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Abstract

We identify the bounds on supersymmetric effective operators beyond MSSM, from

heavy diphoton resonance (X) negative searches at the LHC, where X is identified

with the neutral CP-even (odd) H (A) or both (mass degenerate). While minimal su-

persymmetric models (MSSM, etc) comply with the data, a leading effective operator

of d = 6 can contribute significantly to diphoton production σ ∼ 1 fb, well above its

MSSM value and in conflict with recent data. Both the bb̄ and gg production mech-

anisms of H and A can contribute comparably to this. We examine the dependence

of the diphoton cross section σ on the values of mX , Λ and tanβ, under the experi-

mental constraints from the SM-like higgs couplings hgg and hγγ (due to mixing) and

from the bb̄ and tt̄ searches. These give Λ larger than ∼ 5 TeV for mX in the range

0.5 − 1 TeV. We show how to generate the d = 6 effective operator from microscopic

(renormalizable) models. This demands the presence of vector-like states beyond the

MSSM spectrum (and eventually but not necessarily a gauge singlet), of mass near Λ

and thus outside the LHC reach.

http://arxiv.org/abs/1606.04131v3


1 Motivation

Current searches for new physics at the LHC bring increasingly strong constraints on the

parameter space of supersymmetric models. Consider for example a final diphoton state

at the LHC. Then at the parton level, the exchange of a state X of spin J , mass mX and

width ΓX has a cross section

σ(pp → X → γγ) =
2J + 1

smX

[∑

p

Cpp̄ Γ(X → pp̄)
] Γ(X → γγ)

ΓX
(1)

where the sum is over partons p = {g, b, c, s, u, d, γ}. Cpp̄ are partonic integrals coefficients

evaluated at mX . LHC searches for a heavy diphoton resonance (X) can impact on model

building beyond the Standard Model (SM), in particular on supersymmetric models.

Much interest was raised by the initial claim by ATLAS and CMS Collaborations at√
s=13 TeV of a possible diphoton final state of mX = 750 GeV with an excess relative to

the SM [1] (also [2, 3]), with σ(pp → γγ)ATLAS = 10± 3 fb and σ(pp → γγ)CMS = 6± 3 fb.

Further, the analysis of additional data invalidated this claim [4]. This is actually welcome

for minimal supersymmetric models (MSSM, etc) where it is not possible to have a heavy

resonanceX with such significant σ [5], except if1. a): one is fine-tuning the parameters [11]

with X the CP even/odd heavy higgs X = H, A, or b): considers the rather special case

of low, TeV-scale supersymmetry breaking with X a sgoldstino [12], see also [13, 14, 15].

However, we show that effective operators beyond the MSSM (minimal) higgs sector

can contribute dramatically to the diphoton production (giving σ ∼ few fb) not seen in

the data [4]. The resonance X is the CP-odd/even neutral MSSM higgs A or H or both

(mass degenerate). This result is due to enhanced couplings of the higgs sector to SM

gauge bosons, induced by the following unique, leading operator of dimension d=6

(1/Λ2)

∫

d2θ (H1.H2)TrW
αWα + h.c., (2)

whereWα is the supersymmetric field strength of the SM sub-groups U(1)Y , SU(2)L, SU(3).

Depending on Λ, operator (2) can bring a large correction to the diphoton production

in conflict with the latest data, with impact on H,A searches. Motivated by this, we

study the constraints on this operator and examine the dependence of the diphoton cross

section σ on the values of mX , Λ and tan β, while including both the bb̄ and gg production

mechanisms of X = A,H. The experimental constraints on the SM-like higgs (h) couplings

hgg and hγγ and on the bb̄ (tt̄) cross section (that receive corrections from (2)), are also

applied, with impact on the allowed mX , Λ and tan β. For a given σ ∼ 0.1 − 1 fb, we

illustrate these constraints for mH,A in the range 0.5− 1 TeV (in particular for the absent

“resonance” at 750 GeV). We then show how operator (2) is generated in a renormalizable

model beyond MSSM; an extra d=5 operator may also be generated (in some cases) and

does not directly affect the diphoton production but may improve naturalness [16].

1 Many non-supersymmetric explanations were reported for this 750 GeV “resonance”, see [6] for a long
list of references. X was a scalar singlet with couplings to new TeV states that mediate (at loop level) its
production by gg fusion and its decay to γγ [7, 8]. For a non-supersymmetric effective study see [9, 10].
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In section 2 we study the new couplings induced in the MSSM higgs sector by the d=6

effective operator and its effect on the diphoton production. Section 3 shows how these

operators are generated in a renormalizable model. Our conclusions are found in Section 4.

2 Effective operators and diphoton resonance

We consider the MSSM model extended by (supersymmetric) effective operators in the

higgs sector and study the diphoton production cross section σ due to a possible resonance

X identified with H and/or A. We compute the corrections to the couplings of H, A and

h, and the branching ratios of H, A. We then illustrate the correlations between the values

of Λ, mX , tan β and σ, consistent with the constraints from Higgs signals/decays.

2.1 New couplings from effective operators beyond MSSM

From all effective operators of dimensions d = 5 and d = 6 [16, 17, 18] beyond the MSSM

higgs sector, we find only one leading operator that can contribute to a diphoton resonance

Lj =
cj

2Λ2 g2jκj

∫

d2θ (H2.H1) Tr (W
αWα)j + h.c. (3)

which has dimension d = 6. Here j = 1, 2, 3 labels the U(1)Y , SU(2)L, SU(3) gauge groups

of gauge couplings gj , so we actually have three operators, with coefficients2 cj = O(1)

and Λ a free parameter. κj is a constant that cancels the trace factor. (Wα)j is the field

strength of a vector superfield Vj. The relevant part is3

Lj ⊃
cj
Λ2

[

(h1.h2) (F
a µν
j F a

j µν + iF a
j µν F̃

aµν
j ) + h.c.

]

(4)

with F̃µν = (1/2) ǫµνρσ Fρσ. With real cj one has, in a standard notation

L1+L2 ⊃ v

Λ2

[

(cγγh+ bγγH)FµνF
µν + (cγzh+ bγzH)FµνZ

µν

+(czzh+ bzzH)ZµνZ
µν + (cwwh+ bwwH)W+

µνW
−µν

+ aγγ AFµν F̃
µν + azzAZµν Z̃

µν + aγzAFµν Z̃
µν + aww AW+

µνW̃
−µν
]

(5)

where Fµν is the photon field strength, H (A) are the CP-even (odd) neutral higgses and

aγγ = −(c1 c
2
w + c2 s

2
w), azz = −(c1s

2
w + c2c

2
w), aγz = −(c2 − c1)s2w, aww = −2c2

bγγ = −aγγ sαβ, bzz = −azz sαβ , bγz = −aγz sαβ, bww = −aww sαβ

cγγ = −aγγ cαβ , czz = −azz cαβ , cγz = −aγz cαβ , cww = −aww cαβ (6)

2The coefficients cj = O(1), j = 1, 2, 3 enable us later to turn on/off any of operators L1,2,3.
3Notation used: h1.h2 = h0

1h
0
2 − h−

1 h+

2 ; also Re h0
1 = H cosα− h sinα, Re h0

2 = H sinα+ h cosα.
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with the notations: cαβ = cos(α + β), sαβ = sin(α + β), c2β = cos(2β), cw = cos θw,

sw = sin θw, s2w = sin 2θw. Let us also consider the effect of the gluon operator4

L3 ⊃
v

Λ2

[

cgg hTrGµνG
µν + bggH TrGµνG

µν + aggATrGµνG̃
µν
]

(7)

where

agg = −c3, bgg = c3 sαβ, cgg = c3 cαβ . (8)

The Lagrangian of the MSSM corrected with L1,2,3 induces the following couplings

L =
1

v

[

(ĉγγh+ b̂γγH)FµνF
µν + (ĉγzh+ b̂γzH)FµνZ

µν + (ĉzzh+ b̂zzH)ZµνZ
µν

+ (ĉwwh+ b̂wwH)W+
µνW

−µν + âγγ AFµν F̃
µν + âzzAZµν Z̃

µν + âγz AFµν Z̃
µν

+ âww A W+µνW̃−
µν +

(
ĉgg h+ b̂ggH

)
TrGµνG

µν + âgg A TrGµνG̃
µν
]

. (9)

The coefficients â, b̂ and ĉ above are related to their counterparts without a hat:

τ̂γγ =
αem

8π
τ loopγγ +

v2

Λ2
τγγ , τ̂zz =

αem

8π
τ loopzz +

v2

Λ2
τzz,

τ̂gg =
α3

12π
τ loopgg +

v2

Λ2
τgg, τ̂ww =

αem

8π
τ loopww +

v2

Λ2
τww,

τ̂γz =
αem

8πsw
τ loopγz +

v2

Λ2
τγz, where τ = a, b, c. (10)

The coefficients multiplying v2/Λ2 are those of eqs.(6), (8). Further, the coefficients aloop.. ,

bloop.. , cloop.. are loop-induced, due to the MSSM (in the absence of the effective operators).

They bring a very small branching ratio to photons [5] relative to v2/Λ2 terms and we

present them in Appendix A in the decoupling limit (α → β − π/2) in which we work in

this paper. We show that their corrected version â, b̂, ĉ of eqs.(9), (10) can bring a heavy

diphoton resonance of large σ ∼ 1 fb, in our model defined by MSSM extended by eq.(3),

in possible conflict with the latest data.

2.2 Decay branching ratios of A and H

To discuss the diphoton production we first analyze the impact of the corrections in eq.(9),

(10) on the decay rates of the heavy neutral CP-even (odd) Higgs H (A), respectively. The

decay rate of H is ΓH =
∑

i Γ(H → i), where

Γ(H → tt̄) =
Ncm

2
t

8πv2
cot2 βmH(1− 4xt)

3/2,

Γ(H → bb̄) =
Ncm

2
b

8πv2
tan2 βmH(1− 4xb)

3/2, xi ≡ m2
i /m

2
H (11)

4If c3 has an imaginary part, one also has L3 ⊃ v/Λ2[ãggA
0 TrG2 + b̃ggH TrGG̃ + c̃gghTrG2] with

ãgg = −Im [c3], b̃gg = −Im [c3] sin(α+ β), c̃gg = −Im [c3] cos(α+ β).
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Figure 1: Branching ratios of H → γγ, tt̄, bb̄, WW , ZZ, Zγ and gg, for different c1,2,3 and tanβ.
The case c1 = 1, c2 = c3 = 0 (not shown) is similar to c1 = 0, c2 = 1, c3 = 0 (without WW ). The
branching ratios for A into the same final states are similar to those above, for the same parameters.
Compared to individual L1,2,3, a combination L1+L3 or L1+L2+L3 brings the largest branching
ratio of H (A) to γγ, for appropriate relative signs of cj, j = 1, 2, 3.

valid in the decoupling limit and

Γ(H → γγ) =
1

4π

( b̂γγ
v

)2
m3

H

Γ(H → γZ) =
1

8π

( b̂γz
v

)2
m3

H (1− xZ)
3

Γ(H → gg) =
2

π

( b̂gg
v

)2
m3

H

Γ(H → WW ) =
1

8π

( b̂ww

v

)2
m3

H(1− 4xW + 6x2W )(1− 4xW )1/2,

Γ(H → ZZ) =
1

4π

( b̂zz
v

)2
m3

H(1− 4xZ + 6x2Z)(1− 4xZ)
1/2. (12)
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Figure 2: Total decay widths of heavy Higgs fields ΓH (blue) and ΓA (red), for mA,H = 750 GeV.
These plots remain similar for other c1, c2, c3 used later. A narrow width region ΓX ≤ 5 GeV
corresponds to low 2≤tanβ≤12 while for larger tanβ one has a large width regime.

The decay rate of the heavy neutral CP-odd Higgs A is ΓA =
∑

i Γ(A → i), with

Γ(A → tt̄) =
Ncm

2
t

8πv2
cot2 βmA(1− 4x̄t)

1/2,

Γ(A → bb̄) =
Ncm

2
b

8πv2
tan2 βmA(1− 4x̄b)

1/2,

Γ(A → γγ) =
1

4π

( âγγ
v

)2
m3

A,

Γ(A → γZ) =
1

8π

( âγz
v

)2
m3

A(1− x̄Z)
3,

Γ(A → gg) =
2

π

( âgg
v

)2
m3

A

Γ(A → WW ) =
1

8π

( âww

v

)2
m3

A (1− 4x̄W )3/2,

Γ(A → ZZ) =
1

4π

( âzz
v

)2
m3

A (1− 4x̄Z)
3/2, x̄i ≡ m2

i /m
2
A. (13)

In figure 1 the branching ratios of H decays are presented as functions of tan β, for different

c1,2,3. The dominant decays modes are into tt̄ at low tan β < 6 and bb̄ at large tan β while

near tan β ∼ 6 or so, they are comparable. The remaining decay modes have smaller,

often comparable rates. For A, one has nearly identical plots. Compared to individual

L1,2,3, a combination L1 +L3 or L1 +L2 +L3 brings the largest branching ratio of H (A)

to γγ, for suitable relative signs of c1,2,3 (shown). As an illustration, we used mX = 750

GeV (X = H,A) but these plots are similar for 500≤mX ≤ 1000 GeV. The total ΓH,A is

shown in figure 2. tan β controls the width of the resonance X (X = A or H). At low

2 ≤tan β≤12, ΓX≤5GeV and one has the limit of narrow width (ΓX/mX ≪ 1). Figure 2

remains similar for other c1,2,3 ∼ O(1), of different signs, or if c1 or c2 vanish.
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2.3 Diphoton searches at large mH,A

Assuming a resonance X = H,A, we include the dominant gg and bb̄ production channels

and consider the contributions of A and H to a diphoton final state. From eq.(1)

σ(pp → H,A
︸︷︷︸

X

→ γγ) =
1

smH
(KggCggΓ(H → gg) +Kbb̄Cbb̄Γ(H → bb̄))Br(H → γγ)

+
1

smA
(KggCggΓ(A → gg) +Kbb̄Cbb̄Γ(A → bb̄))Br(A → γγ) (14)

where Kgg,Kbb̄ are K-factors, given by Kgg = 1.5,Kbb̄ = 1.2, and Cgg, Cbb̄ are parton

luminosities. Their values depend on the mass of the resonance, as shown in figure 3, that

we generated with the CTEQ5 package [19].

Figure 3: The dependence of partonic integrals coefficients Cgg and Cbb̄ at
√
s = 13 TeV on mX

[19]. In the model considered here X = H,A. For example, for mX = 750 GeV one has Cgg = 2131,
Cbb̄ = 14.6; also Cγγ ≈ 54, Cuū ≈ 1054, Cdd̄ ≈ 627, Ccc̄ ≈ 36, for

√
s = 13 TeV.

Using the information in figure 3 for the coefficients Cgg and Cbb̄ one can compute

the diphoton production cross section for different values of the resonance mass. This

dependence is shown in the plots of figure 4, for a fixed scale Λ = 4.2 and 4.8 TeV of the

effective operator and different tan β and c1,2,3
5. Both production channels bb̄ and gg of

H,A contribute, see figure 5. In some cases, the cross section can be large, σ ∼ few fb, well

above its value in the MSSM alone and this can conflict with the latest data [4]. To avoid

this situation, as seen in figure 4, a larger mX and/or larger Λ and/or large tan β may be

required, correlated as shown. If the value of σ is known from experiments and assuming

X = H,A, these plots together with constraints on SM-like Higgs physics can be used to

set stronger bounds on the correlation of Λ with tan β and mH,A. We shall do this shortly

for mH,A in the range 0.5 − 1 TeV.

5We keep cj close to unity (while freely adjusting Λ), otherwise the effective scale of new physics (operator
Lj) is changed to Λ/

√

|cj |.
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Figure 4: The diphoton production cross section for fixed Λ as a function of the mass mX (X = H)
for different tanβ and coefficients c1,2,3 of the effective operators. Similar dependence (nearly
identical) exists for X = A. The largest cross section for a given Λ is obtained if all c1,2,3 6= 0 and
have appropriate relative signs (shown). Of individual contributions for the same effective scale,
the largest correction to σ is from L3, then L1.

Figure 5: Ratios of production cross sections: σ(bb̄ → X)/σ(gg → X) for X = H in blue and
X = A in red, for c3> 0 (left plot) and c3< 0 (right plot). Depending on tanβ and |c3| either gg
or bb̄ production mechanism may dominate or they have comparable cross sections. Here we chose
mH,A = 750 GeV, for illustration.
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Figure 6: Parameter space for the diphoton cross section σ, mediated by H (top) and by both
A, H , mass degenerate, at mH,A = 750 GeV (bottom). Nearly identical plots to H exist for A
alone. Each coloured area has σ = 6 ± 3 fb with a fixed Λ. Areas of overlapping colours (e.g. red
and yellow, shown in orange) correspond to two different Λ, (3 ≤ σ ≤ 9). Region “N” corresponds
to a narrow resonance ΓH,A ≤ 5 GeV; region “W” has a wide width of 40 ≤ ΓH,A≤ 50 GeV. For
12≤ tanβ ≤ 36, ΓH,A has intermediate values (fig.2). Region “W” is excluded by the constraint
Rbb̄ ≡ ΓX→bb̄/ΓX→γγ ≤ 500(r/5), X=A,H . The plots in the right column have CMS bounds on
κγ and κg applied which excluded the low tanβ regions. A dotted (continuous) curve in a colour
rules out the area (if present) in the same colour situated above (below) that curve, due to bb̄ (tt̄)
searches, respectively [7]. The corresponding region of this “resonance”, for fixed Λ, is the area in
a given colour below the dotted curve in the same colour, in the right column of plots.

2.4 The dependence of σ on mH,A and the missing 750 GeV “resonance”

As seen in the previous section, L1,2,3 may provide a diphoton production cross section

that is as large as few fb, as initially reported by ATLAS/CMS [1], at mX = 750 GeV,

(X = H,A), now ruled out by recent additional data [4]. In the following we first detail the

exclusion limits on the scale Λ, correlated with tan β, from the absence of this resonance.

We then consider the general case of varying 0.5 TeV≤ mH,A ≤ 1 TeV and explore the

dependence of σ on mH,A, Λ and tan β, under the experimental constraints from the SM-

like higgs couplings hgg and hγγ and from bb̄ and tt̄ searches. Both production channels

of X = H,A are included and either of these may dominate (figure 5).

Figure 6 shows the parameter space giving the initially found σ(pp → H,A → γγ) =

8



6 ± 3 fb at mX = 750 GeV, mediated by H or A or both (mass degenerate case6). The

allowed parameter space is similar for A and H. In this figure the relative signs of |cj | ∼ 1

were chosen to maximise the diphoton production for given Λ. Note that the effective

cutoff of an operator is ultimately Λ/
√

|cj |.
Narrow resonance: For low 2 ≤ tan β ≤ 12 (figures 2, 6) one has a narrow width,

ΓH,A ≤ 5 GeV. For tan β ≤ 8, the gg production channel of H,A dominates; for 8 ≤
tan β ≤ 12 the bb̄ channel is also relevant (figure 5).

Let us see the effect of the constraints from the SM-like higgs (h) rates. In figure 6

the low tan β region contributes to h → γγ (photons) and h → gg (gluons) and can even

enhance (reduce) the rate of h → γγ beyond the SM value for negative (positive) c1,2,

respectively [20]7. Define by κγ and κg the scaling coefficients of the amplitude of the

SM-like higgs couplings to γγ and gg; then one has [21] (see also [22, 23]):

CMS, 68%CL : κγ = 0.965 ± 0.175, κg = 0.835 ± 0.105 (15)

ATLAS, 68%CL : κγ = 1.2± 0.15, κg = 1.04 ± 0.14 (16)

We used the CMS constraint in fig. 6 at 95% CL, with κ2j = Γh→jj/Γ
SM
h→jj, j = γ, g. As

a result, 2 ≤ tan β ≤ 10 or so is in conflict with these constraints from h decays and

this region, largely overlapping with our narrow width regime, is ruled out. Further, tt̄

searches also rule out some parameter space close to 1 ≤ tan β < 8 but the bound found

is in general weaker than the above bounds from h signals8. As a result, the parametric

region in figure 6 corresponding to this narrow “resonance” is a small region at the tip of

each coloured area of fixed Λ with tan β≈10− 12.

Broad resonance: The region 34 ≤ tan β ≤ 38 (40 ≤ ΓH,A ≤ 50 GeV, fig.2) marked

as “W” in figs. 6, where the bb̄ production mechanism dominates (if |c3| ≈ 1 − 2, fig.5),

is ruled out by constraints such as those in Table 1, of which Rbb̄ < 500 is the strongest.

Further, bb̄ searches with a cross section bound ≤ 5 pb at 13 TeV (Table 1 in [7]) are also

marked in figs.6, with a dotted curve in a given colour that rules out any area in the same

colour situated above that curve. This leaves a parametric area bordered by tan β ≤ 25

with ΓX ≤ 25 GeV (tan β ≤ 18, ΓX ≤ 12 GeV) for σ ≈ 3 fb (σ ≈ 9 fb) respectively, for

mass degenerate A and H and Λ/
√

|cj | fixed.
With this resonance now ruled out, one must then exclude its parametric region bor-

dered by 10 ≤ tan β ≤ 25 (10 ≤ tan β ≤ 18) for σ ≈ 3 fb (σ ≈ 9 fb), respectively and

demand the effective scale be larger than Λ/
√

|cj | ≈ 4.2 TeV. We checked that similar

bounds apply for mildly different values of c1,2,3 and from unity. These bounds are rele-

vant provided that all L1,2,3 in eq.(3) contribute. Since L3 is the dominant contribution,

if c3 = 0 then one has a much smaller diphoton cross section. If c2 = 0 (or c1 = 0) and

c3 6= 0 i.e. only L1,3 (L2,3) are present, total σ is again reduced; one may still reach σ ∼ 3

fb by compensating with an increase of the remaining coefficients, but then Λ/
√

|cj | may

become too low for a reliable effective expansion.

6In the decoupling limit we use, valid for mA = 750 GeV, the mass splitting δm between A and H can
be neglected m2

H = m2
A +m2

Z sin2[2β], so δm ≤ 2 GeV for tan β > 3 and decreases further at larger tan β.
7 This is due to coefficients ĉγγ or cγγ which contribute at low tan β, see eqs.(6), (9) for α → β − π/2.
8The bound used for tt̄ searches is σ(pp → X → tt̄) < 2250 fb (13 TeV), see Table 1 in [7].
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RZZ RZγ RWW Rtt̄ Rbb̄ Rgg

6(r/5) 6(r/5) 20(r/5) 300(r/5) 500(r/5) 1300(r/5)

Table 1: Upper bounds on the partial widths Rab = ΓX→ab/ΓX→γγ, (X = H,A), obtained from
8 TeV data scaled to 13 TeV, with r = σ13TeV/σ8TeV ≈ 5 and a wide resonance ΓH,A = 45 GeV
[7]. They apply at large tanβ. Rbb̄ is the strongest bound.

Figure 7: Parameter space for different values of the diphoton cross section σ, mediated by both
A, H (mass degenerate) for a varying mass mH,A with Λ = 4.8 TeV and c1,2 = 0, c3 = −1 (left)
and c1 = −c3 = 1, c2 = 0 (right). The red regions in the left plot have σ in the range shown
while in the right plot, their left edge has σ larger by 0.03 fb from the values shown. The partonic
integral coefficients dependence on mH,A is included. The CMS bounds on κγ and κg excluded a
small low tanβ < 6 regions. The dotted curve (in blue) corresponds to a bound from bb̄ searches
(observed values, see figure 6 in [26]). The tt̄ searches bound (observed values, see figure 2 in [27])
is also imposed but for the cases considered here for c1,2,3 does not constrain the parameter space.
The allowed parametric region is then the area below the dotted curve.

We return now to a general case of varying mH,A in the range 0.5TeV ≤mH,A≤ 1 TeV.

Figure 7 shows the dependence of the diphoton cross section σ on mH,A and tan β, under

the experimental constraints from hgg and hγγ couplings and bb̄, tt̄ searches. The cross

section bounds for the bb̄ and tt̄ searches depend on mH,A; we used the observed values

(95% CL) for bb̄ searches of figure 6 in [26] and for tt̄ searches of figure 2 in [27], for the

range of mX considered in our figure 7. These values were scaled to
√
s = 13 TeV. The

dependence of the parton coefficients on mH,A is also included (see figure 3).

Large values of diphoton cross section σ ∼ 0.1 − 1 fb (well above the MSSM value)

are obtained when both L3 and L1 are present, for Λ = 4.8 TeV (right plot in fig.7). For

|c3| only mildly different from unity |c3| ∼ 1.3 or if also c2 6= 0, then σ increases further

from the values shown. Unlike for the 750 GeV “resonance”, there are now regions of low

tan β < 10 with a large diphoton production such as: σ ∼ 1 fb for mH,A ∼ 550− 650 GeV,

or σ ∼ 0.4 fb for mH,A ∼ 1 TeV, that pass all the above constraints9. Increasing Λ above

∼ 5 TeV or considering instead only individual operators, e.g. dominant L3 (left plot in

figure 7), can reduce σ significantly. This ends our analysis of the diphoton cross section

for mH,A in the range 0.5 − 1 TeV.

9The low tanβ region may also be interesting for the naturalness issue, see later.

10



3 Microscopic models for L1,2,3 and higgs mass corrections

Having seen the role of L1,2,3 on the diphoton cross section, we now explain their possible

origin in a renormalizable model. We also address their effect on the higgs sector masses.

3.1 Microscopic origin of effective operator(s) L1,2,3

L1,2,3 may be generated in the MSSM with additional states with mass of order Λ. To see

this, consider a massive gauge singlet S that couples to the higgs and gauge sector as in:

δL=

∫

d4θ S†S +
{∫

d2θ
[

µH1.H2+λS H1.H2+
1

2
M1S

2 + f(S)Tr(WαWα)
]

+h.c

}

(17)

f(S) = S/M2 is a gauge kinetic function of a SM subgroup andM2 some high mass scale. To

generate all L1,2,3 the coupling to the gauge sector is extended to SU(3)×SU(2)L×U(1)Y .

We integrate out the superfield S via its eqs of motion and find after some algebra and

consistent truncation of higher orders

δL =

∫

d4θ
[

2
∣
∣
∣
λ

M1

∣
∣
∣

2
|H1.H2|2

]

+

∫

d2θ
[

µH1.H2 −
λ2

2M1
(H1.H2)

2− λ

M1M2
(H1.H2)Tr(W

αWα)
]

+h.c+O(1/M3
1 ) (18)

In the rhs of the above equation there are two more terms: −1/(2M1M
2
2 )(TrW

2))2|F
and also 2λ/(M2

1M2)(H1.H2)
†TrW 2|D; since we choose M2 ≥ M1, they are sub-leading,

O(1/M3
1 ), and can be ignored. The last line in eq.(18) shows our operators of d = 6 and

d = 5 generated simultaneously when integrating S. However eq.(17) does not yet provide

a UV complete, renormalizable setup, since it still contains a d = 5 effective operator:

(S/M2)Tr (W
αWα)|F . One possibility is that this operator is generated if S has additional,

renormalizable couplings to massive vector-like states under the SM gauge group, of mass

O(M2), as shown in diagram (1) of figure 8. Integrating out the vector-like states then

generates this remaining operator10. We thus have a microscopic origin of L1,2,3.

Eq.(18) also contains a d = 6 operator |H1.H2|2D which brings a negative correction

to the SM-like Higgs mass δm2
h = −4v2|λ|2µ2/Λ2 + O(1/ tan2 β) [18] (for M1 = Λ); this

correction is less relevant (being sub-leading to that of eq.(21), see later). Finally, taking

M1 ∼ M2 ∼ Λ and comparing eq.(18) to (3), we identify λ = cj/2 and c0 = −λ2/2 = −c2j/8.

Another way to generate (H1.H2)Tr(W
αWα)F is at one-loop, without a massive singlet.

One considers only copies of massive vector-like states as in diagram (2) of fig.8.

To conclude, a heavy diphoton resonance (X = H,A) of large cross section is present if

SM-charged, massive vector-like states (and possibly a singlet) are present beyond MSSM;

after decoupling, they generate L1,2,3. Other ways to generate the d = 6 operator(s) may

exist. The vector-like states have a significant impact on the gauge couplings unification

at one-loop, unless they are complete SU(5) multiplets [28].

10 (S/M2)TrW
αWα|F is a moduli-dependent gauge kinetic term, generic in supergravity or string theory.
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Figure 8: Diagrams generating the d = 6 operator (H1.H2)Tr (W
αWα)|F at one-loop level. Di-

agram (1) corresponds to the approach in eqs.(17), (18), with a loop of vector-like states of mass
∝ M2 that generate (S/M2)Tr(W

αWα)|F of eq.(17), while (classical) integration of S generates the
needed d = 6 operator. Diagram (2) (plus another one as (2) but with Q ↔ U c, Q ↔ U

c
) show

how to generate the d = 6 operator in one stage, without a massive singlet S. A large number of
vector-like states can compensate the loop suppression.

3.2 Implications for Higgs sector masses

Unlike the “gluon” operator L3, the “electroweak” operators L1,2 of eq.(3) also impact on

the higgs masses m2
h,H = M2

h,H +∆m2
h,H . Here Mh,H denote the MSSM value. We find11

∆m2
h,H =

8ρ

Λ2

[

g21c1 + g22c2

]

+O
[ 1

Λ3

]

(19)

where

ρ =
v4

32
sin 2β

[

1± 1

4
√
w

[
8m2

A − (4 + 3δ)m2
Z + 6δm2

Z cos 2β + 3(4m2
A − δm2

Z) cos 4β
]]

(20)

and w = [(m2
A −m2

Z) cos 2β + δ m2
Z sin2 β]2 + sin2 2β (m2

A +m2
Z)

2; the upper (lower) signs

correspond to h (H) and δ is shown in Appendix B. These corrections bring a modest

increase of the SM-like higgs mass ∆mh ∼ 1GeV for c1,2 = O(1), with a largest value for

small tan β, with little dependence on mA. An even smaller correction is found for mH .

The mass of the CP-odd Higgs boson is also modified, see eq.(B-2). These corrections have

little impact on the previous diphoton analysis.

As we saw in the previous sub-section, a leading d = 5 operator

L0 =
c0
Λ

∫

d2θ (H1.H2)
2 + h.c. (21)

may also be generated from the UV complete (renormalizable) model, without direct con-

tribution to the diphoton cross section. Its correction to the higgs mass is [16, 18]

∆m2
h,H =

[

2µ
c0
Λ

]

ρ1 +
[

2µ
c0
Λ

]2
ρ2 +O

[ 1

Λ3

]

(22)

where ρ1,2 are shown in eq.(B-4). With c0 µ > 0, a numerical analysis shows a significant

increase of mh for small tan β < 10, by as much as ≈ 10 GeV [16]. This increase can reduce

the amount of EW scale fine tuning by a significant factor [16, 24] relative to its MSSM

11using the first ref in [18] and adding a one-loop effect, too (top Yukawa).
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value at low tan β region (which is an otherwise very fine tuned MSSM region).

4 Conclusions

Current searches for “new physics” at the LHC bring increasingly strong constraints on the

MSSM-like models. Their parameter space becomes smaller, with negative implications for

their naturalness. However, simple extensions of their minimal higgs sector, parametrised

by effective (supersymmetric) operators, relax the parameter space or even improve natu-

ralness. We studied the constraints on such operators that can enhance dramatically the

couplings of the higgs sector to SM gauge bosons and thus the heavy diphoton production.

Minimal models (MSSM) have a small diphoton cross section at large mH,A, unless

one is fine-tuning the parameters. We identified leading operators of dimension d= 6 in

the higgs sector Lj ∼ cj/Λ
2 (H1.H2)Tr(W

αWα)j |F , j = 1, 2, 3, cj = O(1), that enhance

the couplings to SM gauge bosons, with L3 having the dominant effects. For mH,A in the

range 0.5 TeV≤ mH,A ≤ 1 TeV, the combination L1 + L3 can lead to a large diphoton

production σ ∼ 0.1− 1 fb, well above the MSSM value. The analysis included both gg and

bb̄ production mechanisms (of X=H,A) and either of these may dominate. We examined

the correlation between the diphoton cross section σ and the values of mX , Λ and tan β,

under the experimental constraints from SM-like higgs couplings hgg and hγγ (due to

mixing) and from bb̄ and tt̄ searches. These give Λ/
√

|cj | > 4.8 TeV where the effective

approach can still be trusted, for mH,A between 0.5 − 1 TeV.

Regarding the initially claimed resonance at mX=750 GeV with even larger σ (few fb),

this could be reached if all L1,2,3 contribute. Recent data ruled out this resonance, then

not all L1,2,3 are simultaneously present or the scale Λ/
√

|cj | is larger than 4− 5 TeV.

We showed how to generate the d = 6 effective operator(s) from a UV complete (renor-

malizable) theory. This is possible by integrating out additional massive SM vector-like

states beyond the MSSM spectrum, and eventually a massive singlet too, of mass O(Λ).

An additional d = 5 operator in the higgs sector may also be generated at the same time,

that does not affect directly the diphoton production, but may improve naturalness.

—————————–
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Appendix:

A Loop functions and couplings

In this section we present the expressions of the coefficients aloop.. , bloop.. , cloop.. , used in the

text (section 2.1). To compute them and to fix the notation, we need the couplings of

MSSM fields h,H, A to fermions and gauge bosons. These are, in a standard notation

−∆L = kt
mt

v
ht t+ kb

mb

v
hb b+

2m2
W

v
(kwh+ k̃wH)W+µW−

µ

+k̃t
mt

v
H t t+ k̃b

mb

v
H b b+ ik̄t

mt

v
A t γ5t+ ik̄b

mb

v
A b γ5b (A-1)

where

kt =
cosα

sin β
, kb = − sinα

cosβ
, kw = sin(β − α)

k̃t =
sinα

sin β
, k̃b =

cosα

cos β
, k̃w = cos(β − α),

k̄t = cot β, k̄b = − tan β. (A-2)

Here α is the mixing angle in the Higgs sector. In this paper we work in the decoupling

limit (mA large). Then α → β − π/2 and kt,b,w = 1 while k̃t = − cot β, k̃b = tan β, k̃w = 0.

Then we find the coefficients of the effective operators in eqs.(9), (10), as follows [25]

aloopgg = k̄t Ā
(t)
g + k̄bĀ

(b)
g ≈ (0.0771 + 0.7064i) cot β − (0.00281 + 0.00194i) tan β

aloopγγ = k̄w Ā(W )
γ +k̄t Ā

(t)
γ +k̄b Ā

(b)
γ ≈(0.13702+1.256i) cot β+(0.00125−0.00086i) tan β

aloopγz = aloopzz = aloopww = 0.

and

bloopgg = k̃t Ã
(t)
g + k̃bÃ

(b)
g ≈ −(0.441 + 1.112i) cot β + (−0.00538 + 0.00387i) tan β

bloopγγ = k̃w Ã(W )
γ + k̃t Ã

(t)
γ +k̃b Ã

(b)
γ ≈−(0.783 + 1.98i) cot β + (−0.00239+ 0.00172i) tan β

bloopγz = k̃tÃ
(t)
γz + k̃bÃ

(b)
γz ≈ (0.12513 + 0.32821i) cot β + (0.00103 − 0.000043i) tan β

bloopww = bloopzz = 0. (A-3)

and finally

cloopgg = ktA
(t)
g + kb A

(b)
g ≈ 0.970 + 0.0894i (A-4)

cloopγγ = kwA
(W )
γ + ktA

(t)
γ + kb A

(b)
γ ≈ −6.51 + 0.0397i (A-5)

where coefficients A()
. are one-loop form factors, presented below.
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For h one has the following form factors

A(ξ)
g =

3

4
A1/2(τξ), ξ = t, b. (A-6)

A(ξ)
γ = NcQ

2
ξA1/2(τξ), ξ = t, b. (A-7)

A(W )
γ = A1(τW ) (A-8)

A
(W )
Zγ = cos θw A1(τW , λW ) (A-9)

A
(t)
Zγ =

NcQt

cos2 θw

(2T
(t)
3 − 4Qt sin

2 θw)

cos θw
A1/2(τt, λt) (A-10)

and for H

Ã(ξ)
g =

3

4
A1/2(τ̃ξ), ξ = t, b. (A-11)

Ã(ξ)
γ = NcQ

2
ξA1/2(τ̃ξ), ξ = t, b. (A-12)

Ã(ξ)
γz =

NcQξ

cos θw
(2T

(ξ)
3 − 4Qξ sin

2 θw)A1/2(τ̃ξ, λξ), ξ = t, b. (A-13)

and for A:

Ā(ξ)
g =

3

4
Ā1/2(τ̄ξ), ξ = t, b. (A-14)

Ā(ξ)
γ = NcQ

2
ξĀ1/2(τ̄ξ), ξ = t, b. (A-15)

where τi = 4m2
i /m

2
h, τ̃i = 4m2

i /m
2
H , τ̄i = 4m2

i /m
2
A, Nc = 3, Qt = 2/3, and Qb = −1/3.

T
(t)
3 = 1/2, T

(b)
3 = −1/2 and λξ = 4m2

ξ/m
2
Z . Finally

A1/2(τ) = 2τ2
[
τ−1 + (τ−1 − 1)f(τ−1)

]
,

Ā1/2(τ) = τf(τ−1),

A1(τ) = −τ2
[
2τ−2 + 3τ−1 + 3(2τ−1 − 1)f(τ−1)

]
,

A1/2(τ, λ) = I1(τ, λ)− I2(τ, λ) , (A-16)

where

I1(τ, λ) =
τλ

2(τ − λ)
+

τ2λ2

2(τ − λ)2
[
f(τ−1)− f(λ−1)

]
+

τ2λ

(τ − λ)2
[
g(τ−1)− g(λ−1)

]
,

I2(τ, λ) = − τλ

2(τ − λ)

[
f(τ−1)− f(λ−1)

]
, (A-17)

and

f(x) =







arcsin2
√
x x ≤ 1

−1

4

[

log
1 +

√
1− x−1

1−
√
1− x−1

− iπ

]2

x > 1 ,
(A-18)
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g(x) =







√

x−1 − 1 arcsin
√
x x ≤ 1

√
1− x−1

2

[

log
1 +

√
1− x−1

1−
√
1− x−1

− iπ

]2

x > 1 .
(A-19)

B Mass corrections

The MSSM higgses masses are, at one-loop for dominant top Yukawa (upper sign for h)

M2
h,H =

1

2

{

m2
A +m2

Z + δ m2
Z sin2 β ∓

√
w
}

(B-1)

The mass of CP-odd Higgs is also modified by the effective operators

m2
A =

2B µ

sin 2β
− 2 v2

sin 2β

[c0
Λ

µ
]

− v4

4

cos2 2β

sin 2β

[g21c1
Λ2

+
g22c2
Λ2

]

+O
(
1

Λ3

)

(B-2)

and w = [(m2
A −m2

Z) cos 2β + δ m2
Z sin2 β]2 + sin2 2β (m2

A +m2
Z)

2. Here δ is the top/stop

correction to the Higgs potential, as in ∆Vh = (1/8) (g21 + g22) δ |hu|4 where

δ ≡ 3h4t
g2 π2

[

ln
Mt̃

mt
+

Xt

4
+

1

32π2

(

3h2t − 16 g23

)(

Xt + 2 ln
Mt̃

mt

)

ln
Mt̃

mt

]

Xt ≡ 2 (At − µ cot β)2

M2
t̃

(

1− (At − µ cot β)2

12 M2
t̃

)

. (B-3)

with M2
t̃
≡ mt̃1

mt̃2
, and g3 is the QCD coupling.

The values of ρ1,2 in eq.(22) are

ρ1 = v2 sin 2β
{

1± (m2
A +m2

Z)√
w

}

(B-4)

ρ2 =
v4

4µ2
sin2 2β ± v4√

w

{

− 1 +
1

2µ2
(m2

A +m2
Z) sin

2 2β
}

± 1

w3/2
(m2

A +m2
Z)

2 v4 sin2 2β

with the upper (lower) sign for h (H).
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