tus - is surrounded by the cloud of quantum fields, distorted by its presence and
this distortion contributes to its total rest mass. Contrary to classical vacuum,
which at least in principle can be cleaned to any desired level, allowing indepen-
dent measurement of each contribution, one cannot ”clean” quantum vacuum by
eliminating fluctuating quantum fields out of it.

Let us also make a comment on next-to-leading corrections to(14). They come
from two places: expansion of metric-dependent multiplierin (13) and expansion
of energy-momentum tensor average. It is convenient to rewrite (13) as

f = 2
∫

d3x
(

∂h00(z)
∂z

)

1
√

g33(z)

δ(W2 −W1)
δg00(z)

(16)

whereWk is the corresponding effective action and the standard definition

〈Tµν(x)〉 = 2
√−g

δW
δgµν(x)

(17)

was used. Next-to-leading correction has the following form:

f = f0 −
∫

d3x
(

∂h00(z)
∂z

)

h33(z)
[

〈T00〉2(x) − 〈T00〉1(x)
]

+

+ 4
∫

d3x
(

∂h00(z)
∂z

) ∫

d4x′ hαβ(x
′)

δ

δgαβ(x′)
δ(W2 −W1)
δg00(x)

∣

∣

∣

∣

∣

∣

h=0

(18)

We see that the dependence on spatial components of the metric appears at the
next order. Another correction to the classical Archimedesforce - ”weight of
quantum fluctuations” - corresponds to the last term. It is worth mentioning [13]
that in Casimir systems with massless fields fluctuations of energy-momentum
tensor components

∫

d4x′ [〈Tµν(x)Tαβ(x′)〉 − 〈Tµν(x)〉 · 〈Tαβ(x′)〉] (19)
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are typically not small with respect to average〈Tµν(x)〉, so both the second and
the third terms in the right hand side of (18) can in general beof the same order.

For general geometry of the Casimir body the right hand side of (13) or (14)
is given by some complicated expression, and no universal dependence of the
Archimedes force on the body’s volume like in (2) can be expected. To get the
latter universality there should be small parameter in the system, as we discussed
above. An interesting example is Casimir apparatus in the thermal bath. If geo-
metric size of the apparatus is large compared to thermal wavelength

r ≫ ~c
kBT

(20)

one could think that large temperature expansion is a good approximation. Techni-
cally we can realize it using effective action and heat kernel expansion formalism
in Euclidean space (see review [14]). It is convenient to start with expression for
free energy

βFβ = − log
∫

DΦ e−S[Φ] (21)

where the action for massless minimally coupled free scalarfield is given by the
standard expressionS = 1

2

∫ β

0
dτ

∫

ddx Φ (−�) Φ and covariant D’Alembertian is
� = ∇µ∇µ. In Euclidean formalism (see, e.g. [15, 16]) one considers theory in
d + 1-dimensional Euclidean space-time with the topologyRd × S1, where length
of the latter compact dimension is denoted asβ. The fields satisfy the conditions
of periodicity in Euclidean timeΦ (x, τ) = Φ (x, τ + β). Parameterβ will be asso-
ciated with inverse temperature in what follows:β = (kBT)−1.

As is well known, the temperature-dependent part of one-loop Euclidean ef-
fective action can be represented in terms of the corresponding thermal heat kernel
K̂β(s|x, y):

βFβ = −
1
2

∞
∫

0

ds
s

(

TrK̂β(s) − TrK̂(s)
)

(22)

whereK̂β(s) is periodic in Euclidean time solution of the equation
(

d
ds
− �

)

K̂β(s|x, y) = 1̂ · δ(s)δ(x, y) (23)

with s playing the role of proper time. The temperature dependenceof the trace
of finite temperature heat kernel can be factorized as [16]

TrK̂β(s) =
β

(4πs)1/2
θ3

(

0, e−
β2

4s

)

∫

ddx tr K̂d(s|x, x) (24)
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whereθ3(a, b) is Jacobi function and we denoted-dimensional zero-temperature
kernelK̂∞(s) asK̂d(s).

The key result [18, 19, 20, 21] is expression for the heat kernel asymptotic
expansion on the manifoldM in powers of the proper time:

∫

ddx tr K̂d(s|x, x) =
1

(4πs)
d
2

∞
∑

n=0

(

snAn + sn/2Bn/2

)

(25)

where the coefficients are given by

An =

∫

M
ddx

√

−g(x) an(x) ; Bn/2 =

∫

∂M
dd−1x

√

γ(x) bn/2(x) (26)

for integer and half-integer powers. Hereg(x) andγ(x) denote the determinants
of the bulk and induced boundary metrics, respectively. Thesurface integrals at
the boundariesBn/2 are build of local invariants incorporating such local charac-
teristics of the surface as its extrinsic curvatureKµν etc.

In the problem under discussion the manifoldsM correspond to intrinsic space
inside the boxes. Let us denote asVbox the volume of the boxes (identical for the
box 1 and the box 2), then byV we denote the volume of Casimir apparatus,
located in the box 2. In the same way we denote asSbox the identical surface area
of the boxes and byS - the surface area of Casimir apparatus. Then taking into
account thata0 = 1, one obtains, at the leading order, for the free energy in the
box 1 (without Casimir apparatus)

F(1)
β
= −π

2

90
1
β4

Vbox+ b
ζ(3)
8π

1
β3

Sbox+ O(β−2) (27)

while for the box 2, excluding the apparatus:

F(2,out)
β

= −π
2

90
1
β4

(Vbox− V) + b
ζ(3)
8π

1
β3

(Sbox+ S) + O(β−2) (28)

The parameterb, proportional tob1/2 from (26), encodes boundary conditions for
the field, for particular case of Dirichlet boundary conditionsb = 1, whileb = −1
for Neumann ones [19, 21]. In principle, one can consider thecase (quasistation-
ary for small thermal conductivity of the material the apparatus is made of) with
different temperatures inside and outside the apparatus and addcontribution to the
total free energy in the box 2 from the internal volume of the apparatus:

F(2,in)
β
= −π

2

90
1

β4
in

V + b
ζ(3)
8π

1

β3
in

S + O(β−2) (29)
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Then, using the relation

U = Fβ − T
∂Fβ
∂β

(30)

for internal energy, we get for the leading and first sub-leading contributions to
Archimedes force (14)

f −mg = g
~

c













π2

30

(

T4
in − T4

out

)

(

kB

~c

)4

· V − b
ζ(3)
4π

(

T3
in + T3

out

)

(

kB

~c

)3

· S












(31)

This result is worth commenting. First, as it should be by design of our weighting
procedure, all factors depending on geometry of the boxes have been cancelled.
The expansion goes in parameter (~c/kBT)(S/V) which is assumed to be small3

according to condition (20). The first term in the right hand side is nothing but the
weight of thermal photon gas.4 This term is universal and scales as volume. The
next-to-leading non-universal term depends on boundary conditions and scales
as area. Due to scalar nature of the problem both inside and outside parts of
the boundary contribute with the same sign and this term doesnot vanishes but
doubles for equal inside and outside temperatures. The importance of such terms
and surface-dependent effects they describe for various metrology problems like
precise calibration of thermometers etc was stressed in [16].

4 Conclusions

We discussed universal expression for the Archimedes forceon Casimir apparatus
(13) applicable to any kind of the latter. It is shown that only zeroth component of
the energy-momentum tensor contributes to it. In case of Casimir apparatus in the
thermal bath of massless scalar field next-to-leading correction of quantum origin
(31) is computed.

The effects discussed above are extremely tiny. Indeed, the ratio between
”mass” part of the force (equal to|mg|) and Archimedes part (given by the right
hand side of (31)) is of the order of 1020 for a body of macroscopic mass and size
at room temperature. Direct detection of such a small staticforce seems to be
hopeless. It is worth remembering nevertheless examples inthe history of physics
when extremely weak effects became detectable with the help of amplifiers like

3The parameter~c/kBT = 7.6 · 10−6 meters at 300 K.
4This physics described by (31) should not be misinterpretedas physics of flying balloons with

heated air inside, where key factor is pressure gradient dependence on temperature.
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multiplicity, interference or resonance. Huge value of Avogadro number allowing
with multi-ton detectors to reach limits on the lifetime of aproton far exceeding
the age of the Universe, recent observation of gravitational waves [22], interesting
suggestions to use sophisticated balances to weight internal energy [23, 24] are
good examples demonstrating power of these techniques, respectively. In this
respect, the problem to find experimentally reasonable ”amplifying factor” for
weak gravity of quantum states/energies is not closed and in our opinion still worth
studying. This land is to large extentterra incognitaexperimentally and one can
hope for surprises here.
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