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Abstract

We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light

quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is

minimal. For three flavors, however, the tetraquark field transforms in the same representation of

the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there

may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice

indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of

temperature and quark chemical potential, though, a crossover line for the tetraquark condensate

is naturally related to the transition line for color superconductivity. For four flavors we suggest

that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.

∗ pisarski@bnl.gov
† vskokov@bnl.gov

1

ar
X

iv
:1

60
6.

04
11

1v
1 

 [
he

p-
ph

] 
 1

3 
Ju

n 
20

16

mailto:pisarski@bnl.gov
mailto:vskokov@bnl.gov


I. INTRODUCTION

As suggested first by Jaffe [1], it is most plausible that in QCD, the lightest scalar mesons

with JP = 0+ are composed not just of a quark and anti-quark, but contain a significant

admixture of tetraquark states, with two quarks and two anti-quarks [2–10]. Recently, there

is increasing experimental evidence for tetraquark and even pentaquark states of heavy

quarks [11].

In this paper we concentrate on light quarks, and generalize the standard analysis of

the chiral phase transition at nonzero temperature [12–15] to consider how tetraquarks can

affect the chiral transition [16, 17]. We limit ourselves to three colors, and start with the

case of two flavors, showing that tetraquarks probably have a small effect on the chiral phase

transition. For three flavors, though, if the quarks are sufficiently light then it is possible

— although not guaranteed — that the tetraquark field generates a second chiral phase

transition. In the chiral limit both chiral phase transitions are of first order. We discuss

implications for the phase diagram of QCD at nonzero temperature and chemical potential,

and conclude with some speculations about four flavors.

A detailed comparison of models with tetraquarks to the hadronic spectrum is necessarily

complicated, and involves not just the masses of hadronic states, but their decays [1–10].

Thus our discussion is largely qualitative, to emphasize what we find is an unexpected

relation between hadronic phenomenology at zero temperature and the phase transitions of

QCD.

II. NOTATION

Left and right handed quarks and anti-quarks are defined as

qL,R = PL,R q ; qL,R = q PR,L ; PL,R =
1± γ5

2
, (1)

with γ2
5 = 1.

We assume there are Nf flavors of massless quarks, which transform under the chiral

symmetry group of SU(Nf )L × SU(Nf )R × U(1)A as

qL → e−iα/2 UL qL ; qL → e+iα/2 qL U
†
L ; qR → e+iα/2 UR qR ; qR → e−iα/2 qR U

†
R ;

(2)
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UL,R are elements of SU(Nf )L,R and α is an axial rotation in U(1)A.

For most of our discussion we implicitly limit ourselves to the case of nonzero temperature

and zero quark chemical potential. This allows us to assume that the U(1) symmetry for

quark number remains unbroken. At nonzero chemical potential color superconductivity can

occur, which spontaneously breaks this U(1) symmetry [18–20]. As discussed in Sec. (VII),

the generalization to nonzero quark chemical potential requires a separate analysis.

To construct the effective fields it helps to explicitly denote the flavor and color indices.

The quark field qaA, where a = 1 . . . Nf is the flavor index for Nf flavors, and A = 1 . . . Nc

for Nc colors. The usual order parameter for chiral symmetry is given by combining a left

handed anti-quark and a right handed quark as a color singlet,

Φab = q bAL qaAR . (3)

This field transforms as Nf ×Nf under SU(Nf )L and SU(Nf )R:

Φ→ e+iα UR Φ U †L . (4)

Under the axial U(1)A symmetry we can choose the convention that Φ has charge = +1.

We note that the combination of anti-quark and a quark with the same chirality auto-

matically vanishes: e.g., qLqL = qPRPL q = 0. In contrast, for tetraquarks it is possible to

pair two diquark fields of the same chirality, Eq. (9) and Sec. (IV B)

The chirally invariant couplings of quarks to the gauge field Aµ and to the chiral field Φ

are

LqkΦ = qL 6D qL + qR 6D qR + yΦ

(
qR Φ qL + qL Φ† qR

)
, (5)

where Dµ = ∂µ − igAµ is the covariant derivative.

The Yukawa term ∼ yΦ which couples quarks to the chiral field Φ is an effective coupling.

Including such a term is useful in constructing an effective model for the chiral transition

[21]. We only write this term in order to contrast the difference between the possible effective

couplings between quarks and the tetraquark fields in Eqs. (18) and (29).

We note that it is possible for chiral symmetry to be broken not by a quark antiquark

operator in the 3×3 representation, but by a four quark operator in the 8×8 representation

[22, 23]. These four quark operators differ from the tetraquark operators which we consider.

In QCD, though, there are general arguments against this possibility [23], and certainly no

indication from numerical simulations on the lattice that this occurs [24–26].
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III. TWO FLAVORS

The most attractive channel for the scattering of two quarks is antisymmetric in both

flavor and color [1]. For two flavors, a diquark in this channel is then an anti-triplet in color

and an isosinglet in flavor,

χAL = εABC εab (qaBL )T C−1 qbCL , (6)

where C is the charge conjugation matrix [5]. In a basis where γ5 = (12,−12) is diagonal,

C = diag(−σ2, σ2). The transpose of the quark field and the charge conjugation matrix C

are necessary to form a Lorentz scalar. This combination is naturally related to the diquark

condensates for color superconductivity [18–20].

To obtain a spin zero field we combine left handed diquark with a right handed diquark

to form

ζ = (χAR)∗ χAL . (7)

The tetraquark field ζ is a color singlet and complex valued. It is invariant under SU(2)L×

SU(2)R, but transforms under axial U(1)A as

ζ → e−2iα ζ , (8)

so that ζ has axial U(1)A charge = −2.

Unlike for Φ, we can also form tetraquark fields from diquarks of the same chirality:

ζL = (χAL)∗ χAL , ζR = (χAR)∗ χAR . (9)

Both ζL and ζR are real valued and singlets under all flavor transformations. Thus while

they can be constructed, there is no reason to expect that they should significantly affect

the dynamics in any interesting way. In particular, they appear through terms which are

linear in themselves, and have an expectation value at any temperature.

We thus turn to constructing an effective Lagrangian which couples the usual chiral field

Φ and the tetraquark field ζ under an exact chiral symmetry of SU(2)L × SU(2)R.

We assume that in counting mass dimensions, all scalar fields have mass dimension one,

as holds for a fundamental scalar in four spacetime dimensions. Since the quarks have mass

dimension 3/2, this is different from their nominal mass dimension, which is three for Φ, and

six for ζ. This is, however, a standard assumption in constructing effective models, and is
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certainly justified by the renormalization group near a transition of second order. We then

catagorize all terms up to quartic order in Φ and ζ.

While in the chiral limit the SU(2)L × SU(2)R symmetry is exact, the axial U(1)A sym-

metry is only valid classically, and is spontaneously broken quantum-mechanically by topo-

logically nontrivial configurations such as instantons [27, 28]. There still persists a discrete

axial symmetry of Z(2)A. The simplest operator which is invariant under SU(2)L×SU(2)R,

but not U(1)A, is the determinant of Φ. For two flavors, under axial U(1)A this operator

has axial charge = +2,

detΦ→ e2iα detΦ . (10)

This is invariant if α = 0 or π, which is the residual symmetry of axial Z(2)A.

Consequently, any couplings which invariant under Z(2)A but not U(1)A are nonzero in

vacuum and for a range of temperature. Eventually, at high temperature the breaking of

axial U(1)A is only due to instantons. This is suppressed by a high power of temperature

[27], so that axial U(1)A is effectively restored as the temperature T →∞. This is supported

by numerical simulations on the lattice [29].

To help catagorize the possible terms in effective potentials it helps to start with those

which persist at high temperature, where axial U(1)A is an approximate symmetry. The

U(1)A invariant terms that only involve Φ are

V∞Φ = m2
Φ tr

(
Φ†Φ

)
+ λΦ1 tr

(
Φ†Φ

)2
+ λΦ2

(
trΦ†Φ

)2
. (11)

These terms are standard in linear sigma models. For two flavors, |detΦ|2 is also a quartic

term, but because Φ†Φ is a Hermitian matrix, this can be expressed as a sum of the two

terms above, |detΦ|2 = detΦ†Φ = ((trΦ†Φ)2 − tr(Φ†Φ)2)/2.

There are two U(1)A invariant terms which only involve ζ,

V∞ζ = m2
ζ |ζ|2 + λζ (|ζ|2)2 . (12)

Lastly, there are two U(1)A invariant terms coupling Φ and ζ,

V∞ζΦ = +κ∞ (ζ detΦ + c.c.) + λζφ1 |ζ|2 tr
(
Φ†Φ

)
. (13)

The last term is unremarkable, as both |ζ|2 and tr(Φ†Φ) are each separately invariant under

U(1)A. The first term, however, is novel: it is a trilinear coupling between one ζ field, with
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axial charge = −2, and two Φ’s, with charge = +1. Adding the complex conjugate (c.c.)

assures the total term is real. There is an analogous term for three flavors, Eq. (24).

We then move on to catagorize the full set of terms which contribute at finite temperature,

where the U(1)A symmetry is reduced to Z(2)A. There are three terms involving only Φ:

VAΦ = κΦ (detΦ + c.c.) + λΦ3 (detΦ + c.c.) tr
(
Φ†Φ

)
+ λΦ4 (detΦ + c.c.)2 . (14)

The first is a mass term makes the η meson heavy, and so splits the U(1)A symmetry in

the spectrum [28]. The other two are couplings of quartic order. Since Φ itself is not a

Hermitian matrix, detΦ does not reduce to traces of Φ, and these are new, independent

couplings. (This is can be checked by taking the elements of Φ to be only off-diagonal and

complex.)

At zero temperature, the tetraquark field ζ is a Z(2)A singlet, and so there is no symmetry

relating the real and imaginary parts of ζ. The real part of ζ, ζr, is even under parity, while

the imaginary part, ζi, is odd. We start with the terms for ζr. As it is a Z(2)A singlet and

parity even, the couplings of ζr with itself involves arbitrary powers:

VAζr = hr ζr +m2
r ζ

2
r + κr ζ

3
r + λr ζ

4
r . (15)

Assuming that the underlying theory, such as QCD, does not spontaneously break parity,

then only even powers of the imaginary part ζi can appear. Otherwise, arbitrary combina-

tions of ζr and ζ2
i enter:

VAζi = +m2
i ζ

2
i + κi ζr ζ

2
i + λi1 ζ

4
i + λi2 ζ

2
r ζ

2
i . (16)

However, ζi does not play a significant role in the chiral phase transition, and so we neglect

it henceforth.

That leaves couplings between ζr and Φ,

VAζΦ = κζΦ ζr tr
(
Φ†Φ

)
+ λζΦ2 ζ

2
r (det Φ + c.c.) . (17)

The trilinear coupling between ζr and tr(Φ†Φ) was noticed first by Giacosa [8].

These effective Lagrangians can be used to analyze the effect of the tetraquark field ζ

on the chiral phase transition. At zero temperature we assume that the chiral symmetry is

spontaneously broken, with 〈Φ〉 6= 0. Further, since there is no reason why hr in Eq. (15)

should vanish, we also assume that 〈ζr〉 6= 0 at T = 0.
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As the temperature changes all of the U(1)A invariant couplings in Eqs. (11), (12), and

(13) are nonzero at any T . In contrast, the Z(2)A invariant couplings in Eqs. (14), (15),

(16), and (17) vanish as T →∞.

In particular, while ζr and ζi are not related at zero temperature, as T →∞, we should

have the (approximate) restoration of axial U(1)A symmetry. This implies that ζr and ζi

are degenerate, with 〈ζr〉 → 0 as T →∞.

A chiral phase transition occurs when the expectation value of Φ vanishes. We first review

the standard picture in the absence of the tetraquark field ζ. If axial U(1)A is badly broken

at Tχ, then the chiral symmetry is SU(2)L × SU(2)R. Assuming that quartic couplings are

positive at Tχ, when m2
Φ vanishes there is a second order phase transition in the universality

class of O(4) symmetry. If Z(2)A is approximately U(1)A by Tχ then the chiral transition

could be induced to be first order through fluctuations [13]. Another possibility is that

SU(2)L × SU(2)R × U(1)A = O(4) × O(2) has an infrared stable fixed point in a new

universality class [14]. For analyses in effective models, see Ref. [15].

Including the tetraquark field ζ does not appear to significantly affect the chiral phase

transition. For two flavors, all of the mixing terms between ζ and Φ, Eqs. (13) and (17), are

quadratic in Φ. Consequently, the mixing between Φ and ζ is ∼ 〈Φ〉. If the chiral transition

is of second order, at Tχ this mixing vanishes, and only Φ is a critical field. Both ζr and ζi

are massive fields which mix with Φ due to cubic terms.

If the chiral transition for two flavors is of first order, then of course both 〈Φ〉 and 〈ζr〉

have a discontinuity at Tχ.

Given the generality of the potentials, it is possible that there is a phase transition

associated with ζr, independent of that for Φ. Even if hr vanishes at one given temperature,

due to the cubic terms in ζr, 〈ζr〉 should still be nonzero. As noted by Mukherjee and Huang

[17], this does not exclude the possibility of a first order transition at which 〈ζr〉 jumps

discontinuously from one value to another. While possible, however, there is compelling

reason why such a first order transition in ζr should occur.

We briefly discuss the mass spectrum of the model. As a complex valued field, Φ has

components with JP = 0+ and 0−. The 0+ is composed of an isosinglet, the σ, and and

isotriplet, analogous to the ~a0. For the 0− part we have an isosinglet η and an isotriplet of

pions, ~π. In addition, ζ contains two isosinglet fields, ζr,i with JP = 0±.

At zero temperature, 〈Φ〉 6= 0 generates a massless pion and η, and a massive σ and ~a0.
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Terms which are only invariant under Z(2)A make the η massive, pushing the mass of the σ

down [28]. With the tetraquark field, all that happens is that the ζr field mixes with the σ,

as does the ζi field with the η; the isotriplet states are unaffected.

As noted above, the mixing between Φ and ζ is ∼ 〈Φ〉, and so vanishes in the chirally

symmetric phase. At very high temperatures where U(1)A symmetry is approximately valid,

the Φ multiplet is (nearly) degenerate, as are ζr and ζi. There is no reason why the masses

of Φ and ζ should be related to one another, although the two fields couple through Eq.

(13).

We conclude by noting that because the tetraquark field is a singlet under SU(2)L ×

SU(2)R, there is no Yukawa coupling analogous that between Φ and the quark fields, Eq.

(5). There is, however, a U(1)A invariant coupling,

yζ2
(

(χAL)∗ ζ χAR + (χAR)∗ ζ∗ χAL
)
, (18)

using χAL,R from Eq. (6). As each χL,R is a diquark operator, this is a coupling between

ζ and four quarks, so the coupling yζ2 ∼ 1/mass3. A coupling with such a large, negative

mass dimension is much less important than those given above, which have either positive

or vanishing mass dimension.

IV. THREE FLAVORS

A. Tetraquarks with opposite chirality

For three flavors the diquark field is

χaAL = εabc εABC (qbBL )T C−1 qcCL . (19)

Because of the anti-symmetric tensor, χL transforms as an anti-triplet, 3, in both color and

flavor. The diquark fields χL and χR can be combined into a color singlet, tetraquark field,

ζab = (χaAR )∗ χbAL . (20)

Unlike two flavors, ζ transforms nontrivially under the SU(3)L × SU(3)R chiral symmetry:

ζ → e−2iα UR ζ U
†
L . (21)
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Note that while we define Φ ∼ qLqR, as a left-right field Eq. (3), we choose to define

ζ ∼ χ†RχL ∼ qRqRqLqL as right-left. We do this so that both ζ and Φ in the same way under

SU(3)L × SU(3)R, as 3× 3. Because of this difference, they have opposite signs under the

axial U(1)A symmetry: Φab has axial charge +1, while ζab has charge −2.

As for two flavors, we first catagorize the interactions which are U(1)A invariant. Those

involving just Φ are

V∞Φ = m2
Φ tr

(
Φ†Φ

)
+ λΦ1 tr

(
Φ†Φ

)2
+ λΦ2

(
tr
(
Φ†Φ

))2
, (22)

and similarly for ζ,

V∞ζ = m2
ζ tr

(
ζ†ζ
)

+ λζ1 tr
(
ζ†ζ
)2

+ λζ2
(
tr
(
ζ†ζ
))2

. (23)

Even under the assumption of U(1)A symmetry, there are numerous couplings between ζ

and Φ. The most interesting is a trilinear coupling between ζ and Φ,

V∞ζΦ,3 = κ∞ εabc εa
′b′c′

(
ζaa

′
Φbb′ Φcc′ + c.c.

)
. (24)

This term ties left handed indices with left handed, and right with right, and so is invariant

under SU(3)L × SU(3)R. (Note that both Φab and ζab are defined so that the first index

is for SU(3)R, and the second for SU(3)L.) This is is invariant under the axial U(1)A

symmetry because there is one ζ with charge −2 and two Φ’s with charge +1. This coupling

is analogous to that for two flavors, ∼ κ∞ ζ detΦ in Eq. (13).

There are four quartic couplings which are invariant under U(1)A and mix ζ and Φ:

V∞ζΦ,4 = λζΦ1 tr
(
ζ† ζ Φ†Φ

)
+ λζΦ2 tr

(
ζ†Φ Φ† ζ

)

+ λζΦ3 tr
(
ζ† ζ
)

tr
(
Φ†Φ

)
+ λζΦ4 tr

(
ζ†Φ

)
tr
(
Φ† ζ

)
. (25)

We next turn to terms which are invariant only under Z(3)A and not U(1)A. The most

important was noted first by Black, Fariborz, and Schechter [2]. This is a quadratic term,

which directly mixes ζ and Φ,

VAζΦ,2 = m2
ζΦ tr

(
ζ†Φ + Φ†ζ

)
. (26)

This has axial charge ±3 and so is Z(3)A invariant. The existence of this mixing term is an

immediate consequence of the fact that ζ and Φ transform in the same representation of the

chiral symmetry group.
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There are three cubic terms which are Z(3)A invariant,

VAζΦ,3 = κΦ (detΦ + c.c.) + κζ (detζ + c.c.) + κζΦ ε
abc εa

′b′c′
(
ζaa

′
ζbb

′
Φcc′ + c.c.

)
. (27)

The last term is clearly similar to that in Eq. (24), except that it involves two ζ’s and one

Φ, with axial charge ∓3.

There are six quartic terms which are Z(3)A invariant,

VAζΦ,4 = λζΦ5

(
tr
(
ζ†ζζ†Φ

)
+ c.c.

)
+ λζΦ6

(
tr
(
ζ†Φ
)2

+ c.c.
)

+ λζΦ7

(
tr
(
ζ†Φ Φ†Φ

)
+ c.c.

)

+ λζΦ8

(
tr
(
ζ† ζ
)

tr
(
ζ†Φ

)
+ c.c.

)
+ λζΦ9

((
tr
(
ζ†Φ

))2
+ c.c.

)

+ λζΦ10

(
tr
(
ζ†Φ

)
tr
(
Φ†Φ

)
+ c.c.

)
. (28)

These terms agree with Fariborz, Jora, and Schechter, Appendix A in Refs. [3] and [4].

As discussed before for two flavors, we assume that all couplings which are invariant under

Z(3)A but not U(1)A are large at zero temperature, but negligible at high temperature. We

do not assume that they are small at the chiral phase transition.

At zero temperature we expect that the chiral symmetry is broken by a nonzero expecta-

tion value for Φ, 〈Φ〉 6= 0. Since we take the chiral symmetry to be exact, 〈Φ〉 is proportional

to the unit matrix. Because of the mixing term in Eq. (26), an expectation value for Φ

automatically induces one for ζ, with 〈ζ〉 6= 0.

At high temperature we expect the chiral symmetry is restored, so 〈Φ〉 = 〈ζ〉 = 0.

Further, because the direct mixing between Φ and ζ, Eq. (26), which is only invariant under

Z(3)A, at high temperature the masses of ζ and Φ do not mix. The fields do interact through

U(1)A invariant couplings such as Eqs. (24) and (25).

The interesting question is how chiral symmetry is restored. This depends upon the

details of the effective Lagrangian. For example, assume that m2
ζ is very large and positive

at zero temperature. Then an expectation value of ζ is induced only by its mixing with Φ:

the phase transition is driven by the interactions of Φ with itself, and ζ plays a tangential

role.

Since both Φ and ζ lie in the same representation of SU(3)L × SU(3)R, the converse is

also possible: if m2
Φ is large and positive at zero temperature, then chiral symmetry breaking

and restoration is driven by the tetraquark field, ζ.

We suggest that it is possible that both Φ and ζ play important roles in the breaking of

chiral symmetry at zero temperature, and its restoration at Tχ.
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If so, then it is very possible that there are two chiral phase transitions, at temperatures

Tχ̃ and Tχ, where Tχ̃ < Tχ. Because of the cubic terms in ζ and Φ, Eqs. (24) and (27), both

transitions are presumably of first order. As the temperature increases from zero, there is

first a phase transition at Tχ̃, where both 〈Φ〉 and 〈ζ〉 jump discontinuously. Because of

their mixing, both condensates remain nonzero above but close to Tχ̃. As the temperature

continues to increase, they jump again at Tχ, and vanish for T > Tχ. Thus Tχ is properly

termed the temperature for the restoration of chiral symmetry. Nevertheless, the transition

at Tχ̃ is also a chiral phase transition, since both expectation values jump there. It is simply

not a transition above which the chiral symmetry is restored.

In terms of the effective Lagrangian, there is a wide range of parameters in which there

are two chiral phase transitions. The most obvious is if the mass squared of both Φ and

ζ are negative at zero temperature. Then given the bounty of cubic terms, it is extremely

unnatural for there to be only one phase transition.

What we are suggesting is actually rather elementary. If both the usual chiral field Φ and

the tetraquark field ζ matter at zero temperature, as suggested by hadronic phenomenology,

then because they lie in the same representation of SU(3)L × SU(3)R, it is very plausible

that each chiral field drives a phase transition.

As shown by our discussion of two flavors, our conclusion is special to three flavors. As we

discuss in Sec. (VIII), even for four flavors the relevant fields may differ, and be hexaquarks

instead of tetraquarks.

The importance of tetraquarks for the chiral phase transition is also special to being close

to the chiral limit. For physical values of the quark masses, numerical simulations on the

lattice find only one chiral phase transition [24, 25]; for recent reviews, see [26]. As we argue

in the next section, the tetraquark field becomes more important as the quarks become

lighter.

We conclude this section by noting that unlike the case of two flavors, that the tetraquark

field can couple directly to quarks through a Yukawa interaction similar to that for Φ in Eq.

(5),

yζ3
(
qR ζ qL + qL ζ

† qR
)
. (29)

However, this coupling has axial charge ∓3, and so is invariant under Z(3)A, but not U(1)A.

Thus yζ3 vanishes as T →∞.
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B. Tetraquarks with the same chirality

Analogous to the case of two flavors, Eq. (9), it is also possible to combine two diquark

fields with the same chirality:

ζabL = χaAL (χbAL )∗ , ζabR = χaAR (χbAR )∗ . (30)

By their definition these fields are Hermitian, ζ†L = ζL and ζ†R = ζR. They transform as an

adjoint field under the associated flavor group, with axial charge zero:

ζL → UL ζL U
†
L , ζR → UR ζR U

†
R . (31)

For the left handed fields, their self interaction include

VζL = hζL tr (ζL) +m2
ζl

tr
(
ζ2
L

)
+ κζL tr

(
ζ3
L

)
+ λζL tr

(
ζ4
L

)
; (32)

and similarly for ζR.

The important point is that because they are Hermitian fields, and carry zero charge

under axial U(1)A, then a term linear in either the trace of ζL or ζR is allowed at any

temperature. Thus we expect that each develops a nonzero expectation value. This is

true at any temperature: even in the chirally symmetric phase, if 〈ζL〉 and 〈ζR〉 are each

proportional to the unit matrix, then SU(3)L and SU(3)R symmetries remain unbroken by

these expectation values. We assume this remains valid at any temperature.

Couplings of the left and right handed tetraquark fields with Φ include

VζLΦ = κζLΦ tr
(
ζL Φ†Φ

)
+ κζRΦ tr

(
ζR Φ Φ†

)
+ λζLRΦ tr

(
ζL Φ† ζR Φ

)
; (33)

plus other terms. Invariance under parity requires κζLΦ = κζRΦ. There are, of course, also

couplings with the left-right tetraquark field ζ as well as with Φ. If both ζL and ζR develop

expectation values which are proportional to the unit matrix, however, then all of these

terms reduce to couplings just between Φ and ζ, as written down previously. For example,

all of the terms in Eq. (33) reduce just to tr(Φ†Φ). Consequently, we do not expect that

whatever happens with ζL and ζR to materially affect the phase transitions in Φ and ζ. As

for two flavors [17], there can be first order transitions associated with either field at any

temperature, but there seems to be no compelling dynamical reason for such transitions.

12



V. TOY MODEL

In this section we discuss a simple model which illustrates how two chiral phase transitions

can arise for three massless flavors.

A. Single chiral field

We first review the chiral phase transition for a single chiral field, Φ. Besides establishing

notation, it helps to illustrate the range of possible values. We start with the Lagrangian of

Eqs. (22) and (27),

VΦ(Φ) = m2 tr
(
Φ†Φ

)
+ κ (detΦ + c.c.) + λ tr

(
Φ†Φ

)2
. (34)

To avoid notational clutter, we drop the subscript Φ, taking m2
Φ = m2, κΦ = κ, and λΦ1 = λ.

We also drop the coupling ∼ λΦ2(tr(Φ†Φ))2.

In the chiral limit we take the expectation value of Φ to be diagonal,

〈Φab〉 = φ δab . (35)

For this value,

VΦ(φ) = 3m2 φ2 − 2κφ3 + 3λφ4 . (36)

The equation of motion for φ is

∂VΦ(φ)

∂φ
= 6φ

(
m2 − κφ+ 2λφ2

)
. (37)

In the chiral limit, there are only four distinct masses. The fields with JP = 0− are a

degenerate octet, composed of the pions, kaons, and the η, and a singlet η′. Those with

JP = 0+ are a degenerate octet of the a0’s, K∗’s, and an f0 meson, and a singlet σ meson.

These four masses can be read off from Eqs. (68), (71), (77), and (81) of Ref. [21],

m2
π = m2 − κφ+ 2λφ2 ,

m2
η′ = m2 + 2κφ+ 2λφ2 ,

m2
a0

= m2 + κφ+ 6λφ2 ,

m2
σ = m2 − 2κφ+ 6λφ2 . (38)

The pion mass squared is proportional to the equation of motion, Eq. (37), and so m2
π = 0,

as necessary for a Goldstone boson.
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It is illuminating to rewrite the couplings in terms of these masses. The equation of

motion can be written as

m2
η′ −m2

π = m2
a0
−m2

σ . (39)

Although here the pion mass vanishes, this relation remains valid even when m2
π 6= 0, Eq.

(91) of Ref. [21]. Using this relation, we can express all three parameters in terms of φ and

two masses,

m2 =
1

6

(
m2
η′ − 3m2

σ

)
,

κ φ =
1

3
m2
η′ ,

λ φ2 =
1

12

(
m2
η′ + 3m2

σ

)
. (40)

As expected, the η′ is massive because of the determinental coupling ∼ κ. Notice that the

expectation value φ is not fixed by these relations; usually that is determined by the value

of the pion decay constant.

Usually, in mean field theory one assumes that only the mass parameter m2 is a function

of temperature, and takes κ and λ to be constant. At high temperature m2(T ) ∼ λT 2, but

the dependence is more complicated at small temperature. We do not need to know this

dependence to determine the masses and couplings at the chiral phase transition, Tχ.

The solutions to the equation of motion are

φ(T ) =
κ

4λ

(
1±

√
1− 8λ

κ2
m2(T )

)
, (41)

where in the broken phase the minimum corresponds to the + sign. The transition occurs

when the free energy, which is minus the potential, is equal to that in the symmetric phase.

Since VΦ(0) = 0, this occurs when

VΦ(φ(Tχ)) = 0 ⇒ 8λ

κ2
m2(Tχ) = +

1

9
. (42)

Just below the transition temperature,

T = T−χ : mη′ =

√
κ2

λ
, mσ =

1

3
mη′ , ma0 =

√
10

9
mη′ . (43)

For T > T+
χ , all masses, including those for the pion, = m(T ). Assuming that m2(T ) is

monotonically increasing with temperature, in order to have a phase transition we need that

m2(Tχ) > m2(0).
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The precise mass spectrum for QCD with three massless flavors is not known at present.

The relations in Eq. (40) show that we can always treat two masses as free parameters. As

an example, consider

T = 0 : mη′ = 960 , mσ = 600 , ma0 = 1130 , m2 = −(162)2 , (44)

where all masses are in MeV. In this we assume that the η′ and the σ mesons have the values

given above, and stress that they are only meant as suggestive. The mass of the a0 meson

follows from Eq. (39), and m2 from Eq. (40). In QCD the masses of the η′ and the a0 are

very close, but the above value for ma0 isn’t so unreasonable in the chiral limit.

Using these values we can then compute the corresponding quantities at the chiral tran-

sition temperature:

T = Tχ : mη′ = 752 , mσ = 251 , ma0 = 835 , m2 = +(89)2 . (45)

While all masses decrease with increasing temperature, at Tχ those for the η′ and the a0

are still ∼ 75 − 80% of their values at T = 0, while that for the σ meson is only ∼ 40%.

That doesn’t tell us the value of Tχ, since that depends upon the details of the temperature

dependence of m2(T ).

B. Mirror model at zero temperature

We now construct the simplest possible model which illustrates how two chiral phase

transitions arise in the chiral limit. We assume that the potential for the tetraquark field ζ

is given by

Vζ(ζ) = m2 tr
(
ζ†ζ
)

+ κ (detζ + c.c.) + λ tr
(
ζ†ζ
)2

. (46)

We term this the “mirror” model, since we choose all parameters to be identical to those for

Φ, Eq. (34): comparing to Eq. (23), we take m2
ζ = m2, κζ = κ, and λζ = λ.

The only term that we include which mixes ζ and Φ is the Z(3)A invariant term in Eq.

(26). It is not difficult to see that including just this term greatly alters the mass spectrum.

Taking an expectation value for ζ which is diagonal, the mixing term is

〈ζab〉 = ζ δab : Vmix = 3 m̃2 ζ φ , (47)

where again to simplify the notation we take m̃2 = m2
ζΦ. Henceforth in this section, by ζ we

denote not the matrix, but the scalar expectation value of the diagonal component thereof.
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From Eq. (37), the equations of motion become

∂

∂φ
(VΦ + Vmix) = 6

(
m̃2 ζ + m2 φ− κφ2 + 2λφ3

)
,

∂

∂ζ
(Vζ + Vmix) = 6

(
m̃2 φ+ m2 ζ − κ ζ2 + 2λ ζ3

)
. (48)

For each field, the mixing term acts like a background field proportional to the other field:

in the equation of motion for φ, there is a term ∼ m̃2ζ, and vice versa.

We first compute the mass spectrum at zero temperature. At T = 0, where m2
ζ = m2

Φ the

expectation values ζ and φ are equal. The exact value is not of relevance for our purposes.

The Φ fields contains two octets, which we term the π and a0, and two singlets, the η′

and the σ. There are similar fields for the ζ, which we denote as the π̃, ã0, η̃ ′, and σ̃. The

mixing between these fields which is induced by Eq. (26) is particularly simple: the π mixes

only with the π̃, the η′ only with the η̃ ′, and so on. Finding the mass eigenstates then

requires diagonalizing four 2 × 2 matrices. For the pions, using the equation of motion in

Eq. (48), when ζ = φ the mass matrix between the π and the π̃ is

M2
ππ̃ = m̃2


 −1 1

1 −1


 . (49)

The eigenvalues of this matrix are

π , π̃ : 0 , − 2 m̃2 . (50)

For the mass squared of the massive “pion” to be positive requires that m̃2 is negative.

This is unremarkable, as the mass squared for both the ζ and Φ are also negative. Since

the expectation values of ζ and φ are equal, after diagonalization each mass eigenstate is a

linear combination of the original fields, in equal proportion.

Since we are in the chiral limit, there is one massless and one massive octet. There are

nine Goldstone bosons when SU(3)L × SU(3)R × U(1)A symmetry breaks to SU(3). The

quantum breaking of U(1)A to Z(3)A makes the η′ massive and reduces this to eight. When

the ζ and Φ are decoupled each has eight Goldstone bosons. Coupling them makes one of

the octets massive, leaving one massless octet required by Goldstone’s theorem.

The mass squared for the remaining fields are

η′ , η̃ ′ : 3κφ , 3κφ− 2 m̃2 ;

a0 , ã0 : m2 + κφ+ 6λφ2 ± m̃2 ;

σ , σ̃ : m2 − 2κφ+ 6λφ2 ± m̃2 . (51)
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These are naturally related to the masses in the absence of mixing, given in Eq. (38). Notice,

however, that the expectation value of φ is the solution of Eq. (48), and not the solution of

Eq. (37).

The masses of the a0 and ã0, and the σ and σ̃, are elementary, just the mass splitting

induced by off-diagonal elements ∼ m̃2 in the mass matrix. The η′ and η̃ ′ differ from these

because they are Goldstone bosons when κ = 0. For all of these mesons, the mass eigenstates

are linear superpositions of the original fields, although not equally. The exact mixing is

easy to work out.

The masses in Eq. (51) obey the relation

m2
η′ +m2

η̃′ −m2
π −m2

π̃ = m2
a0

+m2
ã0
−m2

σ −m2
σ̃ . (52)

One can show that given the potentials of Eqs. (34) and (46), this relation remains valid

even if we do not assume that the parameters are related as a mirror model.

We have not checked that this relation remains valid for arbitrary potentials, but even

so it illustrates a more general point. The relation for two fields in Eq. (52) is very similar

to that for one field in Eq. (39). For one field, however, there is a puzzle. As expected, the

anomaly term ∼ κ detΦ splits the singlet η′ from octet π, making the η′ heavy. However,

it also pushes the mass of the singlet σ down relative to the octet a0. Now of course to

compare to QCD we need to include the effect of quark masses, especially that the strange

quark is heavier than the up and down. Even so, it is peculiar that the singlet σ is lighter

than the octet a0 for the JP = 0+ field.

With two fields, however, there is no problem, as the only relation is between the sum of

the masses squared. Thus the anomaly pushes the sum of the mass squared of the η′ and

the η̃ ′ up relative to that for π and the π̃. Conversely, the anomaly pushes the masses of

both the σ and the σ̃ down relative to the a0 and the ã0. Since the states from the ζ can be

significantly heavier than the usual states, it is much easier satisfying this constraint. See

also our discussion in Sec. (VI A).

C. Mirror model at nonzero temperature

All of these masses in the previous section can only be valid at zero temperature, where

by fiat we imposed the condition that m2
ζ(0) = m2

Φ(0). At nonzero temperature, because
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the states are linear combinations of the original fields, with mixing due to m̃2, then

m2
ζ(T ) 6= m2

Φ(T ) (53)

at any nonzero temperature.

This is obvious from effective models. If one computes the thermal fluctuations from

the ζ and Φ fields, then just because the masses of the two multiplets differ, so will the

effective masses for ζ and Φ. In other words, we can tune the masses to be equal at a given

temperature, such as zero, but we cannot impose this naturally at another temperature.

For example, in the limit of high temperature, if we neglect mesonic fluctuations then

the dominant contribution to the thermal masses are given by quark loops. For the Φ field

this is ∼ yΦT
2, where yΦ is the Yukawa coupling of the quarks to the Φ, Eq. (5), while for ζ

it is ∼ yζ3T
2, Eq. (29). There is no symmetry which relates the two Yukawa couplings, and

so yΦ 6= yζ3. Indeed, since the coupling ∼ yζ3 respects the axial Z(3)A symmetry but not

U(1)A, yζ3 vanishes as T →∞, while yΦ is nonzero. Thus the two masses differ as T →∞,

Eq. (53).

As an example, we assume that we fix the expectation values at zero temperature to

agree with the value of the pion decay constant in QCD, which is φ(0) = 93/2, Eq. (93) of

Ref. [21]. From Eqs. (40) and (44),

φ(0) = ζ(0) = 46. , κ = 6680. , λ = 79. . (54)

These values are similar to those from a fit to QCD, Eqs. (95) and (96) of Ref. [21]. Notice

that in a linear sigma model that the couplings κ and λ are so large because the pion decay

constant is much smaller than the masses of the η′ and the σ.

We consider three cases to illustrate the range of possibilities. In the first case, we take

m2
φ(T ) = 3T 2 +m2(0) , m2

ζ(T ) = 5T 2 +m2(0) , m2
ζΦ = −(100)2 . (55)

We stress that the temperature dependence is meant only to be illustrative. At low temper-

atures massless pions give a contribution ∼ T 2, but the other contributions from massive

fields are Boltzmann. In this instance, the order parameters behave as in Fig. (1). There

are two first order phase transitions: at Tχ̃, both ζ and φ jump from one nonzero value to

another. At Tχ, both jump from nonzero values to zero.
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FIG. 1. The temperature dependence of the order parameters, ζ and φ, in the mirror model for

the parameters of Eq. (55). There are two chiral transitions of first order, at Tχ̃ and then Tχ.

In the second case, we only change the mixing mass m2
ζΦ,

m2
φ(T ) = 3T 2 +m2(0) , m2

ζ(T ) = 5T 2 +m2(0) , m2
ζΦ = −(120)2 . (56)

The order parameters behave as in Fig. (2). Because the mixing mass m2
ζΦ is larger, the

mixing term acts as a larger background field. This smooths out the would be transition at

Tχ̃ from first order to crossover. There is then a single chiral phase transition at Tχ.

These examples are only meant to illustrate what is possible, and should only be taken

as such. Nevertheless, it clearly is possible to obtain a second chiral phase transition from

the presence of the tetraquark condensate.

So far we have only considered the chiral limit. To understand the broader implications

for the phase diagram of QCD we need to consider how nonzero quark masses affect a

tetraquark condensate and the phase diagram.
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FIG. 2. The temperature dependence of the order parameters, ζ and φ, in the mirror model, with

the parameters of Eq. (56). There is one chiral phase transition of first order at Tχ.

VI. MASSIVE QUARKS

A. Mass terms for tetraquarks

To describe QCD it is necessary to include terms for the explicit breaking of chiral

symmetry. Let the current quark masses be

M = diag(mu , md , ms) , (57)

where mu, md, and ms are the masses for the up, down, and strange quarks.

Since mu and md are much less than other scales in QCD, we take the isospin symmetric

limit with mu = md. In a sigma model, the breaking of chiral symmetry is represented

including a background field proportional to the mass matrix,

V1
Φ = −tr

(
HΦ

(
Φ† + Φ

))
, (58)

with

HΦ = (hu , hu , hs) . (59)

If chiral symmetry is approximately valid we expect that the ratio of the h’s is proportional

to that for the current quark masses, hu/hs = mu/ms. However, the overall constant is

given by the details of the fit to the sigma model.
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For small quark masses, it suffices to include only terms linear in H and Φ. A complete

catalog of all possible terms is given in Appendix A of Refs. [3] and [6].

To understand the leading mass term for the tetraquark field, imagine computing it

explicitly in perturbation theory. This is of course a terrible approximation, but it should

suffice to get the leading powers of the quark mass right. For the usual Φ field, its expectation

value is proportional to a quark loop, ∼ tr(1/(/D + mquark)). For small masses this trace is

proportional to mquark, so 〈Φii〉 ∼ mquark, which is given by taking H ii ∼ mquark, Eq. (59).

The tetraquark field, however, involves the antisymmetric tensor for flavor, Eqs. (6) and

(19). For example, the expectation value of the strange-strange component of the tetraquark

field, ζss, involves the product of an up quark loop times a down quark loop. For small quark

masses each is proportional to the mass, so 〈ζss〉 ∼ mumd. The other components follow

similarly. Hence for the tetraquark field, the leading term which breaks the chiral symmetry

is proportional to the square of the quark masses, and is

Mζ = diag (mdms , mums , mumd) . (60)

Assuming SU(2) isospin symmetry,

Mζ ≈ mu diag (ms , ms , mu) . (61)

Thus to the linear sigma model we add

V1
ζ = −tr

(
Hζ

(
ζ† + ζ

))
. (62)

Assuming SU(2) isospin symmetry,

Hζ = h (hs , hs , hu) . (63)

There is no reason for the background field for ζ to be identical to that for Φ, and so while

we expect that in Hζ we have h ∼ hu, we should take h as an independent constant to be

fit by hadronic phenomenology.

If we can neglect mixing, then the mass term of Eq. (63) immediately gives us insight

into why tetraquarks are so appealing in QCD. As we discussed at the end of Sec. (V B)

following Eq. (48), a sigma model with a single field Φ gives a light σ which has a large

strange component. For the tetraquark field, however, the mass term for the strange-strange

component of ζ is proportional to the product of the light quark masses, ∼ mumd. That is,
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a mass term such as Eq. (61) naturally gives an “inverted” mass ordering which appears to

be present in QCD for the lightest 0+ multiplet [1–10].

This of course neglects mixing between the Φ and ζ fields, in particular through the direct

mixing in Eq. (26). This term does induce an expectation value 〈ζ〉 ∼ m2
ζΦ〈Φ〉 ∼ m2

ζΦHΦ.

As we stressed in Sec. (V B), however, all fields are linear combinations of Φ and ζ. Different

choices for the parameters of the model gives different ratios of mixtures.

It is still meaningful to stress that the leading term in quark masses for the tetraquark

field is that of Eq. (63). For example, in the limit of high temperature the mixing term

∼ m2
ζΦ is very small, and the breaking of the chiral symmetry from explicit quark masses is

much smaller for ζ than for Φ.

B. Phase diagram for three light flavors

In this section we make discuss the implications for the phase diagram in moving away

from the chiral limit. As seen in the discussion of the mirror model in Sec. (V C), in the

chiral limit it is possible to obtain two chiral phase transitions, at Tχ̃ and Tχ.

A useful way of plotting the phase diagram versus the quark masses is in the two di-

mensional plane of the light quark mass, taking mu = md, versus the strange quark mass

ms.

When all quark masses are large, there is a region of first order phase transitions which

are dominated by that for deconfinement. In a matrix model [30] the critical line which

borders this region of first order deconfining phase transitions is determined by the color

Z(3) field generated by heavy quarks. Whatever bound states the heavy quarks form —

whether of two, four, or however many quarks — seems unlikely to affect the position of the

critical line for deconfinement.

Thus we concentrate on the region of small quark masses. If there are two chiral phase

transitions in the chiral limit, mu = md = ms, then it is natural that this persists for a

nonzero width in the plane of mu and ms. We illustrate this in the “Columbia” phase

diagram of Fig. (3). Thus region II denotes where there are two chiral phase transitions for

first order, ending in the dotted line. In region I, there is one chiral transition of first order,

ending in the solid line. QCD lies in C, the crossover region.

Both the dotted and solid lines are regions where there is a critical line. That there is a
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FIG. 3. The phase diagram for three light flavors of quarks, in the plane of mu = md versus ms.

In region II there are two first order chiral phase transitions; in region I, one transition; in region

C, there is only crossover. There are critical lines separating regions II and I, and I and C. QCD

lies in the crossover region.

critical line in going from two to one chiral phase transition can be guessed from the behavior

of the order parameters in Fig. (2). Along the dotted critical line, at a temperature Tχ̃ there

is a linear combination of the Φ and ζ fields which is critical. This transition is separate

from the first order chiral transition at Tχ.

The most interesting part of Fig. (3) is the left most axis, where

mu = md = 0 , ms 6= 0 ⇒ HΦ = (0, 0, hs) , Hζ = (0, 0, 0) . (64)

Notice that Hζ vanishes because it is proportional to mu, Eq. (63).

Consider first the strange-strange component of the tetraquark field, ζss. Because of

mixing with Φ, it develops a nonzero expectation value. Then ζss acts exactly like the

tetraquark field for two flavors. For instance, the U(1)A invariant trilinear coupling ∼ κ∞

for three flavors, Eq. (24), reduces directly to the U(1)A invariant trilinear coupling for two

flavors ∼ κ∞ in Eq. (13). In agreement with our arguments about two flavors in Sec. (III),

we do not expect that the strange-strange component of the tetraquark field significantly

affects the chiral transition when mu = md = 0, Eq. (64).

When mu = md = 0 there is one subtlety which is worth noting. Assume that the effects

of the anomaly are large, so that we can assume that there is only a Z(2)A symmetry, and

not U(1)A. For the quark masses as in Eq. (64), from the SU(3)L × SU(3)R fields ζ and Φ
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we can obviously extract two O(4) fields, ~ζ and ~φ. The effective Lagrangian for these two

O(4) fields is

Vmu=md=0 = m2
φ
~φ 2 +m2

ζ
~ζ 2 +m2

ζφ
~ζ · ~φ

+ λφ (~φ 2)2 + λζ (~ζ 2)2 + λζφ1
~ζ 2 ~φ 2 + λζφ2 (~ζ · ~φ)2 . (65)

The couplings above are obviously related to those we denoted previously. Clearly, there is

no trilinear coupling between ~ζ and ~φ which is O(4) invariant.

It is not difficult to convince oneself that having two fields doesn’t alter the standard

picture. For small ms, in regions II and I, there are either two or one chiral phase transition.

Approaching the boundary of region I from below, there is a tricritical point at mtri
s , denoted

by a cross in Fig. (3). For ms > mtri
s , there is a line of second order phase transitions, in the

universality class of O(4). Unless there is a conspiracy in the masses for ~ζ and ~φ, though,

having two fields doesn’t alter the critical behavior in the least: it simply means that some

linear combination of ~ζ and ~φ is the relevant critical field. The shape of the critical line

between regions I and C as ms → 0 is dictated by the tricritical behavior. There is no such

curvature for the critical line, separating regions I and II, because the transition remains of

second order as one moves along the critical line when ms → 0.

Of course this assumes that there is a region II with two chiral transitions of first order.

This question can only be settled definitively by numerical simulations on the lattice. Since

QCD only finds a crossover, such simulations need to be done for very light quarks, which is

most challenging. Nevertheless, if the lattice does find two chiral phase transitions for light

quarks, would be strong if indirect evidence for the effects of tetraquarks in QCD.

VII. PHASE DIAGRAM IN T AND µ

In QCD, at nonzero temperature but zero quark chemical potential, numerical simulations

on the lattice indicate that there is no true phase transition, but only a crossover for a

single chiral transition at a temperature of Tχ ∼ 155 MeV [24–26]. Thus any second chiral

transition associated with the tetraquark field, at Tχ̃ < Tχ, is almost certainly a crossover.

Even so, at nonzero temperature and quark chemical potential, there is naturally a re-

lation between the crossover line for tetraquark field and the transition line for color su-

perconductivity. A tetraquark field is important because of diquark pairing, with the most
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attractive channel for quark-quark scattering being antisymmetric in both flavor and color,

as a type of generalized Breit interaction [1]. Thus it is hardly suprising that in considering

the scattering of two quarks at the edge of the Fermi sea at nonzero density, that color

superconductivity occurs in the corresponding, most attractive channel.

The analogy is deeper. Consider the diquark operators for two flavors, χAL in Eq. (6), and

three flavors, χaAL in Eq. (19). These are almost identical to the operators which condense

when color superconductivity occurs [18–20]. That is, the tetraquark field is directly the

gauge invariant square of the diquark operators, Eqs. (7) and (20). Of course the tetraquark

field must be a color singlet, since it appears in the confined phase at zero temperature and

chemical potential; there is no evidence for a color superconducting phase in vacuum.

There are differences between the condensation of a tetraquark field in vacuum and color

superconductivity. Color superconductivity is dominated by the scattering of quarks at

opposite edges of the Fermi surface, between two quarks with momenta +~pF and −~pF .

For a tetraquark condensate, the entire tetraquark field carries zero momentum, but each

diquark operators carries equal and opposite momenta. Further, the color-flavor locking

which occurs for three flavors and three colors [18, 19] has no analogy for the tetraquark

condensate.

Even so, as one moves out in quark chemical potential, then it is reasonable to speculate

that a crossover line for the tetraquark condensate connects smoothly with that for color

superconductivity.

We illustrate this in Fig. (4), as a cartoon of the possible phase diagram. In particular,

we do not indicate whether the transitions are crossover, or true phase transitions, of either

first or second order. The chiral crossover line at µB = 0 may end in a critical endpoint, and

then turn first order [31]. The transition line for color superconductivity probably includes

a segment which is a line of second order phase transitions [20]. Further, it is not evident

how the tetraquark/color superconducting line is related to that for hadronic superfluidity

through a confined but dense quarkyonic phase [32].
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FIG. 4. A conjectured phase diagram in temperature T and baryon chemical potential µB.

The χ line is that for the chiral transition. The χ̃ line is for a second transition related to the

presence of the tetraquark condensate, which may connect smoothly to the transition line for color

superconductivity.

VIII. FOUR FLAVORS

We conclude with elementary comment about operators for four flavors and three colors.

The diquark operator which directly generalizes those for two and three flavors is

χ
(ab)A
L = εabcd εABC (qcBL )T C−1 qdCL . (66)

This operator is an antisymmetric two-index tensor in the SU(4)L flavor group, a 6. As

before we then combine a left handed diquark field with a right handed diquark to form a

color singlet tetraquark field,

ζ(ab),(cd) =
(
χ

(ab)A
R

)†
χ

(cd)A
L , (67)

where ζ(ab),(cd) = −ζ(ba),(cd), etc., so ζ lies in the 6× 6 representation of SU(4)L × SU(4)R.

Since the tetraquark field ζ lies in a higher representation of the chiral symmetry group

than Φ, there is no direct mixing between them. There is a cubic coupling,

i
(

Φaa′
)∗ (

ζ(ab),(a′b′) −
(
ζ(ab),(a′b′)

)∗ )
Φbb′ , (68)

where the overall factor of i follows from the antisymmetry of ζ. This coupling is invariant

under Z(4)A but not U(1)A. There are many quartic couplings which can be written down,

including U(1)A invariant terms such as

tr
(
Φ†Φ

)
tr
(
ζ†ζ
)
. (69)
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There are also quartic couplings which are invariant only under Z(4)A, such as

Φaa′ ζ(ab),(a′b′) ζ(bc),(b′c′) Φcc′ + c.c. . (70)

Consequently, when Φ develops a vacuum expectation value it affects ζ. Even so, there are

no couplings present which would indicate that the presence of ζ materially affects either

the pattern of symmetry breaking, or its restoration, in any significant way.

This is a more general phenomenon. Starting with QCD, from the quark fields it is

possible to construct a ladder of operators related to chiral symmetry breaking. The simplest

is Φ, which transforms as the fundamental representation in SU(Nf )L×SU(Nf )R, where Nf

is the number of flavors. In addition, there are four quark operators, six quark operators,

and so on. Catagorizing them according to the representations of the chiral symmetry

group, typically they are either singlets, such as tr(Φ†Φ), or transform according to higher

representations. Singlet fields are like the tetraquark for two flavors in Sec. (III), which don’t

dramatically affect things. Similarly, fields in higher representations do couple to fields in

lower representations, but again it is unnatural for them to have any dramatic effect. This

is just because fields in high representations have more indices, and so as illustrated in Eqs.

(68), (69), and (70), need more Φ’s to absorb all of them.

The one exception is if there is another field which transforms in the fundamental repre-

sentation which directly mixes with Φ. If one abandons the prejudice of only using diquarks

fields, then it is possible to construct such a field for four flavors and three colors. For

a large number of colors, Rossi and Veneziano suggested that junctions, which couple all

colors together through an antisymmetric tensor in color, matter [33]. This suggests using

junctions in both color and flavor to form a triquark operator

χaL = εabcd εABC qbAL (qcBL )T C−1 qdCL . (71)

This is a color singlet, and since it is composed of three quark fields, transforms as a fermion.

We can naturally combine a left handed triquark with a right handed triquark to form a

hexaquark state

ξab = (χaR)† χbL , (72)

which transforms as 4× 4 under SU(4)L × SU(4)R.

The analysis of coupling the hexaquark field ξ to the usual chiral field Φ is very similar

to that for three flavors. The axial U(1)A symmetry is reduced to Z(4)A by the anomaly,

with Φ carrying axial charge = +1, and ξ, axial charge = −3.
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The U(1)A invariant couplings include mass and quartic couplings between ξ and Φ, in

direct analogy to Eqs. (22), (23), and (25), replacing ζ → ξ. For three flavors there is the

U(1)A invariant determinental term of Eq. (24). The analogous term for four flavors is

κ∞ εabcd εa
′b′c′d′ ξaa

′
Φbb′ Φcc′ Φdd′ + c.c. . (73)

Of the couplings which are invariant under Z(4)A but not U(1)A, the most important is

a direct mixing term

m2
ξΦ tr

(
ξ†Φ + Φ† ξ

)
, (74)

as in Eq. (26). The determinental terms ∼ κΦ detΦ and ∼ κξ detξ are of quartic order for

four flavors. There are two determinental terms of quartic order,

εabcd εa
′b′c′d′

(
κξΦ1 ξ

aa′ ξbb
′
Φcc′ Φdd′ + κξΦ2 ξ

aa′ ξbb
′
ξcc

′
Φdd′

)
+ c.c. . (75)

The other quartic terms invariant under Z(4)A are those of Eq. (28), just replacing ζ → ξ.

The analysis of the chiral transition for four flavors with a hexaquark field is then closely

analogous to that with a tetraquark field for three flavors. The hexaquark field ξ mixes

directly with Φ, so if one field condenses both do. Similarly, the restoration of chiral sym-

metry involves both fields. For four flavors the determinental terms are of quartic instead

of cubic order, and so do not automatically generate first order transitions.

However, it is also possible that chiral transitions are driven first order by fluctuations,

where coupling constants flow from positive to negative values. This occurs to leading order

in an ε-expansion about 4− ε dimensions when Nf >
√

2 [13]. It is not clear if this remains

true in three dimensions: for two flavors, there is evidence that a new critical point develops

for SU(2)L × SU(2)R × U(1)A = O(4)× O(2) [14, 15]. If so, it is possible that such a new

critical point persists up to four flavors. We note that even with two fields in the fundamental

representation, only one linear combination of the two contributes to the putative critical

behavior at Tχ. If the transition is of first order, it is also possible that there are having two

chiral fields in the fundamental representation produces two chiral transitions, as for three

flavors.

It is interesting to speculate what the relevant effective fields are for the chiral transition

when the number of colors, Nc, is greater than three. It has been suggested that tetraquarks

persist in the usual large Nc limit, where Nf is held fixed as Nc →∞ [34]. On the other hand,

our analysis suggests that the relevant limit might be more general: taking Nf = Nc →∞,
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instead of tetraquarks we would use junctions in both flavor and color to form 2(Nc−1) quark

states which transform in the fundamental representation of the chiral symmetry group.
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