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The null results from the searches for supersymmetry (SUSY)[1] during Run I of the LHC have imposed

stringent bounds on the masses of the strongly interacting supersymmetric particles (sparticles)[2, 3], some

of which have been further strengthened by the preliminary results from the Run II at 13 TeV. This trend

naturally provokes a close scrutiny of a scenario where all the strongly interacting sparticles are beyond

the reach of the experiments before the next shutdown. If this indeed be the case then the prospective

SUSY signals during the next few years will be governed by the electroweak (EW) sector. It is also worth

recalling that this sector alone accounts for several phenomenological triumphs of SUSY like explanation of

the observed dark matter (DM) relic density of the universe [4–6], alleviation of the tension between the

precisely measured value of the anomalous magnetic moment of the muon [7] and the SM prediction [8].

In the R-parity conserving Minimal Supersymmetric Standard Model (MSSM) without any assumption

regarding the soft SUSY breaking mechanism, the fermionic sparticles in the EW sector are the charginos

(χ̃±
j , j = 1−2) and the neutralinos (χ̃0

i , i = 1−4) - collectively called the electroweakinos (eweakinos). In the

MSSM the masses and the compositions of these sparticles are determined by four independent parameters:

the U(1) gaugino mass parameter M1, the SU(2) gaugino mass parameter M2, the higgsino mass parameter

µ and tan β, the ratio of the vacuum expectation values of the two neutral Higgs bosons. Throughout this

paper we take tan β = 30 which usually gives a better agreement with the (g− 2)µ data. The indices j and i

are arranged in ascending order of the masses. The stable, neutral lightest neutralino (χ̃0

1) is a popular DM

candidate. The scalar sparticles are the L and R type sleptons and the sneutrinos. We assume L (R)-type

sleptons of all flavours to be mass degenerate with a common mass m
l̃L

(m
l̃R
). Because of SU(2) symmetry

the sneutrinos are mass degenerate with L-sleptons modulo the D-term contribution. We neglect LR mixing

in the slepton sector. For simplicity we work in the decoupling regime of the Higgs sector of the MSSM with

only one light, SM like Higgs boson [9], a scenario consistent with all Higgs data collected so far[10].

During Run I the eweakino searches were mainly based on the hadronically quiet 3l+E/T signal 1. The

null results from these searches were interpreted by the LHC collaborations in terms of several simplified

models consisting of a minimal set of parameters required to study this signal. It was, e.g., assumed in all

analyses that the 3l signal comes only from χ̃±
1

- χ̃0

2
production followed by their leptonic decays [11, 12]

while the heavier eweakinos are decoupled. This resulted in correlated bounds on mχ̃
±

1

and mχ̃0

1

. In contrast

in [13–15] the data was reinterpreted in terms of different MSSMs some of which are closely related to the

above simplified models. In each case the full set of parameters belonging to the EW sector are specified

so that one can also address other important issues like the DM relic density, the correlation among the

trilepton and slepton search data etc.

In this letter we emphasize the potential signatures of the hitherto unexplored heavier eweakinos in

the upcoming LHC experiments at 13 TeV before the next shutdown. That these signals are indeed well

1 In this paper l stands for e and µ unless otherwise mentioned
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within the reach of the ongoing experiments is indicated by the observation that the published bounds on

the lighter eweakinos masses from Run I turn out to be quite sensitive to the masses of heavier eweakinos.

This we shall show below by relaxing the ad hoc assumption of strict decoupling. The rich phenomenology

of the non-decoupled scenarios is further illustrated by some novel signatures like events with 4ls, three same

sign and one opposite sign (SS3OS1) leptons and 5ls, all accompanied by large E/T , which may be observed

with <∼ 100fb−1 of luminosity i.e., before the next long shutdown. Most important: for a compressed lighter

eweakino spectrum all viable leptonic signals including the 3l events are due to the heavier ones. In addition

in a wide variety of non-compressed models the source of m-lepton signals with m > 3 are the non-decoupled

heavier eweakinos.

The constraints from the trilepton searches are also sensitive to the composition of the eweakinos.The

analyses are mainly restricted to two generic scenarios 2.

a)The Light Wino (LW) models: Many analyses assume that the χ̃±
1
and χ̃0

2
are purely wino and nearly

mass degenerate while the χ̃0

1
is bino dominated [11–13]. These two lighter eweakinos have closely spaced

masses governed by the parameter M2 while the χ̃0

1
is either bino dominated with mass controlled by the

U(1) gaugino mass parameter M1 or a bino-higgsino admixture (M1
<∼ µ). The two heavier electroweakinos

are higgsino like with masses approximately equal to µ, where M2 < µ

b)The Light Higgsino (LH) models: In contrast this paper, following Ref. [14], mainly addresses sce-

narios with higgsino dominated χ̃±
1
, χ̃0

2 and χ̃0
3 while the LSP is either bino dominated or a bino-higgsino

admixture.The three lighter eweakinos have closely spaced masses governed by µ while the χ̃0

1
is either

bino dominated with mass controlled by M1 or a bino-higgsino admixture (M1
<∼ µ). The two heavier

electroweakinos are wino like with masses approximately equal to M2, where M2 > µ

We recall that the models belonging to class a) (b)) yield stronger (weaker) mass bounds for reasons

explained in [14]. In all models the trilepton rates also depend sensitively on the hierarchy among the slepton

and eweakino masses. If the sleptons are lighter (heavier) than χ̃±
1

and χ̃0

2, the leptonic Branching Ratios

(BR) of these eweakinos are typically large (small) yielding stronger (weaker) limits. The nomenclatures

introduced in [14] also indicate this hierarchy (e.g., Light Wino and light Left Slepton (LWLS) model, Light

Higgsino and Heavy Slepton (LHHS) model etc. ). In the LHHS model both L and R type sleptons of all

flavours are heavier than χ̃±
1
and χ̃0

2
.

We now derive the new limits in different models following the procedure of the ATLAS collaboration

[11]. The Tables 7 and 8 of [11] contain the number of observed 3l + E/T events and the SM backgrounds

obtained from the data for a number of signal regions (see Table 4 in [11]). Each signal region is characterized

by a set of kinematical cuts. From these information the model independent 95% CL upper limit on any

2 We shall, however, briefly comment on other models as well.
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Beyond SM (BSM) events ( N95

obs) for each signal region were computed and displayed in the same tables.

Using these upper bounds the ATLAS group obtained an exclusion contour in a simplified LWLS model (see

Fig. 7a of [11]). We validate our simulation by reproducing this exclusion contour and proceed to obtain

new constraints in several models with non-decoupled heavier eweakinos 3.

We generate the SUSY spectrum using SUSYHIT [16] and simulate the signal events using PYTHIA

(v6.4) [17] (for the details see [13, 14]). We use CTEQ6L [18] for parton distribution functions in all our

analyses. Jets are reconstructed by the anti-kt [19] algorithm using FASTJET [20] coupled with PYTHIA

with R = 0.4. The jets are required to have PT ≥ 20 GeV and |η| < 2.5. In all our analyses the following

lepton selection criteria have been employed: i) All leptons (e and µ) in the final state with pseudo-rapidity

|η| < 2.5 and transverse momentum PT > 10GeV are selected. ii)Each lepton is required to pass the isolation

cuts as defined by the ATLAS/CMS collaborations [11, 12]. These selection cuts have been implemented in

all analyses in this paper.

We obtain the most striking consequences in the LHHS model yielding the weakest bounds on the

higgsino like lighter eweakinos - χ̃±
1
, χ̃0

2
and χ̃0

3
[14]. Naturally the possibility that the heavier eweakinos (χ̃±

2

and χ̃0
4) also have relatively small masses is open in this case. They are wino like with masses approximately

equal to the SU(2) gaugino mass parameter M2, where M2 > µ. For this class of models the common slepton

mass is chosen to be m
l̃L

= m
l̃R

= (mχ̃
±

1

+mχ̃
±

2

)/2 so that they are always lighter (heavier) than the heavier

(lighter) eweakinos. The slepton and the LSP masses are carefully chosen in all our analyses that they are

consistent with the constraints from Run I direct slepton searches [21].

If the lighter eweakino spectrum is compressed, i.e., M1 ≈ µ, then χ̃±
1
, χ̃0

1
,χ̃0

2
and χ̃0

3
have large bino

and higgsino components and are approximately degenerate. For all numerical computations we take µ =

1.05 M1. Consequently the 3l+E/T or any other leptonic signal from χ̃±
1
- χ̃0

2 (or χ̃0
3) production is not viable

since the energy release in each underlying decay is small. On the other hand it is known for a long time

that an LSP which is a bino-higgsio admixture is attractive both from the point of view of the observed DM

relic density of the universe and naturalness ([22],[23]). The correlation between acceptable DM relic density

and the 3l signal in the compressed scenario with decoupled χ̃±
2

and χ̃0

4
(M2 ≃ 2µ) can be understood from

the LHHS model discussed in [14]. From Fig. 5 of [14], it follows that annihilation and co-annihilation of a

bino-higgsino LSP produce acceptable DM relic density over a parameter space where the 3l signal is weak.

We have checked that if the above sparticles are non-decoupled (M2 < 2µ) the parameter space allowed by

the WMAP and Planck data changes very little. Acceptable relic density, e.g., is obtained for the range

1.05µ ≤ M2 ≤ 1.5µ a part of which also yields novel LHC signals.4

3 An earlier example of the reliability of our simulation is presented in Fig. 7a of [13]. See also [15], Fig. 6
4 We note in passing that the proposed LHC signatures of compressed scenarios with decoupled heavier eweakinos have so far

been based on the monojet+ E/T topology or the vector boson fusion topology with forward jet tagging([24]-[28]). However,

revealing the underlying physics with these signatures alone will indeed be impossible.
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The above tension eases out if the heavier eweakinos are not decoupled. In this case the wino like

χ̃±
2

and χ̃0
4 are pair produced with reasonably large cross-sections over a sizable portion of the parameter

space. Moreover their 2-body leptonic decays via sleptons with large BRs are potential sources of observable

trilepton signals. Using the above ATLAS upper bounds on N95

obs, we obtain the first published exclusion

contour in the mχ̃0

1

- m
χ̃
±

2

plane (Fig. 1). For mχ̃0

1

≈ 80 GeV below which m
χ̃
±

1

violates the LEP bound,

there is a strong bound mχ̃
±

2

> 610 GeV. On the other hand for mχ̃0

1

≥ 170 GeV, there is no bound on mχ̃
±

2

.

For mχ̃
±

2

<∼ 300 GeV, χ̃±
2

and χ̃0

4
develop significant bino-higgsno component and the constraints weaken.

Below mχ̃
±

2

≈ 250 GeV all the eweakinos are approximately degenerate and the model cannot be constrained

any further. For illustrating the signatures of this compressed model at LHC Run II we have chosen the

benchmark point BP1 which is presented in Table I along with the corresponding bound on mχ̃
±

2

.
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m
∼ χ0 1

m∼χ±
2

exclusion contour

FIG. 1. The red contour represents the excluded parameter space in the m
χ̃
±

2

−mχ̃0

1

plane using ATLAS trilepton

search data from LHC RUN I. Instead of following the usual practice of considering χ̃±
1
− χ̃0

2 production only we have

taken into account all possible eweakino pair production in the compressed LHHS model (see text for the details).

All masses are in GeV.

In order to get a preliminary estimate of the reach of Run II experiments at 13 TeV via the 3l + E/T

channel we have simulated the signal and all SM processes considered as backgrounds in the ATLAS 3l

analysis reported above. The backgrounds are suppressed by selecting events with

A1) 3 isolated leptons consistent with the selection cuts mentioned above,

A2) invariant mass of any pair of oppositely charged leptons of same flavour not in the window 81.2 < minv <

101.2GeV,

and

A3) E/T > 200 GeV.
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The total SM background is estimated to be 26.71 for an integrated luminosity of 100fb−1. Taking

S/
√
B ≥ 5 to be an indicator of the observability of the signal, we find that for mχ̃0

1

= 80 (250) GeV , the

reach in the compressed model is mχ̃
±

2

= 820 (672) GeV for 100 fb−1 of integrated luminosity. Thus much

higher mχ̃
±

2

can indeed be probed even for mχ̃0

1

beyond the reach of Run I. Moreover it is natural to expect

that when the background is more accurately measured from the data the actual mass reach can be improved

by optimizing the cuts.

In the absence of the above compression both lighter and heavier eweakinos can in principle contribute

to the 3l signal. This is illustrated by the constraints derived for BP2 and BP3 (Table I). It follows from

these examples that for a fixed M2 (mχ̃
±

1

) one can constrain the free parameter mχ̃
±

1

(mχ̃
±

2

) as is illustrated

by BP2 (BP3). It is worth recalling that for decoupled heavier eweakinos there was no limit on the lighter

eweakinos for mχ̃0

1

≈ 100 GeV as is the case in both the examples (see [14], Fig 5)5. The main message

of this analysis is that a large portion of the parameter space with non-decoupled χ̃±
2
, χ̃0

4
had in principle

been within the kinematical reach of the Run I experiments. It is, therefore, natural to seriously consider

the possibility that they may show up even in the early phases of the experiments at 13 TeV. Especially if

a signal shows up, both the lighter and heavier eweakinos would demand serious attention in the race for

revealing the underlying physics.

Stronger new bounds are also obtained in the Light Higgsino and light Left Slepton (LHLS) model (Fig.

3b of [14]). In this scenario only the left sleptons are assumed to be lighter than χ̃±
1

and χ̃0

2
. Following [11]

and [14] their masses are chosen to be m
l̃L

= (m
χ̃
±

1

+mχ̃0

1

)/2. The limit m
χ̃
±

1

> 400.0 GeV corresponds to

BP4 (Table I) with M2 = 1.5µ and mχ̃0

1

= 170 GeV. For this mχ̃0

1

and decoupled heavier eweakinos (i.e, M2

having a significantly larger value) a much weaker bound mχ̃
±

1

> 270.0 GeV was obtained ([14], Fig. 3b).

In the Light Mixed and light Left Slepton (LMLS) model we have M2 ≈ µ and the LSP is a bino

(M1 < µ) ( Fig. 4b in [14]). The left slepton masses are chosen as in the LHLS model. It follows from these

examples that for a fixed M2 one can constrain the free parameter mχ̃
±

1

(see BP5). For the chosen LSP mass

there is no limit on mχ̃
±

1

for decoupled heavier eweakinos.

The above results encourage us to look into the multilepton + E/T signatures in models with non-

decoupled heavier eweakinos at LHC 13 TeV experiments. We begin with the 4l + E/T signal. It may be

recalled that the ATLAS collaboration analysed this signal towards the end of Run I assuming decoupled

heavier eakinos[29] for a RPC simplified model assuming that the signal comes only from higgsino like χ̃0
2−χ̃0

3

pair production. It was further assumed that they decay via any one of the following options: i)R-type

selectrons or smuons, ii) staus or iii) Z bosons with 100 % BR. In contrast our broader framework considers

all eweakino pair productions in several generic MSSM models each represented by a BP displayed in Table

5 We confirm the validity of this result with the latest constraints [11] which are somewhat stronger than the earlier ones used

in [14].
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Parameters/ BP1 BP2 BP3 BP4 BP5

Masses (LHHS) (LHHS) (LHHS) (LHLS) (LMLS)

M1 191 105 105 175 296

µ ≃ M1 - 264 - 1.05M2

M2 - 1.5µ - 1.5µ 566

mχ̃0

1

152 100 100 170 290

m
χ̃
±

1

178 > 250 250 > 400 > 540

m
χ̃
±

2

> 370 * > 415 * *

TABLE I. New (modified) limits on m
χ̃
±
2

(m
χ̃
±
1

) for fixed χ̃±
1
(M2) in different models with non-decoupled χ̃±

2
and

χ̃0

4. All masses and mass parameters are in GeV. ’-’ denotes that the corresponding mass parameters are treated as

free parameters and ’*’ indicates that the corresponding m
χ̃
±

2

is determined by M2 and the lower limit on m
χ̃
±

1

. The

modified limits on m
χ̃
±
1

are stronger than the corresponding limits in the decoupled scenario.

II. These BPs correspond to diverse compositions of the eweakinos, different mass hierarchies among the EW

sparticles and realistic BRs of the relevant decay modes. All BPs are consistent with the new constraints

derived in this paper for non-decoupled χ̃±
2

and χ̃0

4
( Fig. 1 and Table I).

An obvious physics background in this case is ZZ production. We have generated ZZ + 1 jet events

with MLM matching [30] using ALPGEN(v2.1) [31] which are then passed to PYTHIA for showering and

jet formation using the anti-kt algorithm [19]. We have simulated the signal and all SM backgrounds by

selecting events with

B1) 4 isolated leptons consistent with the selection cuts mentioned above,

B2) Invariant mass of any pair of oppositely charged leptons of same flavour not in the window 81.2 < minv <

101.2GeV,

and

B3) E/T > 80.0 GeV.

In Table II we have presented the relevant parameters defining each BP in rows 2-7. The number of 4l

events N(4l) for 100 fb−1 of integrated luminosity subject to the above cuts for each BP and the total SM

background are in row 9. For a better understanding of these numbers the total production cross section of

all chargino neutralino pairs in each case and the corresponding effective cross sections (σ4l
eff ) after the cuts

B1) - B3) are given in columns 2 and 6-8 Table III. The total background cross section and the effective

cross sections afer the cuts for different channels are in Table IV. The total background is indeed tiny. If

we require at least five signal events over a negligible background for a discovery, then optimistic results

are obtained for all BPs. On the other hand the number in parenthesis below each N(4l) stands for the
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Parameters/ Total SM

Masses and BP1 BP2 BP3 BP4 BP5 BP6 BP7 Backgrounds

Signals (LHHS) (LHHS) (LHHS) (LHHS) (LHHS) (LHLS) (LMLS)

M1 191 222 132 105 104 249 321 -

µ 186 268 133 270 308 300 401 -

M2 350 286 486 405 462 450 382 -

mχ̃0

1

151 200 100 100 100 231 305 -

m
χ̃
±
1

178 234 132 260 300 291 350 -

m
χ̃
±
2

389 351 520 447 504 491 465 -

(885) (880) (890) (810) (927) (902)

3 leptons 73.8 35.9 107.7 70.4 56.4 139.4 58.2 26.71

(17.3) (12.0) (17.1) (16.1) (7.84) (21.9) (30.9)

(S/
√
B)3l 14.3 6.95 20.8 13.6 10.9 26.9 11.3 -

(3.35) (2.32) (3.31) (3.12) (1.52) (4.24) (5.98)

4 leptons 61.5 52.5 51.7 16.4 8.73 19.6 10.2 0.835

(0.69) (1.20) (-) (0.62) (0.36) (2.05) (-)

SS3OS1 leptons 29.9 17.1 14.5 7.2 3.36 5.01 1.57 0.40

(0.69) (0.30) (-) (-) (0.36) (0.17) (-)

5 leptons 8.46 8.29 4.14 6.1 2.68 4.14 0.78 0.60

(-) (0.60) (-) (-) (-) (-) (-)

TABLE II. Number of 3l, 4l, SS3OS1, 5l events all with E/T corresponding to different BPs at LHC 13TeV for

integrated luminosity of 100fb−1 along with the total SM background in each case. The significance of the 3l signal

is also shown for each BP. The contents of the brackets are numbers in the corresponding decoupled scenario which

are significantly smaller. All masses and mass parameters are in GeV.

corresponding number in the decoupled scenario. The numerical results in the non-decoupled (decoupled)

models are obained for M2 = 1.5µ (M2 = 2µ. It is clear that in a variety of decoupled models the N(4l) is

indeed negligible.

Two comments are now in order. For the t̄(t)Z a NLO corrected cross-section boosted by a K-factor of

1.35 [32] yields about 5 background events. In order suppress it further we have used an additional cut. We

reject events with at least one tagged b-jet following the criteria MV1 of [33] and the effective cross-section

in Table IV is reduced to 0.004 fb. The signal is hardly affected by this additional cut. The irreducible

backgrounds being negligible one has to look for the reducible backgrounds arising due to jets faking leptons.

Without a thorough detector simulation it is difficult to estimate this background. The analysis of [29],

however, found this background to be negligible for the 4l+E/T signal. It is, therefore, reasonable to assume

that this background is negligible for all the signals with four or more leptons considered in this paper.
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Benchmark σprod σ3l
eff in fb σ4l

eff in fb σSS3OS1

eff in fb σ5l
eff in fb

Points in pb after after after after after after after after after after

A1 A2 A3 B1 B2 B3 C1 C2 D1 D2

BP1 769.1 8.96 7.54 0.74 1.42 1.01 0.62 0.38 0.30 0.15 0.08

(691.6)

BP2 553.0 10.5 8.09 0.36 1.68 1.06 0.51 0.39 0.17 0.19 0.07

(300.7)

BP3 2071.0 7.08 6.65 1.08 0.74 0.62 0.52 0.16 0.14 0.06 0.04

(2060.0)

BP4 380.8 5.06 2.87 0.70 0.45 0.22 0.16 0.09 0.07 0.08 0.06

(309.1)

BP5 223.7 2.86 1.67 0.56 0.28 0.11 0.09 0.04 0.03 0.03 0.026

(182.3)

BP6 217.9 15.9 14.6 1.39 0.51 0.40 0.20 0.06 0.05 0.05 0.04

(170.9)

BP7 156.9 12.3 11.1 0.58 0.30 0.19 0.10 0.02 0.015 0.03 0.0078

(72.6)

TABLE III. The production cross sections of all eweakino pairs and the effective cross-section after successive cuts of

four types of signals for the BPs defined in Table II. The contents of the brackets are numbers in the corresponding

decoupled scenarios.

For comparison we also present in Table II the number of 3l + E/T events N(3l) obtained with the cuts

A1) - A3) defined above and the total SM background for an integrated luminosity of 100fb−1 (row 8).

The production cross section of all chargino-neutralino pairs, the effective cross sections after the cuts for

both the signal the total background etc are also included in Tables III - IV following the same convention

as in the 4l case. It readily follows from Table II the ratio N4l/N3l, which is free from several theoretical

uncertainties, one can discriminate between many non-decoupled and decoupled models since the ratio is

tiny in a wide variety of decoupled models. The same observable may also be useful for discriminating among

the non-decoupled models. Similar relative rates involving other final states (see below) can also be used to

facilitate this discrimination.

The same methodology has been followed for generating the SS3OS1 + E/T signal which is a subset of

the 4l + E/T events. However, this choice of the final state significantly reduces the backgrounds involving

multiple Z bosons or tt̄Z. The main irreducible SM background in this case are WZZ events where a lepton

from any Z boson decay fails to pass the selection cuts. The selection cuts (C1) and the cut E/T > 80GeV

(C2) suppress this and other backgrounds listed in Table IV to negligible levels. The number of signal events

for an integrated luminosity of 100 fb−1 corresponding to the above BPs are displayed in Table II. The
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Background σprod σ3l
eff in fb σ4l

eff in fb σSS3OS1

eff in fb σ5l
eff in fb

Processes in pb after after after after after after after after after after

A1 A2 A3 B1 B2 B3 C1 C2 D1 D2

WZ 32.69 168.3 13.11 0.18 - - - - - - -

ZZ 10.63 16.5 1.25 0.007 14.2 0.081 0 - -

tt̄Z 0.018 1.95 0.39 0.015 0.26 0.039 0.018 0.006 0.002 0.002 0.0007

WWZ 0.133 1.33 0.17 0.013 0.18 0.012 0.004 - - - -

WZZ 0.042 0.54 0.044 0.005 0.068 0.0014 0.0003 0.007 0.003 0.013 0.005

ZZZ 0.010 0.05 0.003 0.0001 0.04 0.0003 0.00005 0.0004 0.00003 0.001 0.0003

WWW 0.159 0.79 0.07 0.059 - - - - - -

TABLE IV. The production and effective cross-sections of different SM backgrounds for the four different signals.

’-’ denotes that the concerned background process is not relevant for the signal.

relevant information about the effective signal cross sections can be gleaned from the table III. It may be

noted that the relative rates of 4l and SS3OS1 events can distinguish among different decoupled models.

The next entry in our list is the 5l+E/T signal, where l stands for an e or µ of any charge. The selection

cuts (D1) and the requirement E/T > 80 GeV (D2) cut suppress all the backgrounds including the potentially

dangerous contribution from WZZ events to a negligible level. We quote the number of signal events for the

BPs studied and the total background for an integrated luminosity of 100 fb−1 in Table II.

We now briefly comment on the signals in the LWLS model which yielded the strongest bounds on the

lighter eweakinos (See Fig. 7a of [11]). For mχ̃0

1

≤ 250GeV one obtains mχ̃
±

1

≥ 700 GeV. In this case the

heavier eweakinos are too massive to produce any observable signal before the LHC luminosity upgrade.

However, if the lighter eweakino spectrum is to some extent compressed the above stringent bound on mχ̃
±

1

is

relaxed. This is illustrated by the following parameter set:

M1 = 298.0 , M2 = 345.0, µ = 518.0, mχ̃0

1

= 290.0, mχ̃
±

1

= 349.0 and mχ̃
±

2

= 545.0 (all in GeV). In this

scenario the number of 4l events and SS3OS1 events are respectively 9.37 and 3.33 for 100 fb−1 of integrated

luminosity with the above cuts.

The potentially rich phenomenology of the heavier eweakinos calls for further investigations in the light

of the upcoming LHC data, the observed DM relic density of the universe and the (g − 2)µ anomaly. We

have already checked that they may significantly contribute to (g − 2)µ. Further details will be provided

elsewhere.
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