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Thermal blurring of event-by-event fluctuations provoked by rapidity conversion
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We study the effect of thermal blurring caused by the use of (momentum-space) rapidity as a
proxy of coordinate-space rapidity in experimental measurements of conserved charge fluctuations
in relativistic heavy ion collisions. In theoretical studies assuming statistical mechanics, calculated
fluctuations are those in a spatial volume. Experiments, on the other hand, can measure fluctuations
only in a momentum-space in the final state. In a standard argument to compare experimental
results for a momentum space with theoretical studies for a coordinate space, rapidities of particles
are implicitly regarded as equivalent to their coordinate-space rapidity. We show that the relation of
two fluctuations is significantly altered by the existence of the thermal motion, i.e. thermal blurring.
We discuss that the thermal blurring can be regarded as a part of the diffusion process, and the
effect can be understood by studying the rapidity window dependences of fluctuations. Centrality
dependence of the thermal blurring effect is also discussed.

PACS numbers: 12.38.Mh, 25.75.Nq, 24.60.Ky

I. INTRODUCTION

In relativistic heavy ion collisions, bulk fluctuations
of conserved charges observed by event-by-event analy-
ses are among unique hadronic observables which carry
information on the thermal property of the medium in
the early stage [1–4]; see a recent review Ref. [5]. In
particular, the non-Gaussianity of fluctuations character-
ized by higher order cumulants has acquired much atten-
tion recently [6–11]. Active measurements of fluctuations
have been performed at Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC) [12–17].
Measurements will also be carried out in future experi-
ments, such as the beam-energy scan II (BES-II) program
at RHIC [18] and future facilities, FAIR [19], NICA [20],
and J-PARC [21]. Conserved-charge fluctuations can also
be investigated in numerical experiments on the lattice
[22, 23]. The comparison between the real and virtual
experiments by means of fluctuations will deepen our
knowledge on statistical and dynamical aspects of rel-
ativistic heavy ion collisions.

In the comparison of fluctuations measured by event-
by-event analyses with those obtained by theoretical
analyses, however, there is a difficulty associated with
the phase space in which the fluctuation are defined [2–
4]. On the theoretical side including lattice QCD nu-
merical simulations, the cumulants characterizing fluc-
tuations are usually calculated on the basis of statisti-
cal mechanics [1–3, 6–9, 22]. The cumulants calculated
in this formalism correspond to those in a finite spatial

volume in equilibrium; the phase space is defined in co-
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ordinate space after integrating out the momentum [5].
On the other hand, in heavy ion collisions experimental
detectors cannot observe the position of particles in the
medium. Instead, they can only measure the momen-
tum of particles in the final state. Therefore, the phase
space defining fluctuations inevitably has to be chosen in
momentum space.
The fluctuations in a momentum phase space observed

experimentally are usually regarded as a proxy of the
one in a coordinate space as follows [2, 3]. First, assum-
ing the Bjorken space-time evolution the (momentum-
space) rapidity1 y of a fluid element is equivalent to the
coordinate-space rapidity Y = tanh−1(z/t) of the fluid
element because of boost invariance, where t and z are
time and the longitudinal coordinate, respectively. Sec-
ond, by assuming that the rapidities of individual parti-
cles in the fluid element is equivalent to the rapidity of
the fluid element, rapidities of particles are identical with
Y . Then, by measuring fluctuations in a rapidity window
∆y after integrating out the transverse momentum, the
phase space is regarded as the one in the coordinate space
in a coordinate-space rapidity window ∆Y = ∆y, where
transverse coordinates, x and y, are integrated out.
This argument, however, relies on two nontrivial as-

sumptions; (1) validity of the Bjorken picture and (2)
that the relative velocities of individual particles against
the fluid element are negligible. Though the former may
be justified for sufficiently high energy collisions, the lat-
ter can be invalidated by thermal motion irrespective of
collision energy. Because of the thermal motion, the cor-
respondence between the two rapidities y and Y for in-

1 Pseudorapidity is often experimentally measured insted of ra-
pidity because of the relative easiness of the measurement. In
this paper, however, we consider rapidity because theoretically
it has a preferable feature under Lorentz boost.
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dividual particles becomes at most an approximate one.
The measurement of fluctuation in ∆y thus receives a
blurring effect when the results are to be interpreted as
fluctuations in ∆Y . In this study, we call this effect as
thermal blurring, and investigate its effect on fluctuation
observables quantitatively. We note that the existence of
the thermal blurring effect has been pointed out in earlier
studies [2–4, 24]. The same problem is recently investi-
gated in a slightly different context in Ref. [25]. The
purpose of the present study is to investigate this effect
on cumulants quantitatively. We discuss the centrality
dependence of the thermal blurring effect, and extend
the argument to non-Gaussian fluctuations. The main
results of this paper are presented in Ref. [26].

In this study, we estimate the thermal blurring effect
by assuming that individual particles are emitted from
the medium at kinetic freezeout. The thermal motion of
individual particles at kinetic freezeout is deduced from
a simple blastwave model for particle yields in pT space.
We show that the thermal blurring effect becomes more
prominent as the rapidity window ∆y becomes narrower,
and at the maximal coverage of the rapidity window of
STAR detector the observed fluctuations are significantly
modified owing to this effect.

Because we consider the thermal blurring at kinetic
freezeout, our argument relates fluctuations observed ex-
perimentally to those in ∆Y at kinetic freezeout. When
one wants to compare the experimental results with ther-
mal fluctuations generated in much earlier stage, one has
to take account of the time evolution of fluctuations be-
fore kinetic freezeout [10, 24, 28]. The time evolution
is basically the diffusion process toward the equilibrium.
In this paper we discuss that the thermal blurring can
be regarded as a part of the diffusion process. One thus
can use the mathematical results in Refs. [10, 24, 28] di-
rectly to understand the thermal blurring effects. We
argue that the modification of fluctuations due to ther-
mal blurring and diffusion can be experimentally under-
stood by studying the rapidity window ∆y dependences
of the cumulants as discussed for the case of diffusion
in Refs. [10, 27, 28]. The centrality dependence of net-
electric charge fluctuation observed by ALICE collabora-
tion [14] is also discussed on the basis of this picture.

Throughout this paper, we assume the Bjorken space-
time evolution. At lower energy collisions, this picture
does not hold and our discussion would be significantly
modified. We, however, do not consider such effects until
Sec. VI.

This paper is organized as follows. In the next sec-
tion we study thermal distribution of particles in rapid-
ity space using a simple blastwave model. In Sec. III,
we then study the thermal blurring effects on cumulants.
The formula of the cumulants are derived with two dif-
ferent methods in Secs. III A and III B. Numerical results
are then shown in Secs. IV and IVB. In Sec. V, we then
consider the effect of diffusion in the hadronic stage and
show that the diffusion and blurring can be regarded as
parts of a single diffusion process on the same footing.

Section VI is devoted to discussions and a short sum-
mary.

II. THERMAL DISTRIBUTION IN RAPIDITY

SPACE

In this section, we first discuss the magnitude of ther-
mal blurring by studying the thermal distribution of par-
ticles in rapidity space at kinetic freezeout on the basis
of a blastwave model.
In the Bjorken space-time evolution, the distribution of

particle density in y space at coordinate-space rapidity
Y , nY (y) is related to the distribution at mid-rapidity
n(y) as

nY (y) = n(y − Y ), (1)

because of boost invariance. In what follows, we thus
concentrate on n(y).
The invariant momentum spectrum of particles cross-

ing a surface element dΣµ is given by the Cooper-Frye
formula [29],

E
dN

d3p
= dΣ · pf(p · u), (2)

where f(E) is the single-particle distribution in the rest
frame and uµ denotes the flow velocity. We assume the
Boltzmann distribution for f(E)

f(E) ∼ exp

[

− E − µ

T

]

, (3)

with the temperature T , chemical potential µ, and E =
√

m2 + p2 with m denoting the mass of particles. The
effect of quantum statistics on Eq. (3) is well suppressed
for T ≪ m− µ. At kinetic freezeout point with the tem-
perature Tkin, the effect of quantum statistics is negligible
for all particles except for pions, on which the effect is at
most about 10%.
In order to calculate the particle distribution n(y) with

Eq. (2), we employ the following simplified blastwave
model: We assume that the freezeout with tempera-
ture Tkin and chemical potential µkin takes place at a
fixed proper time τkin with a constant transverse veloc-
ity β 2. The flow vector at mid-rapidity at (t, x, y, z) =
(tkin, x, 0, 0) is given by uµ = (γ, βγ, 0, 0) with γ =

(1−β2)−1/2 while the surface vector dΣµ is proportional
to (1, 0, 0, 0). Substituting them into Eq. (2), the mo-
mentum distribution of the emitted particles from the
freezeout surface at this point is given by

dN

d3p
∼ exp[−p · u/T ] = exp[−γ(E + βpx)/T ] , (4)

2 In this model, therefore, possible dependence of τkin on the
position in transverse plane is neglected. The possible azimuthal
angle dependence of β for peripheral collisions is not taken into
account in this model, either.
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FIG. 1: Particle density per unit rapidity n(y) for several
values of w = m/T and the transverse velocity β.

where in the first proportionality we have used the fact
that the µ dependence through exp(µ/T ) can be factored
out. The particle spectrum emitted from freezeout sur-
face per unit rapidity y per unit transverse momentum
pT is given by

ñ(pT, y) =
dN

d3p

dpz
dy

. (5)

Using dpz = Edy and by integrating out the transverse
momentum, we obtain the particle distribution per unit
rapidity as

n(y) ∼
∫

dpxdpyEe−γ(E+βpx)/T , (6)

where we have used the rotational invariance with re-
gard to z axis, i.e. the longitudinal axis. The propor-
tionality coefficient of n(y) is determined so as to satisfy
∫

dyn(y) = 1. We note that Eq. (6) does not depend on
µ. It is easily shown that n(y) depends on m and T only
through the combination w = m/T .
In Fig. 1 the distribution n(y) is plotted for several

values of w = m/T and β. The figure shows that the dis-
tribution becomes narrower as w becomes larger. This
dependence comes from the suppression of thermal mo-
tion at large w. The figure also shows that the distribu-
tion becomes narrower for large β, which is a consequence
of Lorentz effect; with the boost of a thermal system, the
distribution is squeezed toward the direction of the boost.
In order to characterize the thermal distribution more

quantitatively, we plot the width σ of n(y) defined by

σ2 =

∫

dyy2n(y), (7)

as functions of w and β in the upper panels of Figs. 2 and
3, respectively. The blastwave fits for the pT spectra at
the LHC and top-RHIC energies for the most central col-
lisions show that the freezeout parameters are Tkin ≃ 100
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FIG. 2: Width σ and kurtosis κ of n(y) as a function of
w = m/T for several values of transverse velocity β.

MeV and β = 0.6−0.7 [30]. With T = Tkin, we thus have
w = m/T ≃ 1.5 and 9 for pions and nucleons, respec-
tively. Figures 2 and 3 show that the width of n(y) for pi-
ons is σ ≃ 0.5 with the blastwave parameters. This value
is almost half the maximal rapidity window ∆y = 1.0
at STAR [13]. Because the electric charge is dominantly
carried by pions, this result suggests that the measure-
ment of electric charge fluctuations with ∆y = 1.0 [15]
is strongly affected by thermal blurring. For nucleons,
we have σ ≃ 0.25 with the same freezeout parameters.
The measurement of the baryon number cumulants [31]
thus is less affected by thermal blurring than the electric
charge, although the magnitude of σ in this case is not
much suppressed compared to ∆y = 1.0, either. In the
next section, we analyze the thermal blurring effect more
quantitatively by studying the cumulants directly.
Next, let us consider the deviation of n(y) from Gauss

distribution. Typical parameters to represent the devia-
tion are the skewness S and kurtosis κ defined by [5]

S =
1

σ3

∫

dyy3n(y), (8)

κ =
1

σ4

∫

dyy4n(y)− 3. (9)

Because S and κ vanish for the Gauss distribution, their
nonzero values characterize non-Gaussianity3. Since n(y)
is an even function, S always vanishes. In the lower pan-

3 Here, we emphasize that S and κ defined here are the skewness
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FIG. 3: Width σ and kurtosis κ of n(y) as a function of
transverse velocity β for several values of w = m/T .

els of Figs. 2 and 3, the kurtosis of n(y) is plotted for var-
ious parameters. Because the Maxwell-Boltzmann distri-
bution in non-relativistic gas is given by Gaussian, non-
Gaussianity of n(y) comes from relativistic effects. In
fact, the figures show that the magnitude of κ becomes
large for small w and large β, at which the relativistic
effects become more prominent. For the parameters rele-
vant to pions and nucleons at kinetic freezeout, however,
we have |κ| < 0.5, which indicates that the deviation
from the Gauss distribution is not large. In Sec. IV we
will show that the effect of non-Gaussianity of n(y) on
cumulants is indeed well suppressed.

In the non-relativistic limit w → ∞ and β → 0, the
distribution n(y) approaches a Gauss distribution with
the width σ = 1/w, which is shown by the dotted line in
Fig. 2.

III. BLURRING EFFECT ON CUMULANTS

Next, we investigate the effects of thermal blurring on
cumulants of a particle number Q∆y in a rapidity window
∆y. To this end, in this section we first develop the
formulation for the cumulants of Q∆y using two different
methods, which give the same result. In Sec. III A, we
first derive the result by only using the general properties

and kurtosis of n(y), respectively, and thus are different from
those of event-by-event fluctuations of a conserved charge.

FIG. 4: Illustration of the rapidity window ∆y and the prob-
ability p∆y(Y ) in Eq. (11).

of the cumulants and the binomial distribution function.
We then obtain the same result in Sec. III B starting from
a discretized formalism.
In this study, we investigate the thermal blurring ef-

fect focusing on the case that the density in Y space
before thermal blurring is given by ρY(Y ) and does not
have event-by-event fluctuation. The density ρy(y) in
y space after thermal blurring has event-by-event fluc-
tuations even in this case, and accordingly the cumu-
lants 〈(Q∆y)

n〉c for n ≥ 2 have nonzero values. Because
〈(Q∆y)

n〉c for n ≥ 2 vanish without thermal blurring in
this case, their nonzero values can be used as a mea-
sure of the magnitude of this effect. As we will dis-
cuss in Sec. III C, the fluctuations of ρY(Y ) can straight-
forwardly be incorporated in this analysis following the
treatment in Refs. [10, 28].

A. Simple derivation

In order to describe the cumulants of Q∆y, we first
consider particles in an infinitesimal range dY in Y space
before thermal blurring. The number of particles in dY
is

NdY (Y ) = ρY(Y )dY. (10)

After thermal blurring, a particle in dY is found in the
rapidity interval −∆y/2 ≤ y ≤ ∆y/2 with probability

p∆y(Y ) =

∫ ∆y/2

−∆y/2

dyn(y − Y ). (11)

See Fig. 4. Because of the nature of thermal blurring, this
probability is to be regarded independent for individual
particles. Therefore, the distribution of the particle num-
ber found in the rapidity interval ∆y

qdY→∆y: Number of particles which exist in dY

and are found in ∆y, (12)

obeys the binomial distribution function,

Bp,N (m) = NCmpm(1− p)N−m, (13)
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with p = p∆y(Y ) and N = NdY (Y ). Using the fact that
the nth order cumulant of Eq. (13) is given by [5]

〈mn〉c = ξn(p)N, (14)

we find that the cumulants of qdY→∆y are given by
〈

(qdY→∆y)
n
〉

c
= ξn(p∆y(Y ))NdY (Y )

= ξn(p∆y(Y ))ρY(Y )dY. (15)

The explicit forms of ξn(p) up to the fourth order are

ξ1(p) = p, ξ2(p) = p(1− p), ξ3(p) = p(1− p)(1− 2p),

ξ4(p) = p(1− p)(1 − 6p+ 6p2). (16)

For the fifth and sixth orders, see Ref. [32].
The total number of particles Q∆y in ∆y is obtained

by summing up qdY→∆y for all infinitesimal ranges dY
as

Q∆y =
∑

{dY }

qdY→∆y. (17)

To calculate the cumulants of Q∆y, we note that the
cumulants of the sum of uncorrelated stochastic variables
are simply given by the sum of the cumulants [5]. Because
qdY→∆y should be uncorrelated for different dY bins, the
cumulants of Q∆y are obtained as

〈(Q∆y)
n〉c =

∑

{dY }

〈(qdY→∆y)
n〉c

=

∫

dY ξn(p∆y(Y ))ρY(Y ), (18)

where in the last equality we used Eq. (15), and replaced
the sum with an integral. When the density ρY(Y ) is
uniform, ρY(Y ) = ρ0, we have

〈(Q∆y)
n〉c = ρ0

∫

dY ξn(p∆y(Y )). (19)

Next, let us see the behavior of Eq. (18) in the ∆y → 0
limit. In this limit, the probability p∆y(Y ) should be
suppressed proportionally to ∆y irrespective of the value
of Y . Because ξn(p) in Eq. (14) satisfy ξn(p) → p for
p → 0 [5], we have

ξn(p∆y(Y )) → p∆y(Y ) for ∆y → 0, (20)

and the cumulants of Q∆y converge to a common value

〈(Q∆y)
n〉c =

∫

dY p∆y(Y )ρY(Y ) = 〈Q∆y〉, (21)

for any n ≥ 1. This result shows that Q∆y in this limit
obeys a Poisson distribution [5].
For small but finite ∆y, the probability p∆y(Y ) may

be expanded by a power series of ∆y starting from the
first order. By substituting this expansion into Eq. (18)
and using Eq. (14), one finds that the ∆y dependence
of 〈(Q∆y)

n〉c is also expanded by a power series of ∆y.
The nth order term in this expansion for n ≥ 2 generally
takes a nonzero value.

FIG. 5: Discrete system discussed in Sec. III B.

B. Derivation based on discretized formalism

Next, we derive Eq. (18) again but in a different way.
In this subsection, we start from discretized coordinate
spaces and take the continuum limit at the end.
We divide the coordinates Y and y into discrete cells

with equal lengths δY and δy, respectively, as illustrated
in Fig. 5. For simplicity, we further assume δY = δy,
though this is not essential in the following argument.
For the moment, we assume that the total number of the
cells L is finite in each space, although the final result
does not depend on the finiteness of the number of cells.
The distribution of particles in Y space is represented by
the numbers of particles NI in individual cells labeled by
I = 1, 2, · · · , L. The distribution after thermal blurring
in y space is also represented by the number of particles
nj in cells labeled by j = 1, 2, · · · , L.
As in the previous subsection, we consider the ther-

mal blurring starting from a fixed distribution N =
(N1, · · · , NL) in Y space. Thermal blurring gives rise
to fluctuation of the distribution n = (n1, · · · , nL) in y
space. We denote the probability distribution function
of n by Py(n).
Owing to thermal blurring, a particle in a cell, say in

the Ith cell, in Y space is distributed to various cells in
y space. We denote the probability that the particle is
found in jth cell in y space as

PI→j : the probability that a particle

in the Ith cell in Y space is found

in the jth cell in y space. (22)

Note that
∑

j PI→j = 1 has to be satisfied. Next, we
consider the probability that NI particles in the Ith cell
are distributed in y space with mI,j particles in the jth
cell as shown in Fig. 5. This probability is given by

pI(mI ;NI) = fNI
(mI ;PI), (23)

with mI = (mI,1, · · · ,mI,L), PI = (PI→1, · · · , PI→L),
and the multinomial distribution function

fNI
(mI ;PI) =

NI !

mI,1! · · ·mI,L!

∏

j

(PI→j)
mI,j · δNI ,

∑
j
mI,j

,

(24)

where the Kronecker delta represents the conservation of
particle number. The probability Py(n) is then given by
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the product of Eq. (23) after the sum over mI,j for all
cells with a constraint nj =

∑

I mI,j as

Py(n) =
∏

I

[

∑

mI

pI(mI)

]

·
∏

j

δnj ,
∑

I
mI,j

. (25)

To calculate the cumulants of n, it is convenient to use
generating functions [5]. The factorial moment generat-
ing function of Eq. (25) is calculated to be

Gf(s) =
∑

n

[

(

∏

j

s
nj

j

)

Py(n)

]

=
∏

I

[

∑

mI

pi(mI)
∏

j

s
mI,j

j

]

=
∏

I

(

∑

j

sjPI→j

)NI
, (26)

with s = (s1, · · · , sL). In the last step, we used Eqs. (23)
and (24). The factorial cumulant generating function is
then obtained as

Kf(s) = lnGf(s) =
∑

I

NI ln
(

∑

j

sjPI→j

)

. (27)

To take the continuum limit, δY → 0 and δy → 0, of
Eq. (27), we replace Ni → ρY(Y )δY and PI→j = n(y −
Y )δy. The sums over I and j in Eq. (27) then become
integrals and one obtains the generating functional

Kf [s(y)] =

∫

dY ρY(Y ) ln
[

∫

dys(y)n(η − Y )
]

. (28)

The factorial cumulants of Q∆y are obtained by apply-
ing the operator

D∆y =

∫ ∆y/2

−∆y/2

dy′
δ

δs(y′)
, (29)

to Eq. (28) and taking s(y) = 1 afterwards as

〈(Q∆y)
n〉fc = (D∆y)

nKf |s(y)=1, (30)

where the definition of the functional derivative δ/δs(y)
is understood as the limit of the discretized notation.
The cumulants of Q∆y are then obtained by using the
relation between cumulants and factorial cumulants [5,
28]. This manipulation leads to Eq. (18). We note that
with s(y) = 1 the argument of logarithmic function in
Eq. (28) becomes unity,

∫

dys(y)n(η − Y ) =
∫

dyn(η −
Y ) = 1, which makes the manipulation apparent.

C. Relation with diffusion master equation and

initial fluctuation

Here, we note that Eq. (18) has the same form as the
results of the cumulants 〈(Q∆y)

n〉c obtained in the dif-
fusion master equation (DME) [10, 28] with fixed initial

condition when n(y) is replaced by a Gauss distribution

with the width (2
∫ t

0
dt′D(t))1/2, where D(t) is the time

(t) dependent diffusion coefficient; see, Sec. 2.5 in [28].
This correspondence is reasonable, because in the DME
individual particles composing the system behave inde-
pendently, and the location of a particle at time t with a
fixed initial position is distributed by a Gauss distribu-
tion owing to their random motion. Note that the Gaus-
sianity of this distribution in the DME is consistent with
the particle diffusion described by a diffusion equation
[5, 28].
The results in Eq. (18) are obtained for fixed initial

density ρY(Y ) without fluctuation. In Refs. [10, 28],
the solutions of the DME are obtained for initial con-
ditions including fluctuations; see Sec. 2.7 in Ref. [28]
for example. The derivation in these studies is appli-
cable straightforwardly to the present problem, thermal
blurring. When the fluctuation of ρY(Y ) is taken into ac-
count, the result Eq. (18) for the first and second order
cumulants is modified as

〈Q∆y〉c =
∫

dY 〈ρY(Y )〉0p∆y(Y ), (31)

〈(Q∆y)
2〉c =

∫

dY 〈ρY(Y )〉0ξ2(p∆y(Y ))

+

∫

dY1dY2〈δρY(Y1)δρY(Y2)〉0p∆y(Y1)p∆y(Y2),

(32)

where 〈·〉0 represents the expectation values taken for the
distribution of ρY(Y ) with δρY(Y ) = ρY(Y )−〈ρY(Y )〉0.
In Refs. [10, 28], the result is also extended to describe
the net-particle number, i.e. the difference of the particle
and anti-particle numbers.

IV. NUMERICAL RESULTS

A. Rapidity window dependence

Next, we see the thermal blurring effect on 〈(Q∆y)
n〉c

numerically. In this section, we consider the cumulants
for homogeneous distribution in Y space, Eq. (19). In
Fig. 6, we show the ∆y dependences of the ratio of the
cumulants normalized by the Poissonian value [28]

Rn(∆y) =
〈(Q∆y)

n〉c
〈Q∆y〉c

, (33)

for several values of w with β = 0.6 [30]. BecauseRn(∆y)
should vanish without thermal blurring, their nonzero
values represent a measure to see the magnitude of the
thermal blurring effect. The figure shows that Rn(∆y)
for n ≥ 2 becomes unity in the limit ∆y → 0. This result
is consistent with Eq. (21), which states that the distribu-
tion of Q∆y becomes Poissonian in this limit. This limit
can be regarded as the case that the information on the
event-by-event fluctuations of ρY(Y ) is completely lost
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FIG. 6: Rapidity window dependences of the cumulants
in normalization Rn = 〈Qn

∆y〉c/〈Q∆y〉c with vanishing initial
condition for several values of w = m/T with β = 0.6.

owing to thermal blurring. On the other hand, Rn(∆y)
approaches zero for large ∆y. This result shows that the
thermal blurring effect is suppressed when ∆y ≫ σ is sat-
isfied. We note that the ∆y dependence of the cumulants
in Fig. 6 can be compared with the experimental results.
For example, R2(∆y) is related to the D-measure D as
R2(∆y) = D/4 [4].
The maximal rapidity window of STAR detector is

∆y = 1.0. The upper panel of Fig. 6 shows that the effect
of thermal blurring is rather strong for the second order
cumulant with ∆y = 1.0. For w = 1.5 corresponding to
the electric charge fluctuation, we have R2(∆y) ≃ 0.5.
This result shows that the second-order cumulant of the
electric charge fluctuation 〈N2

Q〉c observed by STAR [15]

receives about 50% modification due to thermal blurring.
Because 〈N2

Q〉c is modified, the ratio of the cumulants

κσ2 = 〈N4
Q〉c/〈N2

Q〉c is also modified. The blurring effect
is smaller at the maximal rapidity window of the AL-
ICE detector ∆y = 1.6 [14] or for w = 9 corresponding
to net-baryon number cumulants. Even for these cases,
however, R2(∆y) is larger than 0.25, which indicates that
the thermal blurring effect is not well suppressed. The
middle and lower panels of Fig. 6 show the results for the
third and fourth order cumulants, R3(∆y) and R4(∆y).
These panels suggest that the thermal blurring effect is

more suppressed for higher order, but is not negligible
for ∆y = 1.0. In particular, the sign of the fourth order
cumulant can become negative owing to this effect.
From the results in Fig. 6, it is interesting to analyze

the ∆y dependences of the cumulants experimentally and
compare with these results. In particular, the simultane-
ous analysis of the second, third, and fourth order cumu-
lants for electric charge and baryon number cumulants
would enable us to confirm the validity of the picture on
thermal blurring, and to investigate its magnitude. We
also note that the wider rapidity coverage is desirable for
the analysis of ∆y dependences. The extension of STAR
detector to cover wider ∆y [18] thus will be quite effective
for these analyses.
In order to see the effect of non-Gaussianity of n(y)

on our results, we calculate 〈(Q∆y)
n〉c by replacing n(y)

with a Gauss function with the width in Eq. (7). The
results are shown by the lines with light colors in Fig. 6.
The difference of these results from those with n(y), how-
ever, is small and almost invisible in the figure except for
〈(Q∆y)

4〉c with w = 1.5 having a small deviation. This
result shows that one can safely replace n(y) with a Gauss
function in the study of 〈(Q∆y)

n〉c up to the fourth order.
From the discussion in Sec. III C, this result also suggests
that the thermal blurring effect can be described by the
same manner as those developed in Refs. [10, 28].
The result in Fig. 6 is obtained for the fixed initial

density ρY(Y ) without event-by-event fluctuation. When
the event-by-event fluctuations of ρY(Y ) are included,
the ∆y dependence of Rn(∆y) is modified depending on
parameters specifying the fluctuations of ρY(Y ). Because
this analysis is essentially the same as those addressed in
Refs. [10, 28], in the present study we just refer to Figs. 2
and 3 in Ref. [10] and Figs. 4–8 in Ref. [28], which show
these results. An important remark on these results is
that with the inclusion of the event-by-event fluctuations
of ρY(Y ), the thermal blurring effects on R3(∆y) and
R4(∆y) can be enhanced significantly compared with the
results in Fig. 6.

B. Centrality dependence

Next, we investigate the centrality dependence of the
thermal blurring effect for the second order cumulant. In
the previous subsection we used parameters of the blast-
wave model, Tkin and β, for the most central collisions.
Because these parameters have centrality dependences
[30], when one applies our results to non-central colli-
sions the freezeout parameters have to be replaced with
those corresponding to the centrality. The experimental
results suggest that Tkin becomes larger while β becomes
smaller from central to peripheral collisions [30]. The
analysis in Sec. II suggests that both these dependences
enhance the width of n(y), and accordingly the thermal
blurring effect.
In this subsection, we include the event-by-event fluc-

tuations of ρY(Y ) in the analysis in order to compare the
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FIG. 7: Centrality dependence of the second order cumulant
of net-electric charge and the comparison with the experimen-
tal result by ALICE collaboration [14].

results with experimental data, as it is known that ρY(Y )
has such fluctuations in the early stage [2, 3]. We assume
that the correlation function of ρY(Y ) has the form

〈δρY(Y1)δρY(Y2)〉0 = D2δ(Y1 − Y2)〈ρY(Y1)〉0. (34)

Note that Eq. (34) is satisfied in the equilibrated medium
[5], and would be well justified even near the QCD critical
point [25]. Here, D2 is a quantity which is proportional
to susceptibility in the early stage [28] and is related to
D-measure D [4] as D2 = D/4.
The results in the previous sections without fluctua-

tions of ρY(Y ) is obtained with D2 = 0, while in the
hadron resonance gas model one has D2 ≃ 1 [4, 5]. By
substituting Eq. (34) into Eq. (32) and assuming uniform
average density 〈ρY(Y )〉0 = ρ0, one obtains [24]

〈(Q∆y)
2〉c = ρ0

∫

dY
(

ξ2(p∆y(Y )) +D2(p∆y(Y ))2
)

= ρ0
[

1− (1−D2)

∫

dY (p∆y(Y ))2
]

. (35)

In Fig. 7, we plot the ∆y dependence of R2(∆y)
with blastwave parameters for centrality bins 0 − 5%,
20 − 30%, and 40 − 50% for ALICE experiment [30] for
D2 = 0 and 0.35. In the figure, we also show the D-
measure observed by ALICE collaboration with a trans-
lation R2(∆y) = D/4 [4]. Here, we emphasize that D2

is the D-measure in the initial condition, while R2(∆y)
is the experimentally observed one with a rapidity win-
dow ∆y, which takes a different value from D2 owing to
thermal blurring. The figure shows that the results for
D2 = 0.35 agrees with the experimental data within the
error for all centrality bins. More accurate experimental
data, however, is required to obtain a more quantitative
conclusion. It, however, is notable that the qualitative
centrality dependence observed in Ref. [30] is already well

reproduced by thermal blurring and centrality indepen-
dent D2.

V. BLURRING AFTER DIFFUSION

Up to now, we have estimated the magnitude of ther-
mal blurring assuming that the particles are emitted
from the hot medium at kinetic freezeout time. In this
argument, the distribution of ρY(Y ) in Y space at ki-

netic freezeout is related to the experimentally-observed
one after thermal blurring. On the other hand, the
experimentally-observed fluctuations are usually com-
pared with thermal fluctuations in earlier stage, such as
chemical freezeout time or much earlier, in the literature.
In this case, the modification of the event-by-event fluctu-
ations in a rapidity window ∆Y before kinetic freezeout
has to be taken into account besides the thermal blurring
effect. We emphasize that the coordinate-space rapidities
Y of individual particles and accordingly ρY(Y ) in each
event are changing before the kinetic freezeout because
of the nonzero velocity of individual particles along lon-
gitudinal direction [2, 3, 24].
If the motion of particles in Y space before kinetic

freezeout is well approximated by diffusion process, a
particle at Y = Y0 at some early proper time τ = τ0
is distributed at kinetic freezeout time τ = τkin in Y
space by a Gauss distribution

Pdrift(Y0 → Ykin) ∼ exp

(

− (Ykin − Y0)
2

2d2

)

, (36)

with the diffusion distance d. Note that d is related to
the τ dependent diffusion coefficients D(τ) and DY(τ) in
cartesian and Bjorken coordinates, respectively, as [27,
28]

d2 = 2

∫ τkin

τ0

dτ ′
D(τ ′)

τ ′2
= 2

∫ τkin

τ0

dτ ′DY(τ
′). (37)

After the diffusion in Y space, particles are observed
at some rapidity y through thermal blurring. Then, the
probability that a particle located at Y = Y0 at τ = τ0
is found at a rapidity y in the final state after thermal
blurring, PD+B(Y0 → y), is given by the convolution in-
tegral

PD+B(Y0 → y) =

∫

dYkinPdrift(Y0 → Ykin)n(y − Ykin).

(38)

Generally, the probability Eq. (36) of the diffusion mo-
tion for different particles can be correlated because the
scattering of particles can give rise to such a correla-
tion. We also note that the above argument does not
take account of the possibility of pair creations and an-
nihilations of particles. When one considers the baryon
number for sufficiently large

√
sNN , however, the corre-

lation should be well suppressed because baryons in the
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hadronic medium almost exclusively interact with pions
[31]. The chemical freezeout picture also suggests that
the pair creations and annihilations hardly occur after
chemical freezeout time. When these conditions are sat-
isfied, the total effect due to the diffusion in Y space and
thermal blurring can be described by simply replacing
n(y − Y ) in Eq. (18) with PD+B(Y0 → y) in Eq. (38).
As discussed in Sec. IVA, the effect of non-Gaussianity
of n(y) is well suppressed. By approximating n(y) by a
Gauss distribution, PD+B(Y0 → Ykin) given by the con-
volution of two Gauss ones also becomes Gaussian. The
total effect due to the diffusion and blurring then can
be regarded as if it were from a single diffusion process,
although the diffusion length, or the width of the Gauss
distribution, includes both effects. In this picture, the
results in Figs. 6 and 7 should be interpreted as the re-
sults with minimal diffusion lengths. We also note that
the hadronic decays [34] give rise to diffusion of charges
in rapidity space, and thus would be treated as a part of
the diffusion and blurring to a good approximation. Fi-
nally, we note that the same conclusion on thermal blur-
ring is also applicable to the interpretation of the balance
function and correlation along rapidity direction [35, 36]
measured experimentally.

VI. SUMMARY

In this study, we investigated the thermal blurring ef-
fect, i.e. the effect arising from the use of rapidity y in
substitution for the coordinate-space rapidity Y , on cu-

mulants of conserved charges measured by the event-by-
event analysis in relativistic heavy-ion collisions quanti-
tatively. Our analysis suggests that the thermal blurring
affects fluctuation observables significantly at the maxi-
mal rapidity coverage of STAR detector, ∆y = 1.0, and
not negligible even with ∆y = 1.6 the maximal rapidity
coverage of ALICE detector. When one compares the
event-by-event fluctuation observed in these experiments
with theoretical results obtained on the basis of statisti-
cal mechanics, therefore, the correction arising from the
thermal blurring effect should be taken into account se-
riously.

Although we assumed the Bjorken space-time evolu-
tion throughout this paper, at low energy collision this
picture does not hold any more. For lower energy col-
lisions the effect of global charge conservation will also
show up [27, 33]. These effects have to be considered se-
riously in the interpretation of experimentally-observed
fluctuations at BES-II energy region [18]. Throughout
this study we also assumed that the transverse momen-
tum is integrated out. In real experiments, however, the
particles are observed in a finite transverse momentum
acceptance. The understanding of the effect of the mo-
mentum cut [37] on fluctuations is another important
issue. The comparison and estimate of the thermal blur-
ring effects based on the dynamical models [11] are also
interesting subjects for future study.
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