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In view of the projected high number of produced B mesons in Belle II experiment (∼ 1010

per year), in addition to the presently ongoing LHC-b, we calculate the rate of decay for the rare
decays of B mesons via a sterile on-shell neutrino N , which subsequently may decay leptonically
or semileptonically within the detector: B → (D(∗))`±1 N , then N → `±1 `

∓
2 ν or N → `±π∓. Here,

`1 6= `2 in order to avoid serious QED background. We account for the possible effects of the
neutrino lifetime on the observability of the rare decays. If no charmed mesons (D(∗)) are produced
at the first vertex of the sterile neutrino, a strong CKM-suppression becomes effective; this is not
true if we consider instead the decays of Bc mesons which can be produced copiously in LHC-b.
The production of charmed mesons D(∗) at the first vertex offers an attractive possibility because
it avoids strong CKM-suppression. Such rare decays of B mesons could be detected at Belle II
experiment, with N neutrino either decaying within the detector or manifesting itself as a massive
missing momentum.
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I. INTRODUCTION

At present it is not known whether there exist sterile neutrinos. If they do, there exist additional neutrino mass
eigenstates, and two of the central questions are: (1) How heavy are the new mass eigenstates N? (2) How strong
(weak) are the corresponding heavy-light mixings U`N , i.e., mixings of N with the Standard Model (SM) flavor
neutrinos ν` (` = e, µ, τ)? Further, it is not known whether the neutrinos are Majorana or Dirac fermions. Majorana
fermions are at the same time their own antiparticles, which is not the case for Dirac fermions such as charged
leptons or quarks. Majorana neutrinos allow both lepton number conserving (LNC) and lepton number violating
(LNV) processes, while Dirac neutrinos allow only LNC processes to take place. The LNV processes are in general
appreciable only if the Majorana neutrinos have appreciable masses.

The Majorana nature of (light) neutrinos can be established if neutrinoless double beta decays (0νββ) can be
detected [1]. The existence of sterile (usually Majorana) neutrinos can be established by specific scattering processes
[2–5] and via rare meson decays [6–14].

Evidence of the nonzero neutrino masses comes from neutrino oscillation, predicted by [15] and later observed
[16–18]. The observation of oscillations can determine the mass differences of the light neutrinos. Nonetheless, if
several sterile neutrinos exist, they may result in almost degenerate heavy mass states and such scenarios can lead to
oscillation of heavy neutrinos [19, 20].

Sterile neutrinos and the corresponding heavy neutrino particles appear naturally in several scenarios in which the
small masses of the light neutrinos are explained. The very low masses mν . 1 eV of the three light neutrinos can be
explained by seesaw scenarios [21] where neutrinos are Majorana particles and the heavy neutrino mass eigenstates
have very high masses M � 1 TeV. Other seesaw scenarios have lower masses of the heavy neutrinos, M ∼ 1 TeV
[22] and M ∼ 1 GeV [3, 23–27], and their mixing with the SM flavors is in general less suppressed than in the original
seesaw scenarios.

CP violation is also possible in the neutrino sector [28]. In the heavy neutrino sector, CP violation has been
investigated in scattering processes [29] (resonant CP violation), coming from interference of the tree-level and one-
loop neutrino propagator effects. Resonant CP violation was also investigated in the leptonic [11, 12] and semileptonic
rare meson decays [12, 30, 31], using a simplified (effectively tree-level) approach. These effects are appreciable in
scenarios where we have at least two heavy almost degenerate neutrinos (as is also required for oscillation, cf. [19, 20]),

∗ 1606.04140v4: in v4, in Fig.4(b) the lower curve [for (B̄0 → D∗+τ−N̄) decay] is now correct (in v3 an obsolete version of the curve
was inadvertently included). A typo in Eq. (C15a) is corrected. As published in Phys. Rev. D94, 053001 (2016) and Phys. Rev. D95,
039901(E) (2017).
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with masses ∼ 1 GeV. Such scenarios appear to be compatible with the neutrino minimal standard model (νMSM)
[23, 32] and some low-scale seesaw models [33].

In this work we assume that there exists at least one sterile neutrino N , leading to a mass eigenstate with mass MN

up to about 6 GeV. In our previous work [9] we investigated semihadronic rare decays of charged pseudoscalar mesons
in such scenarios, with intermediate on-shell neutrinoN and final pseudoscalar meson, such asB+ → e+N → e+e+D−.
CP violation in such type of decays (with two intermediate almost degenerated neutrinos N1, N2) were investigated
in Refs. [30, 31]. Such processes are LNV and the neutrinos have to be Majorana. On the other hand, in Ref. [10]
we investigated the rare leptonic decays of charged pions, π+ → e+N → e+e+µ−ν, mediated by an on-shell N
(CP violation in Ref. [11], mediated by two Nj ’s). Such decays have LNV and LNC channels, and the intermediate
neutrino(s) N can be either Majorana or Dirac. In Ref. [10] (cf. also a review [12]) we showed that it is possible to
distinguish between the Majorana and Dirac nature of N in such decays by measuring the differential decay width
dΓ/dEµ with respect of the muon energy Eµ (the latter being in the N -rest frame). Since the heavy-light neutrino
mixing coefficients are expected to be very suppressed, such differential decay width is difficult to measure with
sufficient statistics. Nonetheless, as argued in Ref. [10], this problem can be overcome if the decaying pions are
produced copiously (project X, ∼ 1029 pions per year, [34]). On the other hand, since pions are light, the produced
on-shell neutrinos N are also light and have thus a long lifetime, thus most of them escape through the detector
before decaying. This effect accounts for a significant suppression of the decay rate in the mentioned rare decays
π+ → e+N → e+e+µ−ν. Recently this issue of differentiating between Majorana and Dirac sterile neutrinos at the
LHC has been revisited [5] for the mass of sterile neutrino mN < mW .

On the other hand, if we consider the analogous rare leptonic decays of heavier mesons, such as B or Bc, the
masses of the intermediate on-shell neutrinos can be significantly larger, and the decay widths of the rare decays
are larger. Nonetheless, such mesons are not produced copiously, except at LHC-b and in an upgrade of the Belle
experiment, Belle II [35]. It is expected that Belle II can produce ∼ 1010 B-pairs per year. Therefore, rare decays
of B mesons may give us a hint of the existence of heavier sterile neutrinos with masses of up to 5 GeV. Moreover,
differential decay widths of such decays may offer us a possibility of discerning the nature (Majorana or Dirac) of such
neutrinos. However, the rare leptonic decays of the type B → `1N → `1`2`3ν, where `j are light charged leptons and
ν is a light neutrino, are strongly CKM-suppressed in comparison with the analogous decays of Bc mesons (because
|Vub| ∼ |Vcb|/10). Belle II will produce B mesons but not Bc mesons. Therefore, rare leptonic decays cannot play an
important role at Belle II, but rather at LHC-b where Bc mesons are produced copiously. The question that arises
naturally, especially for Belle-II measurements, is whether we can have rare B-meson decays which are not CKM-
suppressed. The answer to this question is affirmative: Namely, semihadronic rare B-meson decays B → D(∗)`1N
and consecutively N → `2`3ν (or N → `2π) are not CKM-suppressed because they are proportional to |Vcb|2.

In this work we calculate the branching ratios for the mentioned rare decays B(c) → (D(∗))`1N where the produced
on-shell neutrino N may further decay leptonically N → `2`3ν or semileptonically N → `π. Some of the formulas
(those not involving D(∗)) have been known from our previous works, while those with D(∗)-meson are new and, to
our knowledge, have not been known in the literature (those with massless N are known). We take into account the
effect of the decay probability of the intermediate on-shell sterile neutrino N within the detector, this probability can
sometimes be significantly smaller than 1.

In Sec. II we present formulas for the decay widths of rare decays of B(c) → (D(∗))`1N , those not involving the

D(∗) meson in Sec. II A, and in Sec. II B those involving D(∗) meson. In Appendices A-C we show more detailed
formulas relevant for these decays. In Sec. III, formulas are presented for the subsequent decays of the produced
sterile neutrino, N → `2`3ν and N → `2π, for lepton number violating and lepton number conserving modes.1 In
Sec. IV we exhibit the branching ratios for these decays as a function of the mass of N neutrino, and the differential
branching ratios with respect to charged lepton energy when N decays leptonically. In Appendix D the relevant
formulas for the differential branching ratios are given. In Sec. V we account for the decay probability of neutrinos N
within the detector, and present the resulting effective branching ratios for the mentioned rare decays, as a function
of the mass of N , assuming that the probability for the neutrino decay within the detector is significantly smaller
than one. In Sec. VI, based on the results of the previous Sections, we estimate values of the (effective) branching
ratios of various mentioned rare decays, for various ranges of the mass MN and of the heavy-light mixing coefficients
|U`N |2 of the sterile neutrinos N . We discuss the values of the mixing coefficients |U`N |2 necessary for the detection
of the mentioned rare decays at Belle II and LHC-b, and, implicitly, the upper bounds for these coefficients for the
case that such decays are not detected. In Summary we briefly recap the obtained results.

1 For flavors of charged leptons, `1, `2, `3, we can choose, e.g., e±e±µ∓ having no opposite-sign same-flavor lepton pairs in the final state
to avoid the serious SM radiative background γ∗/Z∗ → e+e− [10].
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II. RARE DECAYS OF B(c) TO ON-SHELL STERILE NEUTRINO

A. Decays B(c) → `1N

The decay width for the process B(c) → `1N , with the subsequent decay of the on-shell N neutrino to `2`3ν or to
`2π (generically: to XY ), can be written in the factorized form

Γ(B(c) → `1N → `1XY ) = Γ(B(c) → `1N)
Γ(N → XY )

ΓN
, (1)

where ΓN is the total decay width of the sterile neutrino N , and `1 is a charged lepton (`1 = e, µ, τ). The first factor
on the right-hand side is well known

Γ(B±(c) → `±1 N) = |U`1N |2Γ(B±(c) → `±1 N) , (2)

where the canonical width Γ (i.e., without the heavy-light mixing factor |U`1N |2) is

Γ(B±(c) → `±1 N) =
G2
F f

2
B(c)

8π
|VQuQd

|2M3
B(c)

λ1/2(1, yN , y1) [(1− yN )yN + y1(1 + 2yN − y1)] , (3)

where GF = 1.1664 × 10−5 GeV−2 is the Fermi coupling constant, fB(c)
is the decay constant of the meson B± (or

B±c ), VQuQd
is the corresponding CKM matrix element (Vub for B, Vcb for Bc), and we use the notations

yN =
M2
N

M2
B(c)

, y1 =
M2
`1

M2
B(c)

, (4)

and the function λ1/2 is given in Eq. (A2) in Appendix A. The coefficient U`N is the heavy-light mixing coefficient of
the (extended) PMNS matrix, i.e., the light flavor neutrino state ν` (with flavor ` = e, µ, τ) is

ν` =

3∑
k=1

U`νkνk + U`NN . (5)

For simplicity, we assume that there is only one sterile (heavy) neutrino N , in addition to the three light neutrinos
νk.

In Figs. 1(a), (b) we present the canonical decay width (3), for the decays B± → `±N and B±c → `±N (` = µ, τ)
as a function of the mass of N . We used the values fB = 0.196 GeV and fBc

= 0.322 GeV (the central values of
Ref. [36]), |Vub| = 4.13 × 10−3 [37] and |Vcb| = 4.012 × 10−2 [38]. We see clearly that the decays of B are strongly
suppressed, due to the small CKM matrix element.
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Γ(B → τ N)
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FIG. 1: The canonical decay width Eq. (3), in units of GeV, as a function of the mass of heavy neutrino N , for (a) B± → `±N ,
(b) B±c → `±N , where ` = µ (solid), ` = τ (dashed), and ` = e (dotted). The dotted line is practically indistinguishable from
the solid one.
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B. Decays B → D(∗)`1N

As already mentioned in the Introduction, the type of rare decays of the B± meson described in the previous Section,
i.e., the meson produced at the dedicated Belle(II) experiment, will have strong CKM-suppression (Vub ≈ 0.004), as
seen from Eq. (3). The corresponding rare decays of Bc have much weaker CKM-suppression (Vcb ≈ 0.04), but,
unfortunately, they are not produced at Belle(II). They are copiously produced at LHC, though.

In order to use the potential of the new Belle II experiment for the detection of rare B-meson decays, we need to
consider a somewhat more complicated variant of such decays, a variant in which the CKM-suppression (∝ |Vub|2)
does not take place. This suppression is avoided if, at the first stage of the decay, B meson decays into a charmed
D(∗)-meson and an off-shell W which decays into `1 and N , i.e., we consider the decays B → D(∗)`1N → D(∗)`1XY ,
where at the second stage the intermediate on-shell neutrino N decays into XY as in the previous Section, i.e., either
leptonically as N → `2`3ν, or semileptonically as N → `π.

This means that, according to the expression (1), we have to calculate the first factor Γ(B → D(∗)`1N) which
appears in the decay widths

Γ(B → D(∗)`1N → `1`2`3ν) = Γ(B → D(∗)`1N)
Γ(N → `2`3ν)

ΓN
, (6a)

Γ(B → D(∗)`1N → `1`2π) = Γ(B → D(∗)`1N)
Γ(N → `2π)

ΓN
, (6b)

and where the second factor Γ(N → XY ) has already been given in Eqs. (20)-(21) when XY = `2`3ν, and in
Eqs. (25)-(26) when XY = `2π.

The expressions necessary for evaluation of the first factor Γ(B → D(∗)`1N) in Eqs. (6) are obtained in Appendix
B for the case of B → D`1N , and in Appendix C for B → D∗`1N . The latter decay is theoretically more complicated
because D∗ is a vector while D is a pseudoscalar meson. We note that in the literature, these decays are known for
the case of zero masses of the neutrino N and of the charged lepton `1. On the other hand, here we obtained formulas
for the more general case of massive N and `1.

1. B → D`1N

The process B(pB) → D(pD)`1(p1)N(pN ) is depicted schematically in Fig. 21 in Appendix B. The expression for
the corresponding differential decay width (d/dq2)Γ(B → D`1N) is given in Eqs. (B5)-(B6), in terms of the form
factors F1(q2) and F0(q2), Eqs. (B4), where q2 is square of the momentum of the virtual W (i.e., of the `1-N pair,
cf. Fig. 21). The resulting decay width Γ(B → D`1N) is obtained upon (numerical) integration of the differential
decay width over the kinematically allowed values of q2

Γ(B → D`1N) = |U`1N |2 Γ(B → D`1N) , (7a)

Γ(B → D`1N) =
1

384π3
G2
F |Vcb|2

1

MB

∫ (MB−MD)2

(MN+M1)2
dq2 1

(q2)2
λ1/2

(
1,

q2

M2
B

,
M2
D

M2
B

)
λ1/2

(
1,
M2

1

q2
,
M2
N

q2

)
×
{
F1(Q2)2

[
2(q2)2 − q2M2

N +M2
1 (2M2

N − q2)−M4
N −M4

1

] [
(q2 −M2

D)2 − 2M2
B(q2 +M2

D) +M4
B

]
+F0(q2)23(M2

B −M2
D)2

[
q2M2

N +M2
1 (2M2

N + q2)−M4
N −M4

1

]}
. (7b)

The form factor F1(q2) is well known [39]. It can be expressed in terms of the variable w

w =
(M2

B +M2
D − q2)

2MBMD
, (8a)

z(w) =

√
w + 1−

√
2

√
w + 1 +

√
2
, (8b)

in the following approximate form [39]:

F1(q2) = F1(w = 1)
(
1− 8ρ2z(w) + (51ρ2 − 10)z(w)2 − (252ρ2 − 84)z(w)3

)
, (9)
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where the free parameters ρ2 and F1(w = 1) have been recently determined with high precision by the Belle Collab-
oration, Ref. [38]

ρ2 = 1.09± 0.05 , (10a)

|Vcb|F1(w = 1) = (48.14± 1.56)× 10−3 . (10b)

The value (10b) was deduced from their value of ηEWG(1)|Vcb| = ηEWF1(w = 1)
√

4r/(1 + r) = (42.29± 1.37)× 10−3,
where r = MD/MB and ηEW = 1.0066 ≈ 1 [40]. In our numerical evaluations, we will use the central values ρ2 = 1.09
and |Vcb|F1(w = 1) = 48.14× 10−3.

When the masses of `1 and N are simultaneously zero, only F1(q2) form factor contributes, and consequently the
form of F0(q2) is not well known in the literature. In our massive case, however, F0(q2) contributes significantly as
well. Nonetheless, we can get a reasonably good approximation for F0(q2) by using the (truncated) expansion for F0

in powers of (w − 1), Ref. [41]

F0(q2) =
(MB +MD)

2
√
MBMD

[
1− q2

(MB +MD)2

]
f0(w(q2)) , (11a)

f0(w) ≈ f0(w = 1)
[
1 + ρ2

0(w − 1) + (0.72ρ2
0 − 0.09)(w − 1)2

]
, (11b)

where the value f0(w = 1) ≈ 1.02 [41, 42] is obtained from the heavy quark limit. The variable w was defined in
Eq. (8a). The endpoint value (w = 1) corresponds to the maximal value of q2, q2 = (MB −MD)2. The remaining
free parameter ρ0 in the expression (11b) can then be fixed by the condition of absence of spurious poles at q2 = 0:
F0(0) = F1(0) (≈ 0.690). This results in the value ρ2

0 ≈ 1.102 and (0.72ρ2
0 − 0.09) ≈ 0.704.

We present the resulting Form factors F1(q2) and F0(q2) for 0 ≤ q2 ≤ (MB −MD)2 in Fig. 2. For comparison, we

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

q2GeV
2

F1

F0

F0 (naive)

FIG. 2: The form factors F1(q2) and F0(q2) in the range 0 ≤ q2 ≤ (MB −MD)2.

also included the more naive form factor F0(q2) obtained from the heavy-quark limit from F1(q2)

F0(q2)(naive) =

[
1− q2

(MB +MD)2

]
F1(q2) , (12)

where for F1(q2) the (optimal) form described above is used.

2. B → D∗`1N

As mentioned, the decay width for the process B(pB) → D∗(pD)`1(p1)N(pN ) has a more complicated expression,
because, due to the vector character of D∗, more form factors appear, cf. Eqs. (C2)-(C3) in Appendix C - altogether,
four independent form factors feature now: V (q2) and Aj(q

2) (j = 1, 2, 0), while A3 is a combination of A1 and A2.
Three of the four independent form factors (V , A1 and A2) are well known, and have been determined recently to
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high precision by the Belle Collaboration [43] using the parametrization of Ref. [39]

A1(q2) =
1

2
R∗(w + 1)F∗(1)

[
1− 8ρ2

∗z(w) + (53ρ2
∗ − 15)z(w)2 − (231ρ2

∗ − 91)z(w)3
]
, (13a)

V (q2) = A1(q2)
2

R2
∗(w + 1)

[
R1(1)− 0.12(w − 1) + 0.05(w − 1)2

]
, (13b)

A2(q2) = A1(q2)
2

R2
∗(w + 1)

[
R2(1) + 0.11(w − 1)− 0.06(w − 1)2

]
. (13c)

Here, R∗ = 2
√
MBMD∗/(MB + MD∗), the variables w and z(w) are given by Eqs. (8), and the values of the free

parameters determined in Ref. [43] are

ρ2
∗ = 1.214(±0.035) , 103F∗(1)|Vcb| = 34.6(±1.0) , (14a)

R1(1) = 1.401(±0.038) , R2(1) = 0.864(±0.025) . (14b)

We will use the central values of these parameters.
When the masses of final fermions (`1 and N) are simultaneously zero, only the above three of the four independent

form factors contribute (V , A1, A2). However, in our (massive) case, the form factor A0 also contributes. It is not well
known. In order to get a reasonable approximation for the form factor A0(q2), we can employ the heavy-quark-limit
relations

A1(q2) ≈ A2(q2)

[
1− q2

(MB +MD∗)2

]
(15)

in the general expression (C3) for A3(q2), resulting in the approximate relation between A2 and A3

A2(q2) ≈ A3(q2)/

[
1− q2

2MD∗(MB +MD∗)

]
, (16)

Using, in addition, the heavy-quark-limit relation A0(q2) ≈ A2(q2), we obtain the following approximation for the
(otherwise unknown) form factor A0(q2):

A0(q2) ≈ A3(q2)/

[
1− q2

2MD∗(MB +MD∗)

]
=

(MB +MD∗)
2

(2MD∗(MB +MD∗)− q2)

(
1− (MB −MD∗)

(MB +MD∗)

A2(q2)

A1(q2)

)
A1(q2) , (17)

This relation also fulfills the obligatory relation A0(0) = A3(0) which reflects the condition of the absence of pole at
q2 = 0 in the hadronic matrix element (C2). Therefore, A0(q2) can now be evaluated, too.

The decay width for the considered process, Γ(B → D∗`1N), is obtained numerically by integration of the differential
decay width over the kinematically allowed values of q2, where we use the obtained differential decay width (C20b),
and the expression (17) of A0 in terms of A1. We then get

Γ(B → D∗`1N) = |U`1N |2 Γ(B → D∗`1N) , (18)

where the canonical decay width (i.e., without the heavy-light neutrino mixing) is

Γ(B → D∗`1N) =
1

64π3

G2
F |Vcb|2

M2
B

∫ (MB−MD∗ )2

(MN+M1)2
dq2 λ

1/2|~q|q2

{(
1− (M2

N +M2
1 )

q2
− 1

3
λ

)[
2(MB +MD)2A1(q2)2

+
8M2

B |~q|2

(MB +MD∗)2
V (q2)2 +

M4
B

4M2
D∗q

2

(
(MB +MD∗)

(
1− (q2 +M2

D∗)

M2
B

)
A1(q2)− 4|~q|2

(MB +MD∗)
A2(q2)

)2 ]
+

[
−
(
M2
N −M2

1

q2

)2

+
(M2

N +M2
1 )

q2

]
M2
B |~q|2

q2

[
2(MB +MD∗)

2

(2MD∗(MB +MD∗)− q2)

]2 [
1− (MB −MD∗)A2(q2)

(MB +MD∗)A1(q2)

]2

A1(q2)2

}
,

(19)

where λ and |~q|, as a function of q2, are given in Appendix C in Eqs. (C18) and (C16), respectively. In Fig. 3 we
present the form factors V and Aj (j = 1, 2, 0) as a function of q2 between 0 ≤ q2 ≤ (MB −MD∗)

2, where we took
the masses of the neutral B and charged D∗ (MB = 5.280 GeV and MD∗ = 2.010 GeV; MB −MD∗ = 3.269 GeV).

We present in Figs. 4(a),(b) the main results of this Section, i.e., the canonical decay widths Eqs. (7) and (19). The
used values of the masses of D(∗) are from Ref. [37]: 1.8648 GeV (D0); 2.0103 GeV (D∗±).
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FIG. 3: The form factors V (q2) and Aj(q
2) (j = 1, 2, 0) in the range 0 ≤ q2 ≤ (MB −MD∗)

2.
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Γ(B-→ D
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0
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2.×10-14
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→ D

*+ μ-
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Γ(B
0
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FIG. 4: *

The canonical decay widths of B meson into (a) D`N [Eq. (7)], (b) D∗`N [Eq. (19)], as a function of the mass of N neutrino.
The specific cases of ` = µ, τ are presented. The decay widths are in units of GeV.

III. SUBSEQUENT DECAYS OF N TO LEPTON NUMBER VIOLATING AND CONSERVING MODES

A. Leptonic decays N → `±1 `
∓
2 ν

The sterile on-shell neutrino N , produced by B(c) → `±1 N , subsequently decays into various channels. First we

are interested in the leptonic decays of the lepton-number-conserving (LNC) type N → `∓2 `
±
3 ν`3 and of the lepton-

number-violating (LNV) type N → `±3 `
∓
2 ν`2 , cf. Ref. [12] (cf. also Refs. [9, 11])

Γ(LNC)(N → `∓2 `
±
3 ν`3) = |U`2N |2Γ(N → `2`3ν) , (20a)

Γ(LNV)(N → `±3 `
∓
2 ν`2) = |U`3N |2Γ(N → `2`3ν) , (20b)

where the charged leptons (`2, `3) are in general e, µ, τ , and the expression for the canonical (i.e., without the
heavy-light mixing factor) decay width Γ(N → `2`3ν) is given by

Γ(N → `2`3ν) =
G2
FM

2
N

192π3
F(x2, x3) , (21)

where the dimensionless notations are used

xj =
M2
`j

M2
N

, (22)
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and the function F(x2, x3) for nonzero lepton masses was calculated in Ref. [11] and is given here in Appendix A (see
also Ref. [12]). It is symmetric under the exchange x2 ↔ x3 (`2 ↔ `3).

In order to obtain the width for the rare decays B(c) → (D(∗))`1N → (D(∗))`1`2`3ν (with ν a light, practically
massless neutrino), we combine the results (2)- (3) and (20)-(21) in the expression (1)

Γ
(
B±(c) → (D(∗))`±1 N → (D(∗))`±1 `

∓
2 `
±
3 ν
)(X)

= |U`1N |2|U`XN |2
1

ΓN
Γ
(
B±(c) → (D(∗))`±1 N

)
Γ(N → `∓2 `

±
3 ν) , (23)

where X stands for X=LNC or X=LNV process, and U`XN = U`2N for X=LNC and U`XN = U`3N for X=LNV.
We will see later that the total decay width of the N neutrino, ΓN , cancels out in the effective decay rates where

the decay probability of the intermediate on-shell N is accounted for.
The LNC and LNV processes contained in the expression (23), are depicted in Figs. 5 and 6. If `1 = `3, then

(W )+

+

+

ν

−

+

+(W )

(a)

B
(c)

l
l

l
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2

3

l
3

Ν (W )+
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−

(W )+

+

(b)
+
ll

l

B
(c)

3

2

1

l
1

Ν

FIG. 5: The lepton number conserving (LNC) process: (a) the direct (D) channel; (b) the crossed (C) channel; the crossed
channel appears only if `1 = `3.

−
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+

ν

(a)
+

B(c)

Ν

l

l
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3

2

l
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(W )

−

(W )+

+

ν

+
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3

1
2

2

B

(W  )
(c)

FIG. 6: The lepton number violating (LNV) process: (a) the direct (D) channel; (b) the crossed (C) channel; the crossed
channel appears only if `1 = `3.

we have a statistical factor 1/2! in front of the expression for the decay width. However, in such a case two different
channels (direct and crossed) contribute, with equal strength, giving a factor 2 which cancels the aforementioned
factor. Therefore, the formula (23) is valid for both cases, when `1 = `3 and `1 6= `3.

If the intermediate N is Dirac (Dir.), then only the LNC processes contribute, and thus we must apply in the
formula (23) for the total factor simply the X=LNC contribution; if N is Majorana (Maj.), both LNC and LNV
processes contribute

Γ
(
B±(c) → (D(∗))`±1 N → (D(∗))`±1 `

∓
2 `
±
3 ν
)(Dir.)

= |U`1N |2|U`2N |2
1

ΓN
Γ
(
B±(c) → (D(∗))`±1 N

)
Γ(N → `∓2 `

±
3 ν`3) ,

(24a)

Γ
(
B±(c) → (D(∗))`±1 N → (D(∗))`±1 `

∓
2 `
±
3 ν
)(Maj.)

= |U`1N |2(|U`2N |2 + |U`3N |2)

× 1

ΓN
Γ
(
B±(c) → (D(∗))`±1 N

)
Γ(N → `∓2 `

±
3 ν) . (24b)

B. Semileptonic decays N → `±π∓

Other possibilities for the decay of N (produced by B±(c) → `±1 N) are semileptonic, and among them kinematically

the most favorable is the decay into a (charged) pion: N → `∓2 π
± (LNC case of B-decay); N → `±3 π

∓ (LNV case of
B-decay). In this case, the second factor in the expression (1) is now different

Γ(N → `±π∓) = |U`N |2Γ(N → `±π∓) , (25)

where the canonical expression Γ is (e.g., cf. Refs. [9, 12, 20, 30])

Γ(N → `±π∓) =
1

16π
G2
F f

2
πM

3
Nλ

1/2(1, xπ, x`) [1− xπ − 2x` − x`(xπ − x`)] , (26)
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where we use the notations analogous to Eq. (22)

xπ =
M2
π

M2
N

, x` =
M2
`

M2
N

, (27)

and fπ (≈ 0.1304 GeV) is the decay constant of pion. It turns out that the corresponding rare decay B(c) →
`1N → `1`2π, as in the previous Subsection, can be either LNC (B±(c) → (D(∗))`±1 N → (D(∗))`±1 `

∓
2 π
±) or LNV

(B±(c) → (D(∗))`±1 N → (D(∗))`±1 `
±
2 π
∓). If N is Dirac, it is only LNC; if N is Majorana, it is the sum of LNC and

LNV. Again, as in the previous Subsection, if `2 = `1 (i.e., equal flavor and equal charge), the statistical factor 1/2!
appears in front of the integration, but is then cancelled by factor 2 appearing from the two equal contributions of
the direct and crossed channel. Therefore, the following formula holds for both cases of `2 = `1 and `2 6= `1, partly
analogous to Eqs. (24)

Γ
(
B±(c) → (D(∗))`±1 N → (D(∗))`±1 `

∓
2 π
±
)(LNC)

= Γ
(
B±(c) → (D(∗))`±1 N → (D(∗))`±1 `

±
2 π
∓
)(LNV)

= |U`1N |2|U`2N |2
1

ΓN
Γ
(
B±(c) → (D(∗))`±1 N

)
Γ(N → `∓2 π

±). (28)

The two factors Γ on the right-hand side here are given in Eqs. (3) and (26), they are independent of the charges
involved, and thus the LNC and LNV decays here are equal. If N is Dirac, only LNC process contributes; if N is
Majorana, both LNC and LNV processes contribute, amounting in doubling the value of the width.

In Fig. 7 we present the canonical decay widths of heavy neutrino N , Γ(N → `2`3ν) (for `2 = µ and `3 = e or τ)
and Γ(N → `π) (for ` = µ or τ), as a function of mass MN , cf. Eqs. (21) and (26). In all these decay widths, we
assume that the charged leptons have specific electric charges (e.g.., µ+e−ν, µ+π−).

1 2 3 4 5 6
10-16

10-14

10-12

10-10

MN(GeV)

(a)

Γ(N →μ e ν )

Γ(N →μ τ ν )

1 2 3 4 5 6
10-16

10-14

10-12

10-10

MN(GeV)

(b)

Γ(N →μ π )

Γ(N → τ π )

FIG. 7: The canonical decay widths, in units of GeV, as a function of mass of N , for (a) leptonic decays N → µ`ν where ` = e
(solid) and ` = τ (dashed); (b) semileptonic decays N → `π where ` = e (solid) and ` = τ (dashed). In (b) we also included
the curve for N → eπ (dotted), and it is close to the solid line N → µπ.

IV. BRANCHING RATIOS

We recall that the decay width of the considered processes is written in the factorized form (1), and the theoretical
branching ratio is obtained by dividing it by the decay width of B(c)

Br
(
B(c) → (D(∗))`1N → (D(∗))`1XY

)
= Γ

(
B(c) → (D(∗))`1N

) Γ(N → XY )

ΓNΓB(c)

. (29)

The factor Γ(N → XY ) is given for leptonic decay of N (XY = `2`3ν) in Eqs. (20)-(21), and for semileptonic decay
of N (XY = `2π) in Eqs. (25)-(26), cf. Figs. 7. The first factor Γ

(
U(c) → (D(∗))`1N

)
is given for the process without

D(∗) in Eqs. (2)-(3) (cf. Figs. 1), for process with D and D∗ in Eqs. (7) and (18)-(19), respectively (cf. Figs. 4).
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A. Total decay width of N

The only factor that remains to be evaluated to obtain the branching ratios (29) is the decay width of the sterile
neutrino N . This decay width can be written in the following form

ΓN = K̃ ΓN (MN ) , (30)

where the corresponding canonical decay width is

ΓN (MN ) ≡ G2
FM

5
N

96π3
, (31)

and the factor K̃ contains all the dependence on the heavy-light mixing factors

K̃(MN ) ≡ K̃ = NeN |UeN |2 +NµN |UµN |2 +NτN |UτN |2 (32)

Here, the coefficients N`N turn out to be numbers ∼ 1-10 which depend on the mass MN and on the character of
N neutrino (Dirac or Majorana). We refer to Ref. [30] for details of the calculation of N`N , based on expressions of
Ref. [7] (see also Refs. [8, 44]). In Figs. 8 we present the resulting coefficients - the figures were taken from Ref. [30]
for Majorana N , and [12] for Dirac N . We can see from that for 1 GeV ≤ MN ≤ 6 GeV, which is the relevant mass

ℓ  e

ℓ  μ

ℓ  τ

��������������ℓ�

�� �(���)

1 2 3 4 5 6
0

2

4

6

8

10

12

14
ℓ  e

ℓ  μ

ℓ  τ

�� (���)

ℓ�

�����������������

1 2 3 4 5 6
0

5

10

15

20

25

FIG. 8: The coefficients N`N (` = e, µ, τ) appearing in Equations (30)–(32), as a function of the mass of the sterile neutrino
N . The left-hand figure is for Dirac neutrino, and the right-hand figure for Majorana neutrino.

range for the rare B(c)-decays considered here, we have approximately

K̃(Dir.) ≈ 6(|UeNj
|2 + |UµNj

|2) + 3|UτNj
|2 , (33a)

K̃(Maj.) ≈ 8(|UeNj
|2 + |UµNj

|2) + 3|UτNj
|2 . (33b)

We note that this factor is for Majorana neutrino not simply twice the factor for Dirac neutrino.

B. Canonical branching ratios

If we factor out all the heavy-light mixing factors in the branching ratios (29), we end up with the canonical
branching ratio (i.e., without any heavy-light mixing dependence) Br

Br
(
B(c) → (D(∗))`1N → (D(∗))`1XY

)
≡ 1

ΓB(c)
ΓN (MN )

Γ
(
B(c) → (D(∗))`1N

)
Γ(N → XY ) . (34)

In the case of leptonic decays of N (XY = `2`3ν), the branching ratio (29) can then be written [cf. Eqs. (24)]

Br(Dir.)
(
B(c) → (D(∗))`±1 N → (D(∗))`±1 `

∓
2 `
±
3 ν`3

)
=

1

K̃
|U`1N |2|U`2N |2Br

(
B(c) → (D(∗))`±1 `

∓
2 `
±
3 ν`3

)
, (35a)

Br(Maj.)
(
B(c) → (D(∗))`±1 N → (D(∗))`±1 `

∓
2 `
±
3 ν
)

=
1

K̃
|U`1N |2(|U`2N |2 + |U`3N |2)Br

(
B(c) → (D(∗))`±1 `

∓
2 `
±
3 ν
)
.

(35b)
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The structure of the heavy-light mixing coefficients is different in the cases when N is Majorana and when it is Dirac.
This is so because in the case of Majorana N we have contributions of both LNC and LNV processes (Figs. 5 and 6),
and in the case of Dirac N we have only LNC contributions (Fig. 5).

If, however, N decays semileptonically (XY = `2π), then the relation between Br and Br is simpler

Br
(
B(c) → (D(∗))`1N → (D(∗))`1`2π

)
=

1

K̃
|U`1N |2|U`2N |2Br

(
B(c) → (D(∗))`1`2π

)
. (36)

We note that the heavy-light mixing factors in the expressions (35)-(36) are not ∼ |U`N |4, but ∼ |U`N |2, because

K̃ ∼ |U`N |2 (` = e, µ or τ). The enhancement effect 1/ΓN ∝ 1/K̃ (∝ 1/|U`N |2) has its origin in the on-shellness of the
intermediate N neutrino.

If we assume that all or most of the on-shell neutrinos N decay within the detector (see the next Section when this
is not so), then the branching ratios (35)-(36) are those directly measured in the experiment. In the considered rare
decays, we have to exclude those decays where among the produced particles are e+e− or µ+µ− pairs, since such pairs
represent appreciable QED background. If `1 = `2 in Eqs. (35), such background would appear. However, if `1 = `3
(6= `1), no such background appears.

0 1 2 3 4 5
0.0000

0.00002

0.00004

0.00006

0.00008

0.0001
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(a)

Br
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(b)

Br

Bc
±→μ±μ±

e
∓ ν

Bc
±→μ±μ± τ∓ ν

FIG. 9: The canonical branching ratio Br, as a function of mass of the on-shell neutrino N , for the leptonic decays (a)
B± → µ±µ±`∓ν, (b) B±c → µ±µ±`∓ν, where ` = e (solid) and ` = τ (dashed). Included is also the curve for B±(c) → e±e±µ∓ν

(dotted), which is almost indistinguishable from the solid curve.
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FIG. 10: The canonical branching ratio, as a function of mass of the on-shell neutrino N , for the decays (a) B− → D0µ−µ−`+ν,
(b) B̄0 → D∗+µ−µ−`+ν, where ` = e (solid) and ` = τ (dashed). The case of ` = τ is kinematically strongly suppressed,
due to the analogous suppression in Fig. 7(a), and it is practically invisible in the Figure. Included is also the curve for

B → (D(∗))e−e−µ+ν (dotted), which is almost indistinguishable from the solid curve.

In Fig. 9(a) we present the branching ratios for the decays B± → µ±µ±`∓ν (i.e., `1 = `3 = µ) for ` = e, τ , and in
Fig. 9(b) the analogous decays of B±c . In Figs. 10(a) and (b) the analogous decays of B mesons are presented when
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there is a D or D∗ meson among the final particles, thus avoiding the mentioned CKM suppression. We see that in
Figs. 9 and especially in 10 the case ` = τ is suppressed. This is due to the analogous (kinematical) suppression of
Γ(N → µτν) in comparison with Γ(N → νeν), especially at low MN , cf. Eq. (21) and Fig. 7(a).

In Figs. 11 and 12 the analogous branching ratios are shown, but now for the cases when the intermediate N
decays semileptonically (N → `2π). In Figs. 11, we notice that at low MN < 1 GeV (MN � Mτ ) a rela-
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-→ τ μπ

0 1 2 3 4 5 6
1.×10-4

5.×10-4

0.001

0.005

0.010

0.050

0.100

MN(GeV)
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N → μ-μ-π+

Bc
- →τ μπ

FIG. 11: The canonical branching ratio, as a function of mass of the on-shell neutrino N , for the (LNV) decays (a) B− →
µ−N → µ−µ−π+ (solid) and B− → e−N → e−e−π+ (dotted); (b) B−c → µ−N → µ−µ−π+ (solid) and B−c → e−N → e−e−π+

(dotted). The dotted curves are close to the solid ones. Included in (a), as a dashed line, is the canonical branching ratio for
the decays B− → τ−N → τ−µ∓π± and B− → µ−N → µ−τ∓π± (sum of all four decays), and in (b) the analogous quantity
for B−c . Logarithmic scale is used for better visibility.
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FIG. 12: The canonical branching ratio, as a function of mass of the on-shell neutrino N , for the (LNV) decays (a) B− →
D0µ−N → D0µ−µ−π+ (solid) and B− → D0e−N → D0e−e−π+ (dotted); (b) B̄0 → D∗+µ−N → D∗+µ−µ−π+ (solid) and
B̄0 → D∗+e−N → D∗+e−e−π+ (dotted). Included in (a), as a dashed line, is the canonical branching ratio for the decays
B− → D0τ−N → D0τ−µ∓π± and B− → D0µ−N → D0µ−τ∓π± (sum of all four decays), and in (b) the analogous quantity
with B0 and D∗+.

tively strong enhancement occurs for some processes involving τ lepton, namely B−(c) → τ−N → τ−µ∓π±. This

is so because Γ(B−(c) → τ−N) is enhanced there, cf. Eq. (3) and Figs. 1. Further, we note that the LNV process

B(c) → (D(∗))µ−N → (D(∗))µ−µ−π+ gives the same rates as the corresponding LNC process B(c) → (D(∗))µ−N →
(D(∗))µ−µ+π−. If N is Majorana neutrinos both processes contribute, and if N is Dirac only the latter process
contributes. However, this LNC process has large QED background due to the produced µ−µ+ pair. Furthermore, if
N is Dirac neutrino, only two (LNC) channels of the four (LNC+LNV) channels for B(c) → (D(∗))τµπ presented in
Figs. 11 and 12 take place, i.e., the dashed curves must be reduced by factor 2 if N is Dirac Neutrino.
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C. Differential decay branching ratios for leptonic decays of N

Measurement of the branching ratios of those of the considered rare decays in which N decays leptonically (N →
`2`3ν) does not give us a direct indication of whether the neutrino N is Majorana or Dirac. This is so because the final
light (practically massless) neutrino ν is not detected. We recall that, for example, the decays B → (D(∗))µ+N →
(D(∗))µ+µ+e−ν can be LNC (ν = νµ) or LNV (ν = ν̄e), and LNV processes are possible only if N is Majorana.
However, if in this process we can measure the differential decay width dΓ/dEe with respect to the energy Ee of
electron (energy in the rest frame of N), then dΓ/dEe is different in the case when N is Majorana or when it is Dirac
neutrino. This has been shown, for the decays of the light mesons π → e+e+µ−ν, in Refs. [10, 12]. For the process
B(c) → (D(∗))µ±N → (D(∗))µ±µ±e∓ν we have

dΓ
(
B(c) →

(
D(∗))µ±µ±e∓ν)
dEe

= Γ
(
B(c) →

(
D(∗)

)
µ±N

) 1

ΓN

Γ(N → µ±e∓ν)

dEe
(37a)

=
|UµN |2

K̃
Γ
(
B(c) →

(
D(∗)

)
µ±N

) 1

ΓN

{
|UµN |2

dΓ
(LNV)

(N → µ±e∓νe)

dEe
+ |UeN |2

dΓ
(LNC)

(N → e∓µ±νµ)

dEe

}
.

(37b)

In Eq. (37b), the LNV term does not appear if N is Dirac. The differential decay width is thus proportional to the
following canonical differential branching ratios:

dBrN (N → µeν;α)

dEe
≡ α

1

ΓN

dΓ
(LNV)

(N → µ±e∓νe)

dEe
+ (1− α)

1

ΓN

dΓ
(LNC)

(N → e∓µ±νµ)

dEe
(38)

where

α(Maj.) =
|UµN |2

(|UµN |2 + |UeN |2)
, (39a)

α(Dir.) = 0 . (39b)

The LNC and LNV hadronic decays of N are shown in Figs. 13, for the general cases N → `−2 `
+
3 ν. In the considered

(a) (LNC) (b) (LNV)
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FIG. 13: (a) LNC decay N → `−2 `
+ν`3 ; (b) LNV decay N → `+3 `

−
2 ν`2 .

specific case of Eqs. (37), we have `2 = e and `3 = µ. The explicit expressions for dΓ/dEe for LNC and LNV decay
of N are given in Appendix D. The differential decay width (37) is then rewritten in terms of the above canonical
differential branching ratio as

dΓ(Dir.)

dEe

(
B(c) →

(
D(∗)

)
µ±µ±e∓νµ

)
=
|UµN |2|UeN |2

K̃
Γ
(
B(c) →

(
D(∗)

)
µ±N

) dBrN (N → µeν;α = 0)

dEe
, (40a)

dΓ(Maj.)

dEe

(
B(c) →

(
D(∗)

)
µ±µ±e∓ν

)
=
|UµN |2

K̃
(|UµN |2 + |UeN |2)Γ

(
B(c) →

(
D(∗)

)
µ±N

) dBrN (N → µeν;α(Maj.))

dEe
.

(40b)

In Figs. 14(a)-(d) we present the results for the differential branching ratios (38), i.e., the processes depicted in
Figs. 13 with `2 = e and `3 = µ, for four different values of MN (= 1, 2, 3, 4 GeV, respectively), for various values
of α = 1.0, 0.8, 0.5, 0.2 and α = 0, where α = 0 is the case of Dirac. We can see clearly differences in the form of
the differential branching ratios when N is Dirac and when it is Majorana. If we consider the differential decay rates
of dBrN/dEµ for the decays B(c) → (D(∗))e±e±µ∓ν (i.e., the processes of Figs. 13 with `2 = µ and `3 = e), the
curves turn out to be very close to those presented in Figs. 14(a)-(d). In Figs. 15(a)-(d) we present the analogous
differential branching ratios, but now for the process with e and µ interchanged: dBrN (α)/dEµ relevant for the decays

B(c) →→ (D(∗))e±N → (D(∗))e±e±µ∓ν.
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FIG. 14: The canonical differential branching ratio dBrN (α)/dEe, Eq. (38), as a function of the electron energy in the neutrino

N rest frame, relevant for the decays B(c) → (D(∗))µ±N → (D(∗))µ±µ±e∓ν, for various on-shell neutrino masses: (a) MN = 1
GeV, (b) MN = 2 GeV, (c) MN = 3 GeV, (d) MN = 4 GeV. In each figure there are five curves, corresponding to different
values of the admixture parameter α [Eqs. (38)-(39)]: αM = 1.0 is the solid (M) curve; 0.8 (dotted); 0.5 (dot-dashed); 0.2
(dashed); the Dirac case, αM = 0 is the solid line labelled (D).

V. EFFECTIVE BRANCHING RATIOS DUE TO LONG LIFETIME OF N

For the considered decays to be measured in the experiment, the produced on-shell neutrino N must decay within
the detector. However, if the sterile neutrino N is long-lived, only a small fraction of the produced neutrinos N will
decay within the detector. Therefore, their theoretical branching ratios should be multiplied by the probability PN of
the produced neutrinos N to decay (nonsurvival) within the detector. This effect has been discussed in the context
of various processes in Refs. [4, 10–12, 30, 45–47]. If the length of the detector is L, and the velocity of the on-shell
N in the lab frame is βN (often βN ≈ 1), this nonsurvival probability is

PN = 1− exp

[
− L

τNγNβN

]
(41a)

≈ L

(τNγNβN )
≡ L

(γNβN )
ΓN = K̃ L

1 m
PN , (41b)

where

PN =
1 m

(γNβN )
ΓN =

1 m

(γNβN )

G2
FM

5
N

96π3
(42)

is the canonical nonsurvival probability, i.e., PN with K̃ 7→ 1 and L = 1 m. Here, γN = (1− β2
N )−1/2 is the Lorentz

time dilation factor (in the lab frame), and in Eq. (41b) we assumed that PN is significantly smaller than 1, say
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FIG. 15: The same as in Fig. 14, but now for the decays with e↔ µ, i.e., the canonical differential branching ratio dBrN (α)/dEµ
as a function of the muon energy in the neutrino N rest frame, relevant for the decays B(c) → (D(∗))e±N → (D(∗))e±e±µ∓ν.

PN < 0.4. We refer to Sec. IV A for details on the total decay width ΓN .
In some cases it is realistic to assume that PN � 1 (e.g., PN < 0.4), because the total decay width of the sterile N

neutrino, ΓN , is proportional to K̃ which is a linear combination of the (small) heavy-light mixing coefficients |U`N |2
(` = e, µ, τ), cf. Eqs. (30)-(33) in Sec. IV A. Nonetheless, we should check in each considered case of mass MN whether
or not this condition is fulfilled. If it is not, the relevant estimates of the measured branching ratios are the (original)
branching ratios presented in Sec. IV, cf. Figs. 9-12. In order to facilitate the checking of this condition, for a given
mass MN , we present in Fig. 16 the canonical nonsurvival probability PN , Eq. (42), as a function of mass MN , for
the kinematic parameter γNβN = 2.

The branching ratio (29) is then multiplied by the nonsurvival probability PN , Eq. (41b), resulting in the experi-
mentally measured (effective) branching ratio,2 where the total decay width ΓN of the on-shell N neutrino cancels if
PN � 1

Breff

(
B(c) → (D(∗))`±1 N → (D(∗))`±1 XY

)
≡ PNBr

(
B(c) → (D(∗))`±1 XY

)
(43a)

≈ L

(γNβN )

1

ΓB(c)

Γ
(
B(c) → (D(∗))`±1 N

)
Γ(N → XY ) . (43b)

Eq. (43b) is a good approximation to the true value if PN < 0.4 (1− e−0.4 ≈ 0.33). We define the canonical effective
branching ratios Breff , containing no heavy-light neutrino mixing factors, as the same expression as Eq. (43b), except

2 Please note that the true branching ratio can be derived from the effective branching ratio by dividing it by the nonsurvival factor PN .
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FIG. 16: The canonical nonsurvival probability PN , Eq. (42), as a function of mass MN , for the kinematic parameter γNβN = 2.

that now instead of the decay widths Γ the canonical decay widths Γ appear

Breff

(
B(c) → (D(∗))`±1 N → (D(∗))`±1 XY

)
≡ L

(γNβN )

1

ΓB(c)

Γ
(
B(c) → (D(∗))`±1 N

)
Γ(N → XY ) . (44)

We stress that our definition of the canonical branching ratio Breff uses the form (41b) as the basis, i.e., it is simply
related with the effective branching ratio Breff Eq. (43a) only when PN � 1 (say, PN < 1). The widths Γ were
calculated in the previous Sections, cf. Eqs. (3), (7b), (19) and Figs. 1 and 4 for the first part B(c) → (D(∗))`±1 N , and

Eqs. (21) and (26) and Figs. 7 for the second part N → `∓2 `
±
3 ν or N → `∓2 π

±.
The effective branching ratios, Breff , in terms of the canonical branching ratios Breff , are in the case of leptonic

decay of N [cf. Eqs. (24) and (35)]3

Br
(Dir.)
eff

(
B(c) → (D(∗))`±1 N → (D(∗))`±1 `

±
1 `
∓
2 ν`1

)
≈ |U`1N |2|U`2N |2Breff

(
B(c) → (D(∗))`±1 `

±
1 `
∓
2 ν`1

)
, (45a)

Br
(Maj.)
eff

(
B(c) → (D(∗))`±1 N → (D(∗))`±1 `

±
1 `
∓
2 ν
)
≈ |U`1N |2(|U`1N |2 + |U`2N |2)Breff

(
B(c) → (D(∗))`±1 `

±
1 `
∓
2 ν
)
.

(45b)

The cases of Majorana and Dirac neutrino N differ in Eqs. (45), as they do in Eqs. (35). The explanation for this
was given just after Eqs. (35). Here, `1 and `2 are usually µ and/or e, but could be in principle also τ . We stress
that the relations (45) are approximate and are applicable only if PN � 1 (say, PN < 0.4). This is so because the
definition of the effective branching ratio Breff , Eq. (43a), has the true value of the nonsurvival probability PN as a
factor, Eq. (41a), while the canonical quantity Breff , Eq. (44), uses the expression (41b) which reduces to the true
PN only when PN � 1 (say, PN < 0.4). We note that the right-hand sides of Eqs. (45) involve factors ∼ |U`N |4, in
contrast to the factors ∼ |U`N |2 on the right-hand side of the analogous relations (35). This is so because when the

factor PN is small, it is proportional to ΓN ∝ K̃ ∼ |U`N |2.
If N decays semileptonically (N → `2π), the relations between Breff and Breff are somewhat simpler

Breff

(
B(c) → (D(∗))`1N → (D(∗))`1`2π

)
= |U`1N |2|U`2N |2Breff

(
B(c) → (D(∗))`1`2π

)
. (46)

Here we consider that `1 and `2 have specific flavors and specific electric charges.
The canonical effective branching ratios (i.e., those without the heavy-light mixing coefficients), as a function of

the mass of the on-shell neutrino N , for some representative considered B(c) meson decays are presented in Figs. 17,

18, 19, 20. They are given for the values of the detector width L = 1 m (= 5.068 × 1015 GeV−1) and the kinematic

N factor βNγN (≡ βN/
√

1− β2
N ) = 2. The results for representative decays as a function of MN , when the on-shell

N neutrino decays leptonically (N → `2`3ν), are presented in Figs. 17 and 18. The results for the analogous decays,
when N decays semileptonically N → µπ, are presented in Figs. 19 and 20.

3 We usually have `j = e, µ (j = 1, 2, 3). As explained in Sec. IV B, we take `1 = `3, because `1 = `2 (≡ `) would imply pairs `+`− which
have strong QED background.
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FIG. 17: The effective canonical branching ratio Breff , Eq. (44), as a function of mass of the on-shell neutrino N , for the
leptonic decays (a) B± → µ±µ±`∓ν, (b) B±c → µ±µ±`∓ν, where ` = e (solid) and ` = τ (dashed). The length of the detector

was taken L = 1 m, and the Lorentz factor of N neutrino in the lab frame, βNγN ≡ βN/
√

1− β2
N , is taken to be βNγN = 2,

and PN � 1 was assumed. Included is also the curve for B±(c) → e±e±µ∓ν (dotted), which is almost indistinguishable from the

solid curve.
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FIG. 18: The effective canonical branching ratio, as a function of mass of the on-shell neutrino N , for the decays (a) B− →
D0µ−µ−`+ν, (b) B̄0 → D∗+µ−µ−`+ν, where ` = e (solid) and ` = τ (dashed). As in Fig. 17, we took L = 1 m and βNγN = 2,
and PN � 1. The case of ` = τ is kinematically strongly suppressed, due to the analogous suppression in Fig. 7(a). Included
is also the curve for B → D∗+e−e−µ+ν (dotted), which is close to the solid curve.

VI. DISCUSSION OF THE RESULTS AND PROSPECTS OF DETECTION

The results of the previous Secs. IV and V allow us to estimate, for given mass MN and given values of the heavy-
light mixing coefficients |U`N |2, the branching ratios of the considered rare decays of B(c) mesons. For example, if we

consider B mesons which are to be produced in Belle II experiment in numbers of ∼ 1010 per year, the rare B-decays
may be detected there if their predicted measured branching ratios are & 10−10. And if they are not detected, this
will imply a decrease of the present upper bounds for the corresponding |U`N |2 coefficients in the considered mass
range of N .

The present upper bounds for the corresponding mixing coefficients, in the mass range 0.1 GeV < MN < 6 GeV,
were determined by various experiments, cf. Refs. [48–59] (for a review, see, e.g., [8]). Table I gives the present
approximate upper bounds for |U`N |2 (` = e, µ, τ) for several masses of N in the interval 0.1 GeV ≤ MN ≤ 6 GeV.
For |UeN |2, the most restrictive upper bounds come from the neutrinoless double beta decay (0νββ) [48]. However,
due to possible significant uncertainties of the values of the nuclear matrix element in 0νββ, we present in Table I
also alternative upper bounds for |UeN |2 which exclude the 0νββ data.

Here we will discuss the results of the previous two Sections, and will illustrate in a few cases how they can be used
for predictions, for specific mass ranges of N . Once we consider a specific range of MN , and specific possible values
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FIG. 19: The effective canonical branching ratio, as a function of mass of the on-shell neutrino N , for the (LNV) decays (a)
B− → µ−N → µ−µ−π+ (solid) and B− → e−N → e−e−π+ (dotted); (b) B−c → µ−N → µ−µ−π+ (solid) and B−c → e−N →
e−e−π+ (dotted). The dotted curve is practically indistinguishable from the solid one. Included in (a), as a dashed line, is
the canonical effective branching ratio for the decays B− → τ−N → τ−µ∓π± and B− → µ−N → µ−τ∓π± (sum of all four
decays), and in (b) the analogous quantity for B−c . As in Fig. 17, we took L = 1 m and βNγN = 2, and PN � 1. Logarithmic
scale is used for better visibility.
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FIG. 20: The effective canonical branching ratio, as a function of mass of the on-shell neutrino N , for the (LNV) decays (a)
B− → D0µ−N → D0µ−µ−π+ (solid) and B− → D0e−N → D0e−e−π+ (dotted); (b) B̄0 → D∗+µ−N → D∗+µ−µ−π+ (solid)
and B̄0 → D∗+e−N → D∗+e−e−π+ (dotted). Dotted curves are very close to the solid ones. Included in (a), as a dashed line,
is the canonical effective branching ratio for the decays B− → D0τ−N → D0τ−µ∓π± and B− → D0µ−N → D0µ−τ∓π± (sum
of all four decays), and in (b) the analogous quantity with B0 and D∗+. As in Fig. 17, we took L = 1 m and βNγN = 2, and
PN � 1.

of |U`N |2, we must first check whether the probability PN of decay of such N neutrino within the detector is:

(a) PN ≈ 1, i.e., N decays instantly at the same vertex of the production;

(b) PN � 1 (say, PN < 0.4), i.e., N decays within the detector with a displaced secondary vertex;

(c) PN ≈ 0 (practically zero), i.e., N always leaves the detector, resulting in massive missing momenta.

We note that with PN . 0.4 the experimentally observed effective branching is getting small, but the decay with two
vertices, if detected, will represent a dramatic detector signature.

This then determines whether the predicted measured branching ratios are:

(a) PNBr ≈ Br of Sec. IV, whose canonical values are presented in Figs. 9-12;

(b) K̃(L/1m)P̄NBr of Sec. V whose canonical values are presented in Figs. 17-20;

(c) Br = Brprod. of Sec. II whose canonical decay widths are presented in Figs. 1 and 4.
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TABLE I: The known upper bounds for the squares |U`N |2 of the heavy-light mixing matrix elements, for various specific values
of MN . For |UeN |2, as an alternative, the upper bounds with the exclusion of the neutrinoless double beta decay data are
included.

MN [GeV ] |UeN |2 |UeN |2 (excl.0νββ) |UµN |2 |UτN |2
0.1 1.5× 10−8[48] 5× 10−7 [51] 6.0× 10−6 [57] 8.0× 10−4 [56]
0.3 2.5× 10−9 [49] 2× 10−9 [49] 3.0× 10−9 [49] 1.5× 10−1 [52]
0.5 2.0× 10−8[48] 1× 10−6 [54] 6.5× 10−7 [59] 2.5× 10−2 [52]
0.7 3.5× 10−8[48] 5× 10−7 [54] 2.5× 10−7 [59] 9.0× 10−3 [52]
1.0 4.5× 10−8[48] 3× 10−7 [54] 1.5× 10−7 [59] 3.0× 10−3 [52]
2.0 1.0× 10−7[48] 1× 10−7 [54] 2.5× 10−5 [52] 3.0× 10−4 [52]
3.0 1.5× 10−7[48] 3× 10−5 [52] 2.5× 10−5 [52] 4.5× 10−5 [52]
4.0 2.5× 10−7[48] 2× 10−5 [52] 1.5× 10−5 [52] 1.5× 10−5 [52]
5.0 3.0× 10−7[48] 2× 10−5 [52] 1.5× 10−5 [52] 1.5× 10−5 [52]
6.0 3.5× 10−7[48] 2× 10−5 [52] 1.5× 10−5 [52] 1.5× 10−5 [52]

Table I suggests that the processes with muons are at present more probable than those with electrons, although this
conclusion is not valid if we exclude the 0νββ data for the upper bounds for |UeN |2. Nonetheless, in the rare decays
with muons and no pion in the final state, we should have at least one electron in the final state.4 This is so because,
with three muons in the final state, a pair µ+µ− would appear there, and such decays would have QED background
from virtual photon decays γ∗ → µ+µ−, as mentioned in the previous Sections. Therefore, among the above rare
processes (with no pion), those with possible higher (effective) branching ratio are B(c) → (D(∗))µ±µ±eν, which can
be LFV or LNC. When measuring Br(eff) of these processes, we cannot distinguish between the Majorana and Dirac
nature of N .

A. The decays with no produced D(∗) mesons

First we will discuss the rare decays where no D(∗) mesons are produced (i.e., the cases of Sec. II A and Sec. III).
Comparing Figs. 9(a) and (b) and 17(a) and (b), we can see that the purely leptonic rare B decays are suppressed

in comparison with the corresponding decays of Bc, primarily due to the strong CKM suppression (|Vub| ≈ 10−1|Vcb|).
Since only B mesons can be produced at Belle, such rare purely leptonic decays, Figs. 9(a) and 17(a), will be difficult
to measure at Belle II experiment. For example, if MN ≈ 4 GeV, according to Table I we have |U`N |2 . 10−5 (for
all `). If we assume that |U`N |2 ∼ 10−5, then it turns out that the decay probability is PN ≈ 1. This is so because,
according to Eqs. (41)-(42) we have in general

PN = 1− exp

(
−K̃

(
L

1 m

)
PN

)
. (47)

We have K̃ ∼ 101|U`N |2 according to Eq. (33), PN ∼ 105 for MN ≈ 4 GeV according to Fig. 16, so that for the detector
length L = 1 m we have the expression in the exponential on the right-hand side of Eq. (47) ∼ 101|U`N |2105 ∼ 101

(where we used |U`N |2 ∼ 10−5). Since PN ≈ 1− exp(−101) ≈ 1 in this chosen case, the relevant canonical branching
ratio is Br from Fig. 9(a), namely Br ∼ 10−4 [Breff ∼ 101 of Fig. 17(a) is now not relevant]. Eqs. (35) (with `1 = `3 = µ,
`2 = e) then imply that the measured branching ratio is

Br(B → µ±µ±e∓ν) ∼ 1

K̃
|U`N |4Br(B → µ±µ±e∓ν) ∼ 1

101|U`N |2
|U`N |4Br(B → µ±µ±e∓ν)

∼ 10−110−510−4 ∼ 10−10 . (48)

This implies that at Belle II the number of such decays detected per year will be N ∼ 101010−10 ∼ 1, which is difficult
to be observed. If we decrease the mass MN to, say MN ≈ 3 GeV, the results do not change significantly, because
PN ≈ 1 is still valid, and the canonical branching ratios do not change significantly. At even lower values of MN we
have PN � 1, which implies an additional suppression of the measured branching ratios.

4 The decays with at least one τ are in general kinematically suppressed, but the mixing coefficients |UτN |2 have at the moment less
restrictive upper bounds, |UτN |2 . 10−4 for 2 GeV < MN < 3 GeV, cf. Table I. The τ lepton is difficult to identify in experiments,
though.
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If the intermediate on-shell neutrino (with MN ≈ 4 GeV) decays to a pion, the relevant figure is Fig. 11(a) for
B− → µ−µ−π+ [and not Fig. 19(a), since PN ≈ 1], and the resulting rate (at MN = 4 GeV) is by about one order of
magnitude too small for the detection.

On the other hand, LHC-b can produce Bc mesons copiously, and the rare leptonic decays of Bc may be detected
there due to significantly higher branching ratios, cf. Figs. 9(b) and 17(b). Similar conclusion can be made for the
corresponding decays of Bc when the intermediate on-shell neutrino decays to a pion, Figs. 11(b) and 19(b). For
the latter processes, LHC-b can be sensitive down to the branching ratios Br(B−c → µ−µ−π+) ∼ 10−7 in LHC run
2 (collected luminosity 5 fb−1) and ∼ 10−8 in the future LHC run 3 (collected luminosity 40 fb−1), cf. Ref. [13]. If
we assume that |UµN |2 is numerically either the dominant or a representative heavy-light mixing coefficient, then an
estimate similar to that of Eq. (48), now based on the results of Fig. 11(b) for B−c → µ−µ−π+, implies that LHC-b
can provide upper bounds on |UµN |2 of order ∼ 10−4 (run 2) and ∼ 10−5 (run 3), in the mass range MN somewhere
between 3 and 5 GeV (in such cases PN ≈ 1).5 These conclusions agree with those of Refs. [13, 14]. The authors
of these references also considered other semileptonic decays of Bc via an on-shell Majorana neutrino, with similar
conclusions. Similar conclusions can be obtained by using the leptonic channel B−c → µ−µ−e+ν, Fig. 9(b), if the
signal efficiency is similar to that of the semileptonic decays.

There is an interesting aspect of the rare decays with one produced pion (and no D(∗)). If in such rare decays
also one heavy τ lepton is produced, then the results of Figs. 11(a) and 19(a) indicate that such processes could in
principle be detected at Belle II. Namely, the present upper bounds on |UτN |2 are less restrictive, |UτN |2 . 10−4 for
the mass interval 0.3 GeV < MN < 3 GeV (cf. [8, 52] and Table I). If |UτN |2 ∼ 10−4 and 2 GeV < MN < 3 GeV, then
it can be checked that PN ≈ 1 [cf. Eqs. (33) and Fig. 16]. Therefore, for 2 GeV < MN < 3 GeV and |UτN |2 ∼ 10−4

we can use the branching ratio of Sec. IV. The canonical branching ratio for the decays B → τµπ is Br ≈ 10−4 by
Fig. 11(a) for 2 GeV < MN < 3 GeV (dashed line). Therefore, if |UτN |2 ∼ 10−4 and 2 GeV < MN < 3 GeV, the
branching ratio for such decays would be [using Eqs. (36) and (33)]

Br(B− → τµπ) =
1

K̃
|UτN |2|UµN |2Br(B− → τµπ) ≈ 1

3|UτN |2
|UτN |2|UµN |2Br(B− → τµπ)

=
1

3
|UµN |2Br(B− → τµπ) .

1

3
(2.5× 10−5)10−4 ∼ 10−9 . (49)

In the last steps, we used the upper bounds for |UµN |2 in the considered mass interval, cf. Table I. The estimate (49)
suggests that Belle II could detect up to ∼ 101 rare decays of the type B → τµπ.

If N is Dirac, the dashed lines in Figs. 11 and 19 [and 12 and 20] get reduced by factor 2, because only two out
of four decays contribute, namely the LNC decays: B → (D(∗))τ−N̄ → (D(∗))τ−µ+π− and B → (D(∗))µ−N̄ →
(D(∗))µ−τ+π− (where B = B−, B̄0). If such decays can be detected, the nature of the neutrino can be discerned.
For example, if the decays B− → µ−τ−π+ are detected, such processes violate the lepton number and the neutrinos
have to be Majorana. The situation with such decays is better by several orders of magnitude if the decaying meson
is Bc (i.e., in LHC-b), cf. Figs. 11(b) and 19(b). The results will certainly depend on how efficiently the produced τ
leptons can be identified in such decays, and such identification may be difficult.

If PN � 1, then in most of the considered rare B-decays the produced N travels through the detector and its
production is manifested as a massive missing momentum (we referred to this as the “PN ≈ 0” case). The decay
rates for such events are higher than those with N decaying within the detector, but with the negative aspect of no
experimental signature of N -decay. When PN � 1, we have PN ∼ 10|U`N |2PN by Eqs. (41b) and (33). Therefore,
the case PN � 1 is in general to be expected for lighter masses, cf. Fig. 16 where PN . 103 for MN ≤ 2 GeV,
and for smaller mixing parameters |U`N |2. On the other hand, the decay widths Γ(B → `N) ≡ |U`N |2Γ(B → `N)
are suppressed by smaller |U`N |2. However, there is a window of such ranges of (low) MN and (high) |U`N |2 where
simultaneously PN � 1 and the decay widths Γ(B → `N) are appreciable. Namely, if MN ≈ 2 GeV, we can
have at present the values of |UµN |2 as high as ∼ 10−5, cf. Table I and [8] (we assume that |UτN |2 is not larger

than ∼ 10−5 either). Then PN ∼ 10|UµN |2PN ∼ 10 × 10−5 × 103 ∼ 10−1(� 1). According to Fig. 1(a) we have

5 On the other hand, for MN < 2 GeV we have PN � 1 if |UµN |2 . 10−5; and for MN < 1 GeV we have PN � 1 if |UµN |2 . 10−4.

Namely, according to Fig. 16 and Eqs. (41b) and (33) we have: PN ≈ K̃PN ∼ 10|UµN |2PN , and PN ∼ 103 (102) for MN ≈ 2 GeV (1
GeV). Therefore, for MN < 2 GeV, it is the effective branching ratios to which LHC-b becomes sensitive, i.e., Breff(Bc → µ−µ−π+) ∼
10−7 (run 2) and ∼ 10−8 (run 3). In such cases, the relevant quantities are the effective canonical branching ratio of Fig. 19(b) and
Eq. (46) (with `1 = `2 = µ). For example, if MN = 1 GeV, the effective branching ratio is Breff = |UµN |4Breff ∼ |UµN |4100, and LHC
run 3 will be sensitive down to Breff ∼ 10−8, implying that it can probe the mixings down to |UµN |2 ∼ 10−4 (and not 10−5). In that

case PN ≈ K̃PN ∼ 10|UµN |2PN ∼ 10× 10−4 × 102 ∼ 10−1 � 1 which is consistent with the assumption PN � 1.
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Γ(B → µN) ≈ 5× 10−17 GeV at MN ≈ 2 GeV, and therefore the following branching ratio is possible at such MN :

Br(B → µN) =
|UµN |2Γ(B → µN)

ΓB
∼ 10−5 × (5× 10−17)

4× 10−13
∼ 10−9 , (50)

where we took into account that ΓB ≈ 4 × 10−13 GeV. The estimate (50) implies that Belle II could see, for the
mentioned approximate values of the parameters MN and |U`N |2, about ∼ 101 decays per year of B → µ+ missing

momentum pN , with the invariant mass of the missing momentum
√
p2
N ≈ 2 GeV. This is by one order of magnitude

better than the estimate (48) which involves the decay of N well within the detector. For the decays B → τ+ missing
momentum, the favorable ranges of the parameters MN and |UτN |2 are even wider than for the decays B → µ+
missing momentum, primarily because Γ(B → τN) is appreciable even at lower masses of MN , cf. Fig. 1(a); The
identification of τ leptons is, however, difficult [60].

B. The decays with produced D(∗) mesons

We now comment on the rare B-decays which produce D(∗) mesons (i/e. the cases of of Sec. II B and Sec. III).
Figs. 10 and 12, and the corresponding figures for the effective branching ratio, Figs. 18 and 20, are for rare decays

of B mesons where at the first vertex a D(∗)-meson is produced, evading thus the CKM suppression encountered in
the processes involving the leptonic decays of B → `N . The rare decays of B with produced D(∗) mesons are of
interest for the Belle II experiment. In general, for lighter masses MN < 2.5 GeV, we have PN < 0.5 if we assume
that there |U`N |2 . 10−5 for all `. If this is so, we may use the effective branching ratios of Sec. V. The results in
Figs. 18 and 20 show that for 1.5 GeV < MN < 2.5 GeV we have Breff ∼ 101 if no τ leptons are involved. The present
upper bounds on |UµN |2, in the mass range 2 GeV < MN < 3 GeV, are |UµN |2 . 10−5, cf. Table I. The relations
(45b)-(46) then imply that, if N is Majorana and 2 GeV < MN < 2.5 GeV, Belle II could produce per year a number
N of rare LNV decays B → D(∗)µ±µ±e∓ν and B → D(∗)µ±µ±π∓ of the order

N (B → D(∗)µ±µ±e∓ν) ∼ N (B → D(∗)µ±µ±π∓) ∼ 1010 × |UµN |4Breff

∼ 1010 × (10−5)2101 ∼ 101 . (51)

If no such rare decays are detected, then Belle II can decrease the upper bound for |UµN |2 in that mass interval.

The second of these processes, B → D(∗)µ±µ±π∓, is LFV, and is possible only if N is Majorana. The first of
these processes, B → D(∗)µ±µ±e∓ν, can be either LNC or LNV. If enough of such decays are measured, then the
differential branching ratio dBr/dEe can be measured (where Ee is the energy of e in N rest frame), and this quantity
is proportional to dBrN/dEe studied in Sec. IV C. There it was argued that by measuring this quantity, the Dirac or
Majorana nature of N can be discerned.

Another attractive aspect of the rare B-meson decays involving D(∗) mesons is the possibility of measuring the
decays B → D(∗)µN with the N neutrino not decaying within the detector, i.e., what we referred to as the “PN ≈ 0”
case. The neutrino would manifest itself only as a massive missing momentum. According to Figs. 4, the corresponding
decays widths, for lower masses MN . 2 GeV, are significantly larger than the corresponding decay widths without
D(∗) mesons Fig. 1(a), principally because the CKM-mixing suppression (|Vub| ≈ 0.004) is made weaker with the
presence of D(∗) (|Vcb| ≈ 0.04). For the masses MN . 1.8 GeV, it turns out that the mixing coefficients |UµN |2 are
at present strongly restricted, |UµN |2 . 10−7, cf. [8] (cf. also Table I here).6 If we, conservatively, assume in addition
that the other mixing coefficients |U`N |2 (` = e, τ) also fulfill the strong restrictions |U`N |2 . 10−7, the condition

PN ≈ 0 is strongly fulfilled: we have PN = K̃|U`N |2PN ∼ 10|U`N |2PN < 10 × 10−7 × 103 ∼ 10−3 [using Eqs. (41b),
(33) and Fig. 16], i.e., PN � 1 (PN ≈ 0). At MN . 1.8 GeV , despite the very restricted values |U`N |2 . 10−7, the
branching ratio for B → D(∗)µN can achieve the following values:

Br(B → D(∗)µN) =
|UµN |2Γ(B → D(∗)µN)

ΓB
∼ 10−7 × 10−14

4× 10−13
≈ 2× 10−9 ∼ 10−9 , (52)

where we took into account that ΓB ≈ 4 × 10−13 GeV, and that Γ(B → D(∗)µN) ∼ 10−14 GeV for MN ≤ 2
GeV according to the results of Figs. 4. The estimate (52) suggests that Belle II could possibly detect rare decays

B → D(∗) + µ+ missing energy of invariant mass
√
p2
N . 2 GeV, at rates of ∼ 101 per year. However, as argued

6 The upper bounds become much less restrictive for MN > 1.8 GeV: |UµN |2 . 10−5, cf. [8, 52].
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earlier, if the mass MN is somewhat higher, 1.8 GeV . MN . 2.5 GeV, we can still have PN � 1 (PN < 0.5) and
at the same time the mixing coefficients can become larger by two orders of magnitude, |U`N |2 ∼ 10−5 (cf. Table
I). In such a case the branching ratio Br(B → D(∗)µN) can go up to ∼ 10−8 because Γ(B → D(∗)µN) decreases
there only by at most one order of magnitude, Γ(B → D(∗)µN) ∼ 10−15 GeV, cf. Figs. 4. The resulting estimate
Br(B → D(∗)µN) ∼ 10−8 is by one order of magnitude better than the corresponding estimate (51) for the case of
N decaying within the detector. Further, at significantly lower masses MN ≈ 0.5 GeV, the present upper bounds
are |UµN |2 ≈ 6.5 × 10−7, and the canonical decay width Γ(B → D(∗)µN) is high, e.g., Γ(B → D∗µN) ≈ 2 × 10−14

GeV, Fig. 4(b). The estimate of the type (52) then increases the branching ratio to up to Br(B → D∗µN) ∼ 10−8

for MN ≈ 0.5 GeV, leading to up to ∼ 102 such events per year at Belle II.

VII. SUMMARY

In this work we considered rare decays of B and Bc mesons mediated by heavy on-shell neutrinos N with masses
MN ∼ 1 GeV. The work was performed especially in view of the upgrade plan for the dedicated Belle experiment
(Belle II) in which ∼ 1010 B mesons are to be produced per year, in addition to the presently ongoing LHC-b. Direct
decays of B meson of the type B → `1N → `1XY (where XY = `2`3ν or `2π, and `j are charged leptons) are strongly
suppressed due to the small CKM element Vub ≈ 0.004, and such decays turn out to be difficult to detect at Belle
II. Nonetheless, Bc mesons have significantly weaker CKM suppression (|Vcb| ≈ 0.04), they are copiously produced
at LHC-b, and the mentioned decays with Bc could be detected there. However, Bc mesons are not produced at
Belle. Therefore, in order to evade the mentioned strong CKM suppression, we also investigated decays of B mesons
which produce a D(∗) meson at the first vertex, namely B → D(∗)`1N , where the on-shell heavy neutrino N may
subsequently decay (within the detector) leptonically N → `2`3ν or semileptonically N → `2π. In these decays, we
took into account the possible effects of the heavy neutrino lifetime. Our calculations and subsequent estimates raise
the possibility of detection of such rare decays at Belle II. If such rare decays are detected, in some of such cases there
is a possibility to determine the nature of N (Majorana or Dirac), via the identification of the lepton numbers of
the final particles (LNV or LNC processes), or even via the measurement of differential decay widths if enough such
events are detected. If such rare decays are not detected at Belle II, then the upper bounds on some of the heavy-light
mixing coefficients |U`N |2 can be decreased, for the relevant mass ranges of the heavy neutrino N (MN ∼ 1 GeV).
Another attractive possibility is that Belle II detects the decays B → D(∗)µN where N does not decay within the
detector but manifests itself as a massive missing momentum. We point out that such events could be produced at
Belle II in significant numbers for various ranges of the values of N mass and of the heavy-light mixing coefficients
|U`N |2.
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Appendix A: General expression for Γ(N → `2`3ν)

The decay width for the process N → `2`3ν is given in Eqs. (20) for the LNC and LNV version, where the canonical
width (without the heavy-light mixing factor) Γ(N → `2`3ν), Eq. (21), contains the factor F(x2, x3) [with xj the
dimensionless rescaled masses Eq. (22)]. This factor has the following expression, cf. Ref. [11]:

F(x2, x3) =

{
λ1/2(1, x2, x3)

[
(1 + x2)(1− 8x2 + x2

2)− x3(7− 12x2 + 7x2
2)

−7x2
3(1 + x2) + x3

3

]
− 24(1− x2

3)x2
2 ln 2

+12

[
− x2

2(1− x2
3) lnx2 + (2x2

2 − x2
3(1 + x2

2)) ln(1 + x2 + λ1/2(1, x2, x3)− x3)

+x2
3(1− x2

2) ln

(
(1− x2)2 + (1− x2)λ1/2(1, x2, x3)− x3(1 + x2)

x3

)]}
, (A1)
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and the function λ1/2 is given by

λ1/2(x, y, z) =
[
x2 + y2 + z2 − 2xy − 2yz − 2zx

]1/2
. (A2)

It can be checked that F is symmetric under the exchange of the two arguments: F(x2, x3) = F(x3, x2). In the limit
when one of the charged leptons is massless, the above expression reduces to the well-known expression

F(x, 0) = F(0, x) = f(x) = 1− 8x+ 8x3 − x4 − 12x2 lnx . (A3)

This expression is a good approximation when, e.g., one of the charged leptons is an electron and the other is a muon
(x1 = x = M2

µ/M
2
N ).

Appendix B: Decay width of B → D`1N

In this Appendix, we outline the derivation of the decay widths Γ(B → D`1N), with massive neutrino N and
(massive) charged lepton `1, which may be relevant especially for the search of sterile neutrinos at Belle(II). The
process is schematically presented in Fig. 21, for the case of B− → D0`−1 N . The decay width is
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FIG. 21: Schematical representation of the decay B− → D0`−1 N̄ .

Γ(B− → D0`1N) =
1

2MB

1

(2π)5

∫
d3|T |2 , (B1)

where d3 is the usual integration differential of the final three-particle phase space

d3 ≡
d3~pD

2ED(~pD)

d3~p1

2E`1(~p1)

d3~pN
2EN (~pN )

δ(4) (pB − pD − p1 − pN )

= d2(B− → D0(pD)W ∗(q))dq2d2(W ∗(q)→ `1(p1)N(pN )) , (B2)

and T is the reduced decay amplitude

T = U`1NVcb
GF√

2

[
u(`1)(p1)γµ(1− γ5)v(N)(pN )

]{[
(2pD + q)µ − (M2

B −M2
D)

q2
qµ
]
F1(q2) +

(M2
B −M2

D)

q2
qµF0(q2)

}
.

(B3)
Here, F1(q2) and F0(q2) are the form factors of the B-D transition

〈D(pD)|c(0)γµb(0)|B−(pB)〉 =

[
(2pD + q)µ − (M2

B −M2
D)

q2
qµ
]
F1(q2) +

(M2
B −M2

D)

q2
qµF0(q2) , (B4)

where q = pB − pD is the momentum of the virtual W− (q = p1 + pN , cf. Fig. 21), e.g., cf. Refs. [41, 42].
Squaring the absolute value of T , summing over the final helicities, and integrating over the two-particle phase

spaces d2(W ∗(q) → `1(p1)N(pN )) and d2(B− → D0W ∗(q)) [cf. Eq. (B2)] then results in the following differential
decay width (M1 is the mass of `1):

dΓ(B → D`1N)

dq2
= |U`1N |2

dΓ(B → D`1N)

dq2
, (B5)
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where the canonical (i.e., with no heavy-light mixing coefficient) decay width is

dΓ(B → D`1N)

dq2
=

1

384π3
G2
F |Vcb|2

1

(q2)2MB
λ1/2

(
1,

q2

M2
B

,
M2
D

M2
B

)
λ1/2

(
1,
M2

1

q2
,
M2
N

q2

)
×
{
F1(Q2)2

[
2(q2)2 − q2M2

N +M2
1 (2M2

N − q2)−M4
N −M4

1

] [
(q2 −M2

D)2 − 2M2
B(q2 +M2

D) +M4
B

]
+F0(q2)23(M2

B −M2
D)2

[
q2M2

N +M2
1 (2M2

N + q2)−M4
N −M4

1

]}
. (B6)

We assumed that the form factors are real. In such a case, the (differential) decay widths have the same expression

(B5)-(B6) for all the processes B → D`1N irrespective of the electric charges involved: B− → D0`−1 N ; B+ → D
0
`+1 N ;

B
0 → D+`−1 N ; B0 → D−`+1 N . Furthermore, the expressions are the same irrespective of the nature of N (Dirac or

Majorana). The form factors F1(q2) and F0(q2) are practically the same in all these cases. The total decay width
is obtained by integrating the differential decay width in the kinematically allowed interval: (MN + M1)2 ≤ q2 ≤
(MB −MD)2, where we have (MB −MD) ≈ 3.414 GeV for charged B, and (MB −MD) ≈ 3.410 GeV for neutral B
decays.

When MN = M1 = 0 (the case investigated in the literature), then the form factor F0(q2) does not contribute to
dΓ/dq2, and our formula reduces to the known expression for B → Deν, [42] and references therein.

Appendix C: Decay width of B → D∗`1N

Since D∗ is a vector meson, the expressions are more complicated than in the case of the (pseudoscalar) D meson.
Here we will follow the approach of Ref. [61], where this type of decay width was calculated in the case of massless N
and `1. We obtain here the result for the general case of massive N and `1.

The schematical Figure 21 applies also this time. The main difference from the decay B → D`1N discussed in
Appendix B is that now the B-D∗ matrix element is more complicated than Eq. (B4), e.g., cf. Ref. [42]7

Hµ
(η=−1) ≡ 〈D

∗−(pD)|c(1− γ5)γµb|B0(pB)〉 = 〈D∗0(pD)|c(1− γ5)γµb|B+(pB)〉 (C1a)

Hµ
(η=+1) ≡ 〈D

∗+(pD)|b(1− γ5)γµc|B0
(pB)〉 = 〈D∗0(pD)|b(1− γ5)γµc|B−(pB)〉 , (C1b)

and these matrix elements are written in terms of the form factors as

Hµ = i2η
εµναβ

(MB +MD∗)
ε∗ν(pD)α(pB)βV (q2)−

[
(MB +MD∗)ε

∗µA1(q2)− ε∗ · q
(MB +MD∗)

(pB + pD)µA2(q2)

]
+2MD∗

ε∗ · q
q2

qµ
(
A3(q2)−A0(q2)

)
, (C2)

where A3(q2) is not independent

A3(q2) =
(MB +MD∗)

2MD∗
A1(q2)− (MB −MD∗)

2MD∗
A2(q2) . (C3)

We note that the first term in Eq. (C2) has a factor η = ±1. In the considered processes, we have η = −1 when `+1 is
produced, and η = +1 when `−1 is produced. The reduced decay amplitude for the processes B → D∗−`1N is

T(η=−1) = U∗`1NV
∗
cb

GF√
2

[
u(N)(pN )γµ(1− γ5)v(`1)(p1)

]
Hµ

(η=−1) , (C4a)

T(η=+1) = U`1NVcb
GF√

2

[
u(`1)(p1)γµ(1− γ5)v(N)(pN )

]
Hµ

(η=+1) , (C4b)

Square of the absolute value, summed over the final leptonic helicities, gives

|T |2 = |U`1N |2|Vcb|2
G2
F

2
LµνHµH

∗
ν , (C5)

7 We use the convention ε0123 = +1 [62], while Refs. [42, 61] use ε0123 = −1. Further, we use the definition of B0 and D0 of Ref. [37].
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where Lµν is the lepton tensor

Lµν = 2tr [6 pNγµ6 p1γ
ν(1− γ5)]

= 8
[
pµNp

ν
1 + pνNp

µ
1 − gµνpN · p1 + iη εµνδη(pN )δ(p1)η

]
. (C6)

The evaluation will be performed, as in Ref. [61], in W ∗-frame (i.e., in `1-N frame Σ), in which the momenta will be
denoted generically (without primes). We have

Lij = 4q2

[
δij
(

1− (M2
N +M2

1 )

q2

)
− êiêjλ

(
M2
N

q2
,
M2

1

q2
, 1

)
− iη εijkêkλ1/2

(
M2
N

q2
,
M2

1

q2
, 1

)]
, (C7)

where i, j = 1, 2, 3, εijk = ε0ijk (ε123 = +1) is the antisymmetric 3-tensor, δij is Kronecker delta, and λ is the square
of the function λ1/2 of Eq. (A2). Further, êj are the components of the unitary spatial vector along the charged lepton
direction in `1-N frame: ê = p̂1 = ~p1/|~p1|. In `1-N frame, the ẑ-axis is defined to be the direction of W ∗: ẑ = q̂
(where q is in B frame), and x̂ axis is in the same half-plane with ê = p̂1 and ẑ. In this system of coordinates in `1-N
frame, we have [cf. Fig. 22(a)]

ê ≡ p̂1 = (sinθ`, 0, cosθ`) , (0 ≤ θ` ≤ π) . (C8)
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FIG. 22: (a) Coordinate system in Σ frame (`1-N rest system), and the direction p̂1 of the charged lepton `1 in it; (b) Coordinate
system in Σ′ frame (D∗ rest system), and the D∗ polarization vector ~ε′ in it.

Since now N (and `1) are massive particles, other components of the lepton tensor will contribute as well

L0j = Lj0 = 4êj(M2
N −M2

1 )λ1/2

(
M2
N

q2
,
M2

1

q2
, 1

)
, (C9a)

L00 = 4

[
(M2

N +M2
1 )− (M2

N −M2
1 )2

q2

]
. (C9b)

On the other hand, in the mesonic expressions Hµ, the D∗ polarization 4-vector ε appears, whose general form is
simple in D∗ frame (Σ′, primed). The coordinate system in D∗ frame is defined, in analogy with Ref. [61], in such a
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way that the ẑ′ axis is in the direction of D∗ meson in B frame, i.e., ẑ′ = −ẑ = −q̂. Further, it is convenient to define
ŷ′ = ŷ, i.e., the y-axis in D∗ frame coincides with the y-axis in `1-N frame; as a consequence, x̂′ = −x̂ [cf. Fig. 22(b)].
The polarization vector in D∗ rest frame in this coordinate system is thus

ε′T = (0, sin θ′ cosφ′, sin θ′ sinφ′, cos θ′) . (C10)

This polarization vector, when boosted to `1-N frame (and written in the coordinate system of `1-N) is then

ε0 =

√
q2

2MD∗
λ1/2

(
1,
M2
D∗

q2
,
M2
B

q2

)
cos θ′ , (C11a)

ε1 = − sin θ′ cosφ′ , ε2 = sin θ′ sinφ′ , (C11b)

ε3 = − (M2
B − q2 −M2

D∗)

2MD∗
√
q2

cos θ′ . (C11c)

In this frame, it is useful to expand the hadronic components of Hµ, Eq. (C2), in the helicity basis of the Σ-frame (of
the virtual W )

H ≡ (Hµ)(µ=0,...,3) = H−η ê+ +H+η ê− +H3ê3 +H0x̂0 , (C12)

where

ê± =
1√
2

(±x̂− iŷ), ê3 = ẑ, x̂T0 = (1,~0) , (C13)

and we recall that η = ±1 if `∓1 is produced, respectively. In terms of the form factors (C2), we have

H±1 = ∓ 1√
2

sin θ′e±iφ
′
H̄± , H3 = cos θ′H̄3 , H0 = − cos θ′H̄0 , (C14)

where

H̄±1 = (MB +MD∗)A1(q2)∓ V (q2)
|~q|2MB

(MB +MD∗)
, (C15a)

H̄3 =
M2
B

2MD∗
√
q2

[
(MB +MD∗)A1(q2)

(
1− (q2 +M2

D∗)

M2
B

)
− 4A2(q2)

|~q|2

(MB +MD∗)

]
, (C15b)

H̄0 =
MB |~q|

MD∗
√
q2

[
(MB +MD∗)A1(q2)− (MB −MD∗)A2(q2) + 2MD∗

(
A0(q2)−A3(q2)

)]
. (C15c)

Here

|~q| = 1

2
MBλ

1/2

(
1,

q2

M2
B

,
M2
D∗

M2
B

)
(C16)

is the magnitude of the 3-vector ~q of the virtual W in the B-frame (note: in `1-N it is zero). The absolute square
|T |2 of the reduced amplitude (C5), summed over the final fermionic helicities (but not yet over the polarizations of
D∗) is then obtained. This then gives the following differential cross section with respect to the direction of `1 in
`1-N frame (p̂1), and with respect to q2 and the direction of the virtual W in B-frame (q̂)

dΓ(ε(θ′, φ′))

dq2dΩq̂dΩp̂1
=

1

84π5

|U`1N |2G2
F |Vcb|2

M2
B

λ
1/2

2|~q|q2

{[
2

(
1− (M2

N +M2
1 )

q2

)
− λ sin2 θ`)

]
1

2
sin2 θ′

(
(H̄+1)2 + (H̄−1)2

)
+λ
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where we denoted

λ ≡ λ
(

1,
M2
N

q2
,
M2

1

q2

)
. (C18)

We notice that the expression (C17) is independent of η = ±1, i.e., the result is the same when `+1 or `−1 is produced
in the B → D∗`1N processes.8 Summing over the three polarizations of D∗ then gives9

dΓ
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1

84π5
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}
. (C19)

The integration over dΩp̂1 = 2πd cos θ` is then straightforward, and the subsequent integration over dΩq̂ gives factor
4π. This then leads to the following final result for the differential cross section with respect to the square q2 of the
virtual W 2 momentum q, summed over all final state helicities and polarizations:

dΓ(B → D∗`1N)
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=
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(C20a)
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(C20b)

The last expression was obtained from the expression (C20a) by using the relations (C15) and (C3). We recall that
λ and |~q| are given in Eqs. (C18) and (C16), respectively.

When the masses of the final state fermions `1 and N are both zero, the terms containing hadronic components H̄0

reduce to zero everywhere, because the components L0j and L00 of the lepton tensor disappear, cf. Eqs. (C9). In such
a case, the final result (C20), with |U`1N | 7→ 1, reduces to the corresponding (zero fermion mass) result of Refs. [61]
and [42].

Appendix D: The differential decay widths

The differential decay widths for the decays dΓ(π± → e±e±µ∓ν)/dEµ, with intermediate on-shell N neutrino, were
written in Refs. [10–12]. Here we write a somewhat generalized variant of these differential decay widths, namely
those corresponding to the processes of Fig. 13 in Sec. IV C. The specific case considered in Sec. IV C, in Eqs. (37)
and (40) refers to `2 = e and `3 = µ. We will denote the (total) energy of lepton `2 in N rest frame as E2 ≡ E`2 . The
masses of the two charged leptons `2 and `3 are denoted as M2 and M3, respectively.

8 This is a consequence of the fact that not only the leptonic tensors Lµν depend on η = ±1, but also the hadronic matrix elements Hµ,
cf. Eqs. (C2) and (C6).

9 This means, summing the cases of ε(θ′, φ′) for: (1) θ′ = π/2, φ′ = 0; (2) θ′ = π/2, φ′ = π/2; (3) θ′ = 0 (and φ′ arbitrary).
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For the LNC decay N → `−2 W
∗+ → `−2 `

+
3 ν`3 , Fig. 13(a), we have

dΓ(LNC)(N → `−2 W
∗+ → `−2 `

+
3 ν`3)

dE2
= |U`2N |2

dΓ
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(D1a)
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2

] }
, (D1b)

The energy E2 varies in the interval M2 ≤ E2 ≤ (M2
N +M2

2 −M2
3 )/(2MN ).

Analogously, for the LNV decay N → `+3 W
∗− → `+3 `

−
2 ν`2 , Fig. 13(b), we have a somewhat simpler expression

dΓ(LNV)(N → `+3 W
∗− → `+3 `

−
2 ν`2)

dE2
= |U`3N |2
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(LNV)
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. (D2b)

The energy E2 varies in the same interval as in the LNC case: M2 ≤ E2 ≤ (M2
N +M2

2 −M2
3 )/(2MN ).
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