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Abstract

This letter addresses a problem of Casimir apparatus iredeeslium,
put in weak gravitational field. The falling of the apparah#s to be gov-
erned by the equivalence principle, with proper accountémtributions to
the weight of the apparatus from its material part and frostodied quan-
tum fields. We discuss general expression for the corre$pgridrce in
metric with cylindrical symmetry. By way of example we conpexplicit
expression for Archimedes force, acting on the Casimir egipa of finite
size, immersed into thermal bath of free scalar field. It isvah that be-
sides universal term, proportional to the volume of the agipa, there are
non-universal quantum corrections, depending on the aynmbnditions.
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1 Introduction

Reflections about matter dynamics in gravitational fieldear®ng the most fruit-
ful themes in the history of physics. Well known legends abbéewton, inspired
by the falling apple in his mother’s garden, or about Galig@pping balls from
the top of the Leaning Tower of Pisa are good examples. In moailaes, clas-
sical tests of General Relativity such as light deflectiontyy Sun’s gravity;
weighting-the-photon experiments of Pound-Rebka typep8b delay; neutron
interferometry in gravitational field; ALPHA, AEGIS and GBRexperiments at
CERN, exploring falling antimatter, continue the same bhstudies.

Of particular interest are quantum field theoretic physicslassical gravita-
tional field, where Hawking radiation is the best known phraeoon[1]. Need-
less to say that the problem of genuine gravitational ictesa between parts
of intrinsically quantum object (for example, between twdasmgled photons)
cannot be addressed in semiclassical approach, leavidg #s¢ fact that it is
beyond our current experimental abilities. It is to be seelsthat we have no
direct experimental information how an elementary pagtidte proton gravita-
tionally interacts with another one at, say, distance$0'° meters. Therefore
naive extrapolation of Newton gravity law to the Planck aligtes~ 10-%° meters
could be plainly wrong, as various extra dimensions sceaauggest. In other
words, the "ultimate” ultraviolet fundamental scale canlwave nothing to do
with the conventional Planck distance (calculated frongldistance asymptotic
of the gravitational interaction, described by the NewtonstaniG).

Coming back to the case when semiclassical treatment i®ppate, the sim-
plest example is non-relativistic motion of a test body iteexal weak gravita-
tional field. The basic fact governing this type of motion islMknown from
school textbooks: the force acting on the body is propodida its mass and
directed along the free fall acceleration:

f =mg=pVg (1)
wherep = m/V is average density and is the body’s volume. Simplicity of this
formula should not camouflage a highly nontrivial fact, ttegt force depends on
the only parameter of the body - its mass (and not, for exangolets chemical
composition, entropy etc). Combined with the Newton’s sectaw of motion
this fact has, of course, direct relation to the celebratpdvalence principle.

The situation gets more complex if the test body is immerstagas or fluid.
The expressiori{1) is to be replaced in this case by

f=(o-p1)Vg (2)
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whereps is the fluid’s density, and the term proportionaptois known as Archi-
medes force. The expressidn (2) hides a few approximatioddtere are a few
relevant small parameters. First, the independence ofdhie on any character-
istic features of the body other than its volume is by no meawisl. It is based
on smallness of a ratio of gdlsiid molecules size to that of the body (and also
holes in the body’s surface etc), which makes continuousumedpproximation
applicable@ Another parameter is the Planck constianthe result[(R) is of course
purely classical and may get quantum corrections, for exayifpypical quantum
correlation length in the fluid is comparable with the bodsesiAlso needless to
say that((R) is valid in non-relativistic and weak gravibatl field approximations.
Last but not least, the expressi@n (2) is invariant unddtsshi— p + const. It
is "self-renormalized” in this sense and piece of vacuunmafor other medium in
stationary case) with the "mass”
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does not "fall” in external gravitational field, becauserthis compensating "pres-
sure” on this piece of exactly the same magnitude from sudings, directed
"upwards”.

This letter analyzes weighting of the Casimir apparatuseakwgravitational
field. The problem has attracted some attention in recems\8a3, 4/ 5[ 6] 17,18,
[9,[10] and there used to be controversy in the literature Weneintion below. We
argue that the key point is physically correct definitionhef tveighting procedure,
since there is no possibility to weight Casimir energy aloore always measure
the weight of Casimir apparatus as a whole. The weightinggmore and the
results are to be universal and applicable to any Casimiarabyps, not only to
two parallel plate Casimir cavity, usually taken as exam@er aim is to discuss
such procedure and to apply it to concrete case of Casimitydathermal bath
of massless scalar field.

2 ArchimedesForce

The basic ingredient is quantum field theoretical averagenefgy-momentum
tensor(T,,(X)), where average over fields is computed with the standargrimte
tion measureD®, normalized to havél) = 1. In geometric setup used by us in

1This is just what helped Archimedes to find out the volume afdi Hiero crown in well
known legend.



this papeﬁ Casimir apparatus is encoded by soraéependent measure defor-
mation,D® — D’'®, corresponding to constraints the fields have to obey on the
boundary or in interior of the apparatus. For example, isgital Casimir setup

of two infinite ideally conducting parallel planes inteiagtwith electromagnetic
field this deformation looks like[11]

DA(X) — DALX) §(F3(xs = a1))o(F*3(xs = ay)) (4)

whereF* is dual field strengtha,, a, - coordinates of the planes along the third
axis (the axes 1 and 2 are in the planes). The form of the abgression is quite
general and in many cases one can wiX® = D® A[®] with some functional
of the fields. One could think of Casimir plates as of "passietectors”. In
other words, one selects only those field configurations,revparallel electric
and normal magnetic fields at the position of the plates ame akall moments
of time. This is like having quantum or classical particleaircorridor made of
hard walls so that any subsequent measurement of the pacbordinate will
definitely return a result inside the corridor. Uncertairdjation causes pressure
on the boundaries (walls and plates in the examples aboveghvdepends, in
particular, on how hard (conductive) they are.

Coming back to the Casimir apparatus in weak gravitatioe#d fvriting the
metric asg,, = 1. + 2h,,, one gets for the energy shift at the leading order of
semiclassical approximation|[4]

5, = f 6 Iy, ()T (%) 5)

In geometric setup the average*”)(x) has two parts - the "material” one, corre-
sponding to the objects (planes, cavities, robes, spritoyshee Casimir apparatus
is made of, and the "field” part. For nonrelativistic casetgaomponents of the
energy-momentum tensor are suppressed by inverse powtrs sfieed of light,
[T% > |T'I| and only temporal component of the metric tenis@(x) is relevant.
This can be correct approximation for the material paflof)(x), but certainly
not for its "field” part we are interested in here. Conseqlyehts easy to check,
that various choices of the metiig, lead to diferent answers fafE,, even if all
these choices correspond to uniform field with free fall éaxegiong. Moreover,
the energy becomes orientation-dependent for some chaicgsoss contradic-
tion with the equivalence principle and scalar nature ofsndis is physically
unacceptable and should be resolved.

2By the word "geometric” we mean neglect of dynamical projesrof the boundaries like
frequency-dependent reflectivity etc.



The source of the problem was identified(ih [4] as gauge nwariance of[(b).
Indeed, [(b) is invariant under weak field gauge transforomdtj, — h,, + 9,¢, +
0,¢, only if 9,T*" = 0. The energy-momentum tensor is covariantly conserved
for the combined "materiat field” system

V,T" =0 (6)

but not for the "field” part alone. Thus two logically posgtdlternative paths
can be chosen: either one is to include the material part arefudly work with
the full energy-momentum tensor, obeyihg) (6), or one is ¢gmey that this or that
choice of the metric is more physical than another choicescampute the force
using the distinguished metric. Mostly the latter path vedieived in the literature
with the motivation for preferable role of Fermi metric cb@t?hgy = gz ; h; j=
0 and the result for the weight of Casimir energy (in claddiza plates case)

n?hc
72083

andS stays for the plates area. The energy-momentum tensor alygtem is
given by(T#") = (Ec/a) x diag(1 -1, -1, 3) between the plates and zero outside
[10].

Thus, the cavity feels small upward push and Casimir enerayitgtes as any
other form of energy in accord with the equivalence prireipln a sense, the
answer [(V) could have been written without any computatidnEc is known.
However, the arguments based on physically distinguighaid¢ of a particular
parametrization of the metric arefliicult if not impossible to generalize to other
cases. In particular, it is not clear how to write the nexeor@(h,,h,.) correction
to (@). Itis also important, that the result (7) by its natsineuld be quite general,
which, however, is also not clear taking into account thatrttfethods used for its
derivation (see e.g/. [3]) heavily use properties of paléictwo infinite parallel
planes geometry. This calls for systematic derivationiapple beyond the weak
field approximation and for arbitrary Casimir apparatus.

We argue here that weighting methodology suggested in @2e naturally
adopted to the Casimir apparatus weighting problem. Censthtic metric of
the following form

(7)

Ec
f:gFS where Ec = -

d52 = goo(Xg)Czdt2 + g33(X3)d)§ + dXi (8)

with the choice ofxs-coordinate axes such thay(xs = 0) = —1 (we denotexs
coordinate az below for simplicity of notation). We are to weight, follomg
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Figure 1. Weighing of the Casimir apparatus (shown as ddifgselin the right
box).

the symmetry of the above choice, two large identical boxés some identical

boundary conditions for the fields on their internal bouretafsee Figure 1). We
put inside the box number 2 the Casimir apparatus of muchlesnsite, i.e. we

assume a set of conditions encoded by some functional

B[p(X)] =0 for xe V (9)

put on the fields inside the volume of the apparatusr, in particular case, only
on its boundans = dV. There is no apparatus in the box number 1.
Then, following [12] we consider a function:

wi(2) = f d°X, V=900 g23(T >N (10)
Sk

The indexk = 1, 2 is the box label and integration goes over section of the®ox
at constanz (sections are assumed to be of arbitrary shapez-mdependent, i.e.
geometry is cylindrical). The measures), take into account Casimir apparatus
conditions [(9) in the box 2. For Minkowskii space with the ney,, = n,, =
diag(-1,1,1,1) the function[(ID) is nothing but the integrated pressiee, for
z = 0 it is the force acting on the bottom plane of the box. It isiobs that all
contributions to this force from "material” parts of the lesx1 and 2 are identical
by construction.

The diference of these integrated pressures=ab we call, by definition, the
weight of our Casimir apparatus:

f = w2(0) — w1(0) (11)
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To express this force in terms of energy-momentum tensegrats, we are to
take into account that the total energy-momentum tensanareantly conserved
inside each box. For the metric choi€é (8) the equafibn @)se

0 0+-
NS f A%, goo(T™) (12)
Sk

0z

where we have used the definitidn10). Integratind (12) dherentire boxes
and assumingz] lifM(T33),(2) — (T3),(2)] = 0 (which physically corresponds to

finiteness of the Casimir apparatus), we obtain the follgviinal answer

=3 [ & Vool 222 (009 - 9] @9

We discuss this result in the next section.

3 Discussion and applications

The most important property of the expressiod (13) is itepehdence on spatial
components of the metric and energy-momentum tensors. tTihgiethe partic-
ular form (8) of the metric tensor was crucial. It is clearparticular, that the
weighting procedure we use would not be operational for tee ©f transverse
coordinatexy, X, - dependent metric tensor. On the other hand, one has nomeed t
takegsz = 1 and nowhere we have used weak field approximation. Therafios
legitimate to expand. (13) overftitrence £ 1-goo). The leading term corresponds

to the standard choiagy = —1 + 2g9z/c? + O(1/c%):

fo= g5 [ & [T - (7] (14)

For Casimir plates discussed above equafioh (14) repredheeresult[{[7). On
the other hand, in classical limit we come backfo (2) takirtg account that

f A (T),(x) = m ; f X (T (%) = prPVooy  (15)

Vbody Vbody

and(T %, (x) = (T%,(x) for x outside the body. Needless to say that this last con-
dition does not take place for quantum “field part” of the tet@ergy-momentum
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tensor, since the body distorts fields around it and its gnisrdelocalized in this
sense.

The important issue is UV-divergencies bf(13). Since thedds physical
observable, we expect they all get cancelled. The detait#drp of such renor-
malization can be rather tricky, as examples [2, 6] cleangws We have to take
care only about divergencies, related to the Casimir apypar&eneral intuition
suggests that the former ones renormalize the nonrelativigiss the the material
objects the apparatus is made of. From this point of view]entistinction be-
tween "body” and "medium” is clear in non-relativistic andmquantum limits,
it is somehow lost in general case since the body in quest@asimir appara-
tus - is surrounded by the cloud of quantum fields, distorted<presence and
this distortion contributes to its total rest mass. Comtrar classical vacuum,
which at least in principle can be cleaned to any desired,lallewing indepen-
dent measurement of each contribution, one cannot "cleaahiyim vacuum by
eliminating fluctuating quantum fields out of it.

Let us also make a comment on next-to-leading correctiofi&®o They come
from two places: expansion of metric-dependent multiphgfl3) and expansion
of energy-momentum tensor average. It is convenient toite{d3) as

B s ahoo(z)) 1 o(Wo—Wy)
r= Zfd X ( 0z \/ggg(Z) 5900(2) (16)

whereW is the correspondingfective action and the standard definition

2 o6W
T+ = — 17
T = === a7
was used. Next-to-leading correction has the followingfor
= fo- [ ¢ | T2 ) [ (7009 - (199 +
dhoo(2) 6 o(Wo— W)

4 | o L)fd“'hax 18
ea [ (T2 [ om0 50 S o 10

We see that the dependence on spatial components of thec mppears at the
next order. Another correction to the classical Archimeftese - "weight of
quantum fluctuations” - corresponds to the last term. It isttvonentioning[[13]
that in Casimir systems with massless fields fluctuationsnefgy-momentum
tensor components

f d*X [T ()T (X)) = (T (%)) - (T¥(X))] (19)
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are typically not small with respect to avera@é”(x)), so both the second and
the third terms in the right hand side 6f{18) can in generaiftte same order.
For general geometry of the Casimir body the right hand sfdg3) or (14)
is given by some complicated expression, and no univergarddence of the
Archimedes force on the body’s volume like [0 (2) can be elgeec To get the
latter universality there should be small parameter in yfstesn, as we discussed
above. An interesting example is Casimir apparatus in teental bath. If geo-
metric size of the apparatus is large compared to thermathagth

hc
r>— 20
KeT (20)
one could think that large temperature expansion is a gopajmation. Techni-
cally we can realize it usingfective action and heat kernel expansion formalism
in Euclidean space (see review [14]). It is convenient tat stiah expression for

free energy
BFs = — Iogfi)d) e Sl (21)

where the action for massless minimally coupled free sdadht is given by the
standard expressid = 3 foﬁ dr [ d% @ (-o0) ® and covariant D’Alembertian is
o = V,V4 In Euclidean formalism (see, e.d. [15/16]) one consideesty in
d + 1-dimensional Euclidean space-time with the topolBfy S*, where length
of the latter compact dimension is denotegiad he fields satisfy the conditions
of periodicity in Euclidean time (x, 1) = ® (X, T + 8). Parameteg will be asso-
ciated with inverse temperature in what folloygs= (kg T)™ .

As is well known, the temperature-dependent part of one-Boclidean ef-
fective action can be represented in terms of the correspgtigzermal heat kernel
KA (%, ): .

BFs = 1 f ds (TrRA(s) - TrK(9)) (22)
F=2) s
0
whereK#(s) is periodic in Euclidean time solution of the equation

(dis_ D) KE(six,y) = 1 6(9)5(x. y) (23)

with s playing the role of proper time. The temperature dependehte trace
of finite temperature heat kernel can be factorized as [16]

TrRA(s) = @:ﬁ 05 (o, e"—) f dx tr Ry(six, X) (24)
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whereos(a, b) is Jacobi function and we denotedimensional zero-temperature
kernelK>(s) asKq(s).

The key result[[18, 19, 20, 21] is expression for the heatéeasymptotic
expansion on the manifold in powers of the proper time:

(9]

f dx tr Kq(six, X) = a 1s - an/z) (25)
S)?2

n=0

where the cofficients are given by

Ao = fM dx V=g a0 Buz= | b9 (26
for integer and half-integer powers. Heyéx) andy(x) denote the determinants
of the bulk and induced boundary metrics, respectively. Jumace integrals at
the boundarie8,,, are build of local invariants incorporating such local @aar
teristics of the surface as its extrinsic curvat{yg etc.

In the problem under discussion the manifolscorrespond to intrinsic space
inside the boxes. Let us denote\4g, the volume of the boxes (identical for the
box 1 and the box 2), then by we denote the volume of Casimir apparatus,
located in the box 2. In the same way we denot8g@sthe identical surface area
of the boxes and b$ - the surface area of Casimir apparatus. Then taking into
account thaby = 1, one obtains, at the leading order, for the free energyen th
box 1 (without Casimir apparatus)

! 3) 1
F,g - _9_0E\/box + b 81 ﬁ3sb0x O(B 2) (27)
while for the box 2, excludlng the apparatus:
(2ouy _ {B3)1 _
FEo = 35 ﬁ4(vbox V)b (St )06 (28)

The parameteb, proportional tdb;, from (26), encodes boundary conditions for
the field, for particular case of Dirichlet boundary corfitsb = 1, whileb = -1
for Neumann ones [19, 21]. In principle, one can considects® (quasistation-
ary for small thermal conductivity of the material the agias is made of) with
different temperatures inside and outside the apparatus amdanibution to the
total free energy in the box 2 from the internal volume of thparatus:

F(2,in):_ﬂ_2iv_l_ (@31

2
s 90p% " " 8r F o OB (29)
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Then, using the relation
oFg
U=Fs- B (30)
for internal energy, we get for the leading and first sub-legaontributions to
Archimedes forcd (14)

_hﬂz 4 4 kB4 £(3) (13 3 k83
f- mg = gE (%(Tin - Tout) (%) V- bﬂ (Tin + Tout) (%) ) S) (31)

This result is worth commenting. First, as it should be byigiesf our weighting
procedure, all factors depending on geometry of the boxes haen cancelled.
The expansion goes in parametgc/ksT)(S/V) which is assumed to be sniall
according to conditioi {20). The first term in the right haitiess nothing but the
weight of thermal photon g&]’his term is universal and scales as volume. The
next-to-leading non-universal term depends on boundanglitons and scales
as area. Due to scalar nature of the problem both inside atsideuparts of
the boundary contribute with the same sign and this term doesanishes but
doubles for equal inside and outside temperatures. Thertarpze of such terms
and surface-dependentects they describe for various metrology problems like
precise calibration of thermometers etc was stressed jn [16

4 Conclusions

We discussed universal expression for the Archimedes fmr¢@asimir apparatus
(@3) applicable to any kind of the latter. It is shown thatyargroth component of
the energy-momentum tensor contributes to it. In case ah@agpparatus in the
thermal bath of massless scalar field next-to-leading ctore of quantum origin
(31) is computed.

The dfects discussed above are extremely tiny. Indeed, the ratiween
"mass” part of the force (equal fog|) and Archimedes part (given by the right
hand side of[(31)) is of the order of ¥Jor a body of macroscopic mass and size
at room temperature. Direct detection of such a small sfatie seems to be
hopeless. It is worth remembering nevertheless examptég inistory of physics
when extremely weakfiects became detectable with the help of amplifiers like

3The parametefic/kgT = 7.6 - 10°® meters at 300 K.
4This physics described biy{[31) should not be misinterprasguhysics of flying balloons with
heated air inside, where key factor is pressure gradiergriignce on temperature.
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multiplicity, interference or resonance. Huge value of gadro number allowing
with multi-ton detectors to reach limits on the lifetime opeoton far exceeding
the age of the Universe, recent observation of gravitatiwages [22], interesting
suggestions to use sophisticated balances to weight aitenergy [[23| 24] are
good examples demonstrating power of these techniqugseatdgely. In this
respect, the problem to find experimentally reasonable liéying factor” for
weak gravity of quantum statemergies is not closed and in our opinion still worth
studying. This land is to large extetarra incognitaexperimentally and one can
hope for surprises here.
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