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The phases and properties of matter under global rotation have attracted much interest recently.
In this paper we investigate the pairing phenomena in a system of fermions under the presence
of rotation. We find that there is a generic suppression effect on pairing states with zero angular
momentum. We demonstrate this effect with the chiral condensation and the color superconductivity
in hot dense QCD matter as explicit examples. In the case of chiral condensation, a new phase
diagram in the temperature-rotation parameter space is found, with a nontrivial critical point.

Introduction.—The phases and properties of matter
can become highly nontrivial under rotation, and have
attracted a lot of interest recently. Such studies bear
particular relevance for the strongly interacting matter
of Quantum Chromodynamics (QCD). For example, as-
trophysical objects like neutron stars, made of dense
QCD matter, can be rapidly spinning [1, 2]. In rela-
tivistic heavy ion collision experiments, the typical colli-
sion events are off-central and the created QCD matter
will carry a nonzero angular momentum [3–7]. There has
also been impressive progress to study the rotating QCD
matter using lattice gauge theory simulations [8].

It is found that in rotating matter, many interesting
transport phenomena could occur. For example, the fluid
rotation (as quantified by a nonzero vorticity) can induce
certain anomalous transport processes in a system of chi-
ral fermions, with the notable examples of chiral vortical
effect [9–11] and chiral vortical wave [12]. These can
lead to measurable experimental signals (see e.g. recent
reviews in [13, 14]). In the study of such anomalous trans-
port, it has been identified that the fluid rotation plays a
very analogous role to an external magnetic field. Indeed
there appears to be an interesting analogy between the
chiral vortical effect and the so-called chiral magnetic ef-
fect [9, 15], as well as between the chiral vortical wave
and the so-called chiral magnetic wave [16, 17].

Apart from transport properties, it is of significant in-
terest to explore the effects of rotation on the phase struc-
tures and phase transitions of matter in both relativis-
tic and non-relativistic cases. In particular, it is known
that an external magnetic field can bring interesting ef-
fects on the thermodynamics and phase diagram on e.g.
QCD matter [18–23], with the well-known example of
magnetic catalysis and inverse catalysis (see reviews in
e.g. [24, 25]) on the chiral condensation. Given the close
analogy between rotation and magnetic field, it is tempt-
ing to ask whether and how the rotation could influence
the various phase transitions. In this paper, we investi-
gate the pairing phenomena in a system of fermions un-
der the presence of rotation. We will show that there is a
generic suppression effect on pairing states with zero an-
gular momentum. We demonstrate this effect with the
chiral condensation and the color superconductivity in

hot dense QCD matter as explicit examples.

Rotational Suppression Effect on Scalar Pairing
States.— Before going to more detailed computation, let
us first explain, in an intuitive way, the generic rota-
tional suppression effect on scalar pairing states. We
are considering in general a system of spin- 1

2 fermions.
They could be e.g. the dense quark or nucleon matter in
the context of compact stars [26–28] or the cold atomic
gases [29–31]. More conventional examples include e.g.
electrons or holes in solid state systems, liquid helium-
3, etc. The pairing phenomenon between fermions under
suitable conditions encompasses a wide range of systems.
Examples include e.g. electron-electron pairing in super-
conductors, atom-atom pairing in helium-3 or cold fermi
gases, nucleon-nucleon pairing in large nuclei or dense nu-
clear matter, quark-anti-quark pairing in the chiral con-
densate of QCD, or quark-quark pairing in color super-
conductivity, etc. We focus on the scalar pairing states,
i.e. states which have zero total angular momentum.
Note that for a pair of spin- 1

2 fermions, there are dif-
ferent ways of forming a spin-0 pairing state: either, the
pair could have both nonzero orbital angular momentum
L and nonzero total spin S, with L and S being opposite
thus resulting in total J = 0; or the pair could have zero
orbital angular momentum, and have opposite individual
spin configurations for the two fermions.

As we will show below, when such a system is under
rotation, there will be a generic rotational suppression
effect on the scalar pairing states. Intuitively this can
be understood as follows. The global rotation, implying
a nonzero macroscopic angular momentum of the whole
system, will induce a rotational polarization effect which
tends to “force” all microscopic angular momentum to
be aligned with the global angular momentum. So for
a pair of fermions, their relative orbital angular momen-
tum L as well as their individual spins would prefer to be
parallel to the global angular momentum rather than to
arrange themselves into a scalar state with zero angular
momentum. This therefore leads to a generic suppression
effect on the scalar pairing states. It also implies that
pairing states with nonzero angular momentum could be-
come more favorable. In the following, we quantitatively
demonstrate this effect with two nontrivial examples in
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the QCD matter: the chiral condensate (of quark-anti-
quark pairing states with L = S = 1 but J = 0) and the
diquark condensate (of quark-quark pairing state with
L = S = 0).

Description in Rotating Frame.— Let us consider a
system of spinor particles that is under very slow ro-
tation with a constant angular velocity denoted by ~ω
along a certain fixed axis. This system can be equiv-
alently described as a system at rest in a rotating ref-
erence frame, see e.g. discussions in e.g. [8, 29]. We
denote space-time as (t, ~x) with flat Minkowski metric
ηµν = Diag(1,−1,−1,−1). The local velocity of this ro-
tating frame (with respect to the original non-rotating
frame) is given by ~v = ~ω × ~x. The space-time metric of
the rotating frame becomes a curved one, given by:

gµν =

 1− ~v 2 −v1 −v2 −v3

−v1 −1 0 0
−v2 0 −1 0
−v3 0 0 −1

 (1)

In such description, the usual (free) Dirac Lagrangian for
spinor gets modified to take the following form:

L = ψ̄ [iγ̄µ(∂µ + Γµ)−m]ψ (2)

where m is the fermion mass. The γ̄µ = e µa γ
a with e µa

the tetrads for spinors and γa the usual Dirac γ matrices.
The spinor connection is given by Γµ = 1

4×
1
2 [γa, γb] Γabµ

where Γabµ = ηac(e
c
σG

σ
µνe

ν
b − e νb ∂µecν), where Gσµν is

the affine connection determined by gµν . Finally we use
the simplest choice of the tetrads, i.e. eaµ = δaµ+δaiδ

0
µ vi

and e µa = δ µa − δ 0
a δ

µ
i vi.

We next consider the limit of very slow rotation, i.e.
with ω being small and expand the Lagrangian up to the
order of Ô(ω). After some lengthy but straightforward
calculations, one arrives at the following result:

L = ψ†
[
i∂0 + iγ0~γ · ~∂ + (~ω × ~x) · (−i~∂) + ~ω · ~S4×4

]
ψ (3)

where ~S4×4 = 1
2

(
~σ 0
0 ~σ

)
is the spin operator with ~σ the

usual Pauli matrices. We note the last two terms in the
above bracket may be interpreted as effective polarization

term ~ω · ~J , with total angular momentum ~J consisting of
an orbital term and a spin term. The rotational velocity
~ω serves as an effective “chemical potential” for total
angular momentum of the system.

The next step is to find the “natural” eigenstates in
this rotating frame, in parallel to the usual plane-wave
spinor eigenstates in normal frame [32–34]. We first write
the corresponding Hamiltonian in momentum space:

Ĥ = γ0(~γ · ~p+m)− ~ω · (~x× ~p+ ~S4×4) = Ĥ0 − ~ω · ~̂J (4)

We use the cylindrical spatial coordinates (r, θ, z) with
~ω = ωẑ and with r, θ being transverse radial position
and azimuthal angle. It can be easily checked that the
complete set of commutating operators consists of Ĥ, p̂z,

~̂p 2
t , Ĵz, and ĥt ≡ γ5γ3~pt · ~S4×4[35]. The last one is a sort

of reduced helicity operator on transverse plane. One
can therefore label the eigenstates of the above Hamil-
tonian by a set of corresponding eigenvalues: energy E,
z-momentum kz, transverse momentum magnitude kt, z-
angular-momentum quantum number n = 0,±1, ..., and
“transverse helicity” s = ±. The four solutions of spinor
eigenstates are given by the following:

ukz,kt,n,s =

√
Ek +m

4Ek
eikzzeinθ


Jn(ktr)

s eiθJn+1(ktr)
kz−is kt
Ek+m Jn(ktr)

−s kz+ikt
Ek+m eiθJn+1(ktr)

(5)

vkz,kt,n,s =

√
Ek +m

4Ek
e−ikzzeinθ


kz−is kt
Ek+m Jn(ktr)

s kz−ikt
Ek+m eiθJn+1(ktr)

Jn(ktr)
−s eiθJn+1(ktr)

(6)

where Ek ≡
√
k2
z + k2

t +m2 and Jn(x) are n-th Bessel
functions of the first kind. The energy eigenvalues are
simply E = ±Ek − (n + 1/2)ω with the plus (minus)
for u (v) spinor states respectively. The last term,
i.e. −(n + 1/2)ω, is the “rotational polarization en-
ergy”. Clearly these results are the counterpart in ro-
tating frame of the usual plane wave spinor states in
non-rotating frame. With these states as basis one can
then compute various quantitates of interest using the
standard thermal field theory method.

Finally we introduce an effective interaction that takes
the generic form of four-fermion contact vertex:

LIeff
= G(ψ̄ψ)2 +Gd(iψ

TCγ5ψ)(iψ†Cγ5ψ∗) (7)

The first term is a fermion-anti-fermion scalar-channel
coupling while the second term is a di-fermion scalar-
channel coupling, with G and Gd the corresponding cou-
pling constants. The above relativistic form of effective
interaction is the Nambu-Jona-Lasinio (NJL) model. It
shall be emphasized that essentially the same physics is
applicable to many other fermion systems (such as pair-
ing in cold fermionic gases and conventional supercon-
ductor, etc). For specific application to chiral conden-
sation and color superconductivity in QCD matter, the
pertinent color/flavor indices and structures can be easily
added to the above interaction (see e.g. [36]).

Chiral Condensation in Rotating Matter.— Let us first
consider the chiral condensation which is a fermion-anti-
fermion pairing phenomenon. Note for this pairing state,
the spatial angular momentum (for the relative orbital
motion) L = 1 while the spin S = 1, with the total
angular momentum J = 0 for the fermion-anti-fermion
pair. Following the standard mean-field method, one in-
troduces the expectation value

〈
ψ̄ψ
〉

that gives rise to

a mean-field mass gap M = m − 2G
〈
ψ̄ψ
〉
. Note that

due to rotation, the system is no longer homogeneous
and the M as well as

〈
ψ̄ψ
〉

become dependent on spatial
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coordinate — specifically dependent only on r by virtue
of symmetry. Using the mean-field propagator one can
compute the grand potential of the system:

Ω =

∫
d3~r

{
(M −m)2

4G
− NfNc

16π2

∑
n

∫
dk2
t

∫
dkz

× [Jn(ktr)
2 + Jn(ktr)

2]

×T
[

ln
(

1 + e(εn−µ)/T
)

+ ln
(

1 + e−(εn−µ)/T
)

+ ln
(

1 + e(εn+µ)/T
)

+ ln
(

1 + e−(εn+µ)/T
)] }

(8)

In the above the mean-field quasiparticle dispersion εn is

given by εn =
√
k2
z + k2

t +M2 − (n + 1
2 )ω. The mean-

field chiral condensate (or equivalently the mass gap M)
at given values of temperature T , chemical potential µ
and rotation ω, can then be determined from the usual
gap equation through variation of the order parameter:
δΩ

δM(r) = 0 and δ2Ω
δM(r)2 > 0. We will numerically solve

the gap equation for the case of Nf = 2 and Nc = 3 and
present the results below. For the parameters G, Gd and
a cutoff scale Λ of this model, we choose the standard
values (see e.g. [36]).

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8
0 . 0 4
0 . 0 8
0 . 1 2
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r  =  0 . 1  G e V - 1

FIG. 1: The mean-field mass gap M (at radius r = 0.1GeV−1)
as a function of ω for various fixed value of T .

Let us focus on the zero density case (i.e. µ = 0) and
study how the mass gap changes with T and ω. As al-
ready pointed out, the condensate will depend on the
transverse radius r: we have found that the mass gap M
smoothly decreases with r . In the following we will show
results for a particular value of r for simplicity. In Fig. 1
we show M (at radius r = 0.1GeV−1) as a function of
ω for various fixed value of T . At all values of temper-
ature, the mass gap decreases with increasing values of
ω: this clearly confirms the rotational suppression effect
on the quark-anti-quark pairing in the chiral condensate.
We also see that at low temperature the chiral conden-
sate experiences a first-order transition when ω exceeds

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5
0 . 0

0 . 1

0 . 2

0 . 3   0 . 1 G e V
  0 . 3 G e V
  0 . 6 G e V
  0 . 6 4 5 G e V
  0 . 7 G e V

M 
(G

eV
)

T  ( G e V )
r  =  0 . 1 G e V - 1

1 s t

FIG. 2: The mean-field mass gap M (at radius r =
0.1GeV−1) as a function of T for various fixed value of ω.

a critical value ωc, while at high temperature the chi-
ral condensate vanishes with increasing ω via a smooth
crossover. The ωc decreases with increasing temperature.
In Fig. 2 we show M (at radius r = 0.1GeV−1) as a func-
tion of T for various fixed value of ω. At very small ω, the
mass gap decreases smoothly toward zero with increasing
temperature, indicating a smooth crossover transition as
expected. However when ω becomes large, the transition
becomes stronger and stronger, eventually becoming a
first-order transition as signaled by a sudden jump. The
transition temperature Tc becomes smaller at larger ω.
These results could be understood by considering ω as
a sort of “chemical potential” for angular momentum.

Indeed this is evident from Eq.(4): the term ~ω · ~̂J is in

direct analogy to a term µ · Q̂ for a conserved charge Q̂.
It is therefore not surprising that the phase transition
behavior at finite ω is very similar to that at finite µ in
the same model.

With the above observation, it is tempting to envi-
sion a new phase diagram of the chiral phase transition
on the T − ω parameter space: see Fig. 3 (as computed
from the present model). It features a chiral-symmetry-
broken phase at low temperature and slow rotation while
a chiral-symmetry-restored phase at high temperature
and/or rapid rotation. A smooth crossover transition
region at high T and low T and a first-order transi-
tion line at low T and high ω are connected by a new
critical end point. Given the present model parameters,
this critical point is located at TCEP = 0.020GeV and
ωCEP = 0.644GeV. As already discussed previously,
the “rotational suppression” of the scalar condensate is a
quite generic effect. It is conceivable that similar phase
transition behaviors under rotation would also occur in
other dynamical models for studying chiral condensate.

Superconducting Pairing in Rotating Matter.— To
demonstrate that the “rotational suppression” of the
scalar condensate is a generic effect, we also study an-
other quite different type of pairing: the fermion-fermion
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FIG. 3: The phase diagram on T -ω plane (see text).

(rather than the fermion-anti-fermion) superconducting
pairing phenomenon in the presence of rotation. In the
QCD context, this is the color superconductivity at high
density and low temperature (see e.g. [37] for a recent
review). Quite different from the chiral condensate, the
diquark pairing state has the spatial angular momentum
(for the relative orbital motion) L = 0 while the total
spin S = 0 (i.e. antisymmetric combination of the two
individual quark spins), again with the total angular mo-
mentum J = 0 for the pair. We use the same NJL model
and for simplicity we focus on the low-temperature high-
density region where the chiral symmetry is already re-
stored. Assuming a mean-field 2SC diquark condensate

∆εαβ3εij = −2Gd

〈
iψαi Cγ

5ψβj

〉
the grand potential in

this case is given by:

Ω =

∫
d3~r

{
∆2

4Gd
− 1

16π2

∑
n

∫
dk2
t

∫
dkz

× [Jn(ktr)
2 + Jn(ktr)

2]

×NfT
[
(Nc − 2)

(
ln
(

1 + eε
+
n /T

)
+ ln

(
1 + e−ε

+
n /T

)
+ ln

(
1 + eε

−
n /T

)
+ ln

(
1 + e−ε

−
n /T

))
+2
(

ln
(

1 + eε
∆+
n /T

)
+ ln

(
1 + e−ε

∆+
n /T

)
+ ln

(
1 + eε

∆−
n /T

)
+ ln

(
1 + e−ε

∆−
n /T

))] }
(9)

In the above the mean-field quasiparticle dispersion ε±n
and ε∆±n is given by ε±n = (

√
k2
z + k2

t +m2±µ)−(n+ 1
2 )ω

and ε∆±n = [(
√
k2
z + k2

t +m2 ± µ)2 + ∆2]
1
2 − (n+ 1

2 )ω.
The mean-field diquark condensate ∆ at given values of
temperature T , chemical potential µ and rotation ω, can
then be determined from the self-consistency equation
through variation of the order parameter: δΩ

δ∆(r) = 0 and
δ2Ω

δ∆(r)2 > 0. By numerically solving the equation, we show

in Fig. 4 the ∆ (at radius r = 0.1GeV−1) as a function of

ω for several values of T and fixed µ = 400MeV. One can
see that with increasing ω, the diquark condensate always
decreases toward zero, through a 1st-order transition at
low T while a smooth crossover at higher T . This result
again confirms the generic rotational suppression effect
on the scalar diquark pairing.

0 . 0 0 0 . 0 4 0 . 0 8 0 . 1 2 0 . 1 6
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

0 . 1 2
T  =  1 0 M e V

T  =  3 0 M e V
T  =  4 5 M e V

∆ (
Ge

V)

ω ( G e V )

T  =  5 5 M e V

FIG. 4: The mean-field diquark condensate ∆ (at radius r =
0.1GeV−1) as a function of ω for several values of T and fixed
value of µ = 400MeV.

Summary and Discussions.— In summary, we have
found a generic rotational suppression effect on the
fermion pairing state with zero angular momentum. This
effect is demonstrated for two well-known pairing phe-
nomena in QCD matter, namely the chiral condensate
and the color superconductivity. The scalar pairing
states in these two examples, while different in many
aspects, are both found to be reduced with increasing
rotation of the system. In the case of chiral phase transi-
tion, we have identified the phase boundary with a criti-
cal point on the T − ω parameter space.

The rotational effects on pairing phase transitions may
bear interesting implications for a number of physics sys-
tems. The phase diagram of QCD matter on T −ω plane
could be quantitatively explored by ab initio lattice sim-
ulations which has recently become feasible [8]. In heavy
ion collisions there is sizable global angular momentum
carried by the hot dense matter (as recently computed
in e.g. [6]): such rotational motion may cause the chiral
restoration to occur at lower temperature as our results
imply, and may bear measurable consequences (e.g. for
dilepton emissions). In the case of neutron stars, the
dense QCD matter is under global rotation which may
reduce the chiral as well as diquark or nucleon-nucleon
pairings and may affect the moment of inertia for such
stars [27, 28]. In the non-relativistic domain, the cold
fermionic gas is an ideal place to study the rotational
suppression effect on the fermion pairing and the very
interesting BCS-BEC crossover phenomenon [38–41]. Fi-
nally, while in this paper we limit ourselves to the study
of slow rotation effects, it is worth commenting that
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highly nontrivial pairing phases (other than the scalar
condensate considered in the present study) may arise in
a very rapidly rotating system. Rapid global rotation
will generally favor pairing states with nonzero angu-
lar momentum, and one could imagine the emergence of
phases with such higher spin condensate. For example, in
dense quark matter, spin-1 diquark condensate may be-
come more favorable than the scalar diquark condensate
when ω becomes larger than certain value. There is also
the possibility of inhomogeneous phase where condensate
forms vortices carrying collective angular momentum (in
analogy to the superconductor under magnetic fields). If
a system has elementary excitations with nonzero spins
(e.g. vector mesons in QCD system), then one may imag-
ine the possibility that such excitations will have their
masses reduced with increasing rotation and may become

massless thus causing instability with strong enough ro-
tation. These are all interesting problems to be investi-
gated in the future.
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