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Abstract: A discovery of neutrinoless double-β decay would be profound, providing the

first direct experimental evidence of ∆L = 2 lepton number violating processes. While a

natural explanation is provided by an effective Majorana neutrino mass, other new physics

interpretations should be carefully evaluated. At low–energies such new physics could man-

ifest itself in the form of color and SU(2)L × U(1)Y invariant higher dimension operators.

Here we determine a complete set of electroweak invariant dimension–9 operators, and

our analysis supersedes those that only impose U(1)em invariance. Imposing electroweak

invariance implies: 1) a significantly reduced set of leading order operators compared to

only imposing U(1)em invariance; and 2) other collider signatures. Prior to imposing elec-

troweak invariance we find a minimal basis of 24 dimension-9 operators, which is reduced

to 11 electroweak invariant operators at leading order in the expansion in the Higgs vacuum

expectation value. We set up a systematic analysis of the hadronic realization of the 4-

quark operators using chiral perturbation theory, and apply it to determine which of these

operators have long-distance pion enhancements at leading order in the chiral expansion.

We also find at dimension–11 and dimension–13 the electroweak invariant operators that

after electroweak symmetry breaking produce the remaining ∆L = 2 operators that would

appear at dimension–9 if only U(1)em is imposed.
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1 Introduction

The existence of neutrino masses and of dark matter both point to new physics beyond

the Standard Model. If neutrinos have a Majorana mass, then they would be the only

known fundamental fermonic particle that is also its own antiparticle. This would imply

that overall lepton number is violated in the vacuum, which could have implications for the

origins of the baryon asymmetry, as well as impact astrophysics, such as supernova neutrino

oscillations and the r-process. To date the best experimental approach for distinguishing

whether neutrinos are Majorana or Dirac is to search for the so-called neutrinoless double

beta decay processes, in which

(A,Z)→ (A,Z + 2) + e−e− . (1.1)

The current best constraints on these processes are from the GERDA and KamLAND-Zen

experiments, which have sets limits of T 0ν
1/2 > 2.1 × 1025 years for Ge76 [1] and T 0ν

1/2 >

1.07 × 1026 years for 136Xe [2], respectively. These bounds translate to a limit on the

effective neutrino mass matrix element that is just above the top of the “inverted” neutrino

mass spectrum. The next-generation of multi-tonne experiments are expected to reach

sensitivities that extend to the bottom of the inverted neutrino mass hierarchy spectrum,

while remaining insensitive to Majorana neutrino masses having a normal hierarchy.

Given the significance of a discovery of a ∆L = 2 process, exploring alternative in-

terpretations of a positive neutrinoless double beta signal requires some urgency to avoid,

in the face of a positive signal, making the wrong inference about the size of the effective

Majorana neutrino mass. Inferring the effective Majorana neutrino mass from the observed

lifetime is a step that would require independent evidence. For such a signal could be due

to the exchange of some new exotic particles at short distances (see for instance, the review

[3]), rather than the effective neutrino mass of Majorana neutrinos. If so, other experiments

will be required to sort out a large number of degeneracies in the space of theoretical pos-

sibilities. In the circumstance that neutrino masses have a normal hierarchy (established

by, for example, short-baseline experiments) and a positive neutrinoless double beta rate

is observed, exotic interpretations would be inevitable.

For neutrinoless double beta decay experiments, one approach for resolving degenera-

cies is to obtain more information about each event. Future experiments, such as NEXT [4]

and SuperNemo [5], plan to measure the individual energies of the two electrons and their

relative separation angle. With this additional kinematic information, forward-backward

like correlations of the separation angle or energy have the potential to distinguish a signal

arising from a Standard Model (SM) long-distance neutrino exchange from that arising

from a short-distance process [6–11]. Another experiment that has a potential to resolve

degeneracies in exotic explanations would be the Large Hadron Collider (LHC) or a future
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hadron collider, which might be able to directly probe the scale of the new physics. Ref.

[12] discusses using a charge asymmetry or invariant mass peaks to resolve degeneracies

between specific models.

A novel short distance contribution to a neutrinoless double beta decay signal appears

at low-energy in the form of ∆L = 2 violating higher dimension operators of the type

L =
1

Λ5

∑

i

ciOi, (1.2)

Oi ∼
(

uΓd)(uΓ′d)(eΓ′′ec
)

, (1.3)

for some Dirac matrices Γ,Γ′,Γ′′. 1 Because of the high dimensionality of this operator, the

neutrinoless beta decay rate 1/T1/2 ∝ Λ−10 is easily suppressed. Still, neutrinoless beta

decay experiments are currently probing the multi-TeV region, which is of considerable

interest given that the LHC is probing the same scale.

In a neutrinoless double beta decay process two neutrons inside a nucleus “collide” to

(very rarely) produce two protons and two electrons with no neutrinos. It is well-known

that the same process can be searched for at a hadron collider experiment, where such

short-distance operators contribute to [13]

• same-signed (SS) dilepton process, pp→ ℓ±ℓ± + 2j.

Using this signature a number of constraints have been proposed or obtained on specific

models using then forthcoming [14] or actual 8 TeV LHC data [12, 15–17]. Projections

for future LHC sensitivities at 13 TeV center-of-mass energy and with O(100 fb−1) of

integrated luminosity indicate that for specific models the LHC will be competitive with

existing GERDA bounds and future 1 tonne experiments [12, 17, 18]. 2 Current and future

LHC searches are competitive with neutrinoless double beta experiments as they benefit

from the enhancement in the production cross-section due to the on-shell production of the

mediators of the higher dimension operators in Eqs. (1.3). 3 In the contact limit, collider

cross-sections and neutrinoless double beta decay rates have the same scaling with Λ, so

the gain in sensitivity of one experiment compared to the other is linear.

One of the motivations for this present work is based on the simple observation that

in general the operators appearing above in Eq. (1.3) are not gauge-invariant under the

full electroweak symmetry of the Standard Model. This work takes the next natural step

of generalizing the operators in Eq. (1.3) to their full SM invariance. While previous work

1Operators in which a quark and a lepton are in the same bilinear can be eliminated by a Fierz trans-

formation. The interested reader is referred to Section 8.2 for more details.
2To obtain a reliable comparison between future LHC and next generation neutrinoless double beta

experiments, Ref. [18] improves on the results of Ref. [12] in several ways. They include the QCD running

of operators between the TeV and GeV scales, the important long-distance pion contribution to the nuclear

matrix element, and for the collider analysis, include backgrounds and a detector simulation.
3The selection efficiency for the signal has a dramatic dependence on the mass of the intermediate

particles, as previously shown in the context of using monojet searches at the LHC and Tevatron to bound

non-standard neutrino interactions [19]. At low and high mass the efficiency drops: at low mass, since

for fixed analysis cuts the pT spectrum is falling, and at high mass as the contact limit is approached the

available phase space in the resonance channels decreases.
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[20] classifies operators by their SM gauge invariance, but omits the last step of classifying

operators by their Lorentz structure, other work [21, 22] classifies operators by their Lorentz

structure and SU(3)c × U(1)em invariance, but not by their electroweak gauge invariance.

Here these previous results are extended in two directions: i) by presenting a minimal

basis of operators classified by both their electric and color invariance and by their Lorentz

structure; and ii) by presenting a minimal basis of operators – a subset of the previous

set – classified by both their SM gauge invariance and Lorentz structure. On point i), the

present works corrects the literature [21, 22] on a minimal set of electromagnetic and color

invariant operators. Compared to Ref. [22] we find additional operators that differ on the

way color is contracted among the 4-quarks, namely that so-called “color-octet” operators

should be included. The “super-formula” of Ref. [21] similarly does not have the color-

octet operators, and as previously noted in [22], has an extra tensor operator involving the

two electrons that can be eliminated. The present work presents a minimal basis of color

and electromagnetic invariant operators that can be used as a starting point for relating

neutrinoless double beta decay observables to models and observables defined at a higher

mass scale.

But why complete such operators to their SU(2)L × U(1)Y invariant form? This

effective field theory approach has several obvious benefits when the mass scale of the

∆L = 2 physics scenarios is much larger than the electroweak scale, which shall be assumed

throughout. At a general level:

• To determine the effect of a specific model on the neutrinoless double beta decay

rate one has to simply match the model onto the Wilson coefficients of the effective

theory that is the SM plus a minimal set of ∆L = 2 electroweak invariant operators.

The mixing and evolution of these operators due to QCD and electroweak interac-

tions is then simply described by standard renormalization group techniques. The

universality of the renormalization group evolution is separated from the details of

the model. These operators are then matched to operators in the chiral theory of

nucleons and meson at the QCD scale, using inputs from lattice QCD. All of this is

standard practice in, for instance, determining the effects of new physics scenarios

on K and B meson physics. The only model-dependent input is in the matching of

the Wilson coefficients at the high scale; the rest is universal.

• When the particles that resolve the low-energy ∆L = 2 operators are too heavy to

be a produced at a collider, then the collider experiment is only probing the contact

operator. In this limit the electroweak invariant effective theory provides a universal

intermediate effective theory for direct apples-to-apples comparisons between low-

energy and collider experiments.

An alternative approach is to consider all possible models that at low-energy realize color

and electromagnetic invariant ∆L = 2 operators, such as done in [23]. As discussed previ-

ously, collider signatures will depend on the model when the intermediate particles can be

produced on-shell. However, in the contact limit, the “all models” approach has to reduce

to the electroweak invariant effective field theory. At energies below the mass of the new
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particles, all the dependence of any model is subsumed into the Wilson coefficients of the

electroweak invariant effective field theory.

At a more specific level, there are additional benefits and findings:

• As mentioned above, organizing operators by their SU(2)L × U(1)Y invariance pro-

vides a useful basis for studying mixing among these operators due to QCD and

especially electroweak interactions. Since the electroweak interactions violate parity,

mixing of operators due to electroweak renormalization may lead to an important

effect at low-energies. Namely, it could cause an operator that otherwise appears at

a higher order in the chiral power counting – because of parity – to appear at a lower

chiral order. Whether such an effect occurs or not is an open question.

• While in the SU(3)c × U(1)em effective theory we find a minimal basis of 24 baryon

conserving, ∆L = 2 operators that contribute at leading order in 1/Λ (which turns

out to be dimension-9), in the SU(3)c × SU(2)L × U(1)Y invariant effective theory

at leading order in v/Λ one instead finds only a subset of operators. The reason

is simple: only 11 of the operators in Eqn. (1.3) conserve U(1)Y hyper-charge. To

conserve hyper-charge in these other operators one has to go to higher dimensions

by inserting powers of the Higgs field H. In particular, at dimension–11 one can

insert two Higgs fields and one finds another 12 out of the 24 operators; one needs

to go to dimension 13 – requiring 4 Higgs insertions – to obtain all the low-energy

dimension-9 operators.

• Below the weak scale one therefore expects at most 11 of the 24 operators to be phe-

nomenologically relevant. For 7 of these operators, the 4-quark part of the operator

is scalar, and for the other 4 operators it is vector. Specific models may generate

the other operators in the UV, but at low energies those are suppressed by at least

v2/Λ2.

• The electroweak completion of a given low-energy operator may imply additional

channels to search for these operators at hadron colliders. As previously noted, such

operators produce same-signed dilepton signals. But the requirement of electroweak

invariance may imply additional final states in which to search for such ∆L = 2

operators; whether this occurs is specific to that operator. If one or more leptons in

the SS dilepton final state are left-handed, then an SU(2)L rotation can turn it into

a neutrino. So in addition to SS dileptons, we can also expect to find

– lepton + MET final states, pp→ ℓ± + 2j+MET,

– MET + multi jet final states, pp→ 2j+MET,

all occurring at comparable rates. While in practice SM backgrounds are significantly

smaller for the SS final state, these other channels could be used, at least in principle,

to test competing hypotheses for a ∆L = 2 process. For example, [24] uses 8 TeV

LHC dijet data to constrain specific models, such as the left-right symmetric model,

or models that involve leptoquarks or charged scalars, and [24, 25] present projections

of the sensitivity of future dijet and leptoquark searches to such models.
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The second motivation for the present work is the following. To obtain predictions

for the neutrinoless double β decay rate from the effective Lagrangian in Eq. (1.2), one

needs at an intermediate step the matrix elements of the 4-quark operators appearing in

Eq. (1.3) between external pions and nucleons. The most important chiral interactions and

Feynman diagrams are shown in Fig. 1. With the matrix elements as input, one then uses

chiral perturbation theory to obtain amplitudes (or potentials) at the nucleon level, which

are then used as inputs into nuclear structure computations. The 4-quark operators lead

to a number of operators in the chiral effective theory, each with a low-energy constant,

which will all eventually be computed using using lattice QCD.

In what follows the values of the low-energy constants will not be needed. However,

in the chiral effective field theory, the most important coupling of the leptons induced

by the interactions in Eq. (1.2) is with two pions – if it exists – rather than a direct

contact interaction with four nucleons. The reason is that in the chiral effective theory,

the amplitude for a neutrinoless double decay process arising from the two-pion coupling

– diagram (a) in Fig. 1 – is chirally enhanced compared to that caused by a direct four

nucleon interaction. While the importance of a long-distance pion contribution was noticed

in supersymmetric models of R−parity violation some time ago [26], much of the literature

continues to ignore the two-pion coupling and instead assumes the nuclear matrix element

to be given by the direct 4-nucleon coupling (i.e., diagram (c) in Fig. 1). However, by now

the two-pion coupling cannot be glossed over. Preliminary results for the matrix elements

of the operators between two pions are now available [27]. And from using chiral SU(3),

the same ππ matrix elements can be estimated at the O(30%) level from Kππ [28] [29] and

K0-K
0
[29] matrix elements, which have been computed using lattice QCD.

Which quark operators lead to two-pion interactions is clearly important for the phe-

nomenology of neutrinoless double beta decay, and this question was broadly investigated

in [22]. One surprising finding from Ref. [22] is that that not all operators appearing in

Eqs. (1.2) and (1.3) lead to ππ interactions at leading order in the chiral expansion. If

true, then for those operators, the neutrinoless double β decay rate may not be chirally

enhanced, and the collider constraints more competitive.

Here we revisit this analysis, and set up a systematic matching of the operators appear-

ing in Eq. (1.3) to operators in the chiral theory. We show in general how to determine

the most important chiral operators, which are the interactions of two electrons to two

pions, two nucleons and a pion, and four nucleons. We work out all the leading chiral order

interactions in detail of two electrons with two pions, reproducing to next-to-next lowest

order (NNLO) the power counting results of Ref. [22]. Compared to that reference, here we

find more chiral operators, each of which at low-energies appears with its own low-energy

constant.

Here is the outline. In the sections that follow we first present a minimal basis of

operators that at low-energy contribute to neutrinoless double β decay. This minimal basis

is derived in some detail in Section 8.2. At the level of only color and electromagnetic

invariant ∆L = 2 dimension-9 operators, we find a larger minimal basis of operators –
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24 – compared to Ref. [22], which finds 14 operators. 4 Since such operators are only

SU(3)c × U(1)em invariant, in the subsequent sections we make such operators SU(2)L ×
U(1)Y gauge invariant; at low-energies these operators map into a subset of the complete

set of neutrinoless double β operators. We discuss dimension-9, -11, and -13 electroweak

invariant operators in sections 3.1, 5 and 6. In Section 4 we set up the matching of the

4-quark operators onto operators defined in the chiral theory, and work out in some detail

the chiral two pion operators. We then conclude in Section 7.

2 Below the electroweak and ∆L = 2 mass scales

Below both the electroweak scale and the mass scale (Λ) of the new ∆L = 2 physics,

the physics of the lepton number violating processes is described by a series of ∆L = 2

violating higher dimension operators. The leading operators that contribute at short-

distances to a neutrinoless double β decay signal involve 4 quarks and 2 charged leptons and

are dimension-9. 5 At these low energies such operators must be explicitly SU(3)c×U(1)em
invariant. To leading order in 1/Λ, we find that a minimal basis of such ∆L = 2, B

conserving operators is given by

Leff =
1

Λ5

[

∑

i=scalar

(csi ee
c + c′si eγ

5ec)Os,i + eγµγ
5ec

∑

i=vector

cviOµ
v,i

]

(2.1)

where the sum is over the set of scalar 4-quark operators {Os,i} and set of vector 4-quark

operators {Oµ
v,i}.

The following basis of quark operators is convenient in order to classify the hadronic

realization of these 4-quark operators using their transformation properties under chiral

4They find 5 scalar 4-quark operators and 4 vector 4-quark operators, leading to 14 independent

dimension-9 operators. Compared to that reference, here we include color-octet operators which cannot be

eliminated by color or Dirac Fierzing, and this adds 3 more scalar operators and 4 more vector operators.
5We do not consider here ∆L = 2 operators involving field strength tensors, covariant derivatives, those

that are anti-symmetric in the lepton flavor indices, or those that involve an electron and a neutrino in the

final state, instead of two electrons. See Ref. [20] for a more general set of possibilities.

– 7 –



SU(2)L×SU(2)R. Dropping the subscripts s and v, we find the following 8 scalar operators

O1LR = (qLγ
µτ+qL)(qRγµτ

+qR), (2.2a)

Oλ
1LR = (qLγ

µτ+λAqL)(qRγµτ
+λAqR), (2.2b)

(2.2c)

O2RL = (qRτ
+qL)(qRτ

+qL), (2.2d)

Oλ
2RL = (qRτ

+λAqL)(qRτ
+λAqL), (2.2e)

(2.2f)

O2LR = (qLτ
+qR)(qLτ

+qR), (2.2g)

Oλ
2LR = (qLτ

+λAqR)(qLτ
+λAqR), (2.2h)

(2.2i)

O3L = (qLγ
µτ+qL)(qLγµτ

+qL), (2.2j)

(2.2k)

O3R = (qRγ
µτ+qR)(qRγµτ

+qR), (2.2l)

and 8 vector operators

Oµ
LLLR = (qLγ

µτ+qL)(qLτ
+qR), (2.3a)

Oλ,µ
LLLR = (qLγ

µτ+λAqL)(qLτ
+λAqR), (2.3b)

Oµ
RRLR = (qRγ

µτ+qR)(qLτ
+qR), (2.3c)

Oλ,µ
RRLR = (qRγ

µτ+λAqR)(qLτ
+λAqR), (2.3d)

Oµ
LLRL = (qLγ

µτ+qL)(qRτ
+qL), (2.3e)

Oλ,µ
LLRL = (qLγ

µτ+λAqL)(qRτ
+λAqL), (2.3f)

Oµ
RRRL = (qRγ

µτ+qR)(qRτ
+qL), (2.3g)

Oλ,µ
RRRL = (qRγ

µτ+λAqR)(qRτ
+λAqL), (2.3h)

where qL/R = (u d)L/R, and τ+ =

(

0 1

0 0

)

. λA, A=1.,..8, refer to the SU(3) color

generators in the fundamental representation, and implicit summation over A is assumed.

The relation of these operators to those defined in Ref. [22] is given in Section 8.3. In total

24 different 6-fermion operators, involving 16 different 4-quark operators, can appear in

the Lagrangian, each with its own Wilson coefficient {csi , c′si , cvi }. All quark bilinears can

be arranged to be either color-singlets or color-octets. Operators not appearing in this set

either vanish, or can be reduced to a linear combination of the operators in this set through

color Fierz and/or generalized Fierz transformations, as we show in the Appendix (Section
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8.2). We note that these 8 scalar operators are equivalent to the basis presented in [30]. 6

Operators in groups separated by line breaks have the same chiral structure and will mix

with each other under QCD renormalization.

3 Below the ∆L = 2 mass scale: weak scale operators

The physics of the ∆L = 2 processes is assumed to be higher than the weak scale, so

that at scales below Λ such physics can be characterized by a series of higher dimension

operators expanding in 1/Λ and v/Λ. Above the weak scale we are assuming the electroweak

symmetry is linearly realized with a single Higgs boson doublet H. In this section we

determine all the lowest dimension ∆L = 2 (and baryon conserving) operators that are

invariant under the SM gauge symmetry, that after electroweak symmetry breaking give

operators found in Eqn. (2.1) 7. As we shall see, such operators form a subset of the

operators appearing in Eqn. (2.1).

Our notation is the following: Q = (u d)L, ℓ = (ν l)L, andH is the Higgs doublet of the

SM with hypercharge assigment +1/2 with vacuum expectation value (vev) H → (0 v/
√
2),

v ≃ 247 GeV; Roman letters a, b, c, ... = 1, 2 refer to SU(2)L indices. We form SU(2)L
invariants using δab and ǫ = iσ(2) (with ǫ12 = +1), and use the SU(2)L Fierz identity to

eliminate σaσa in favor of δ’s. We only consider operators involving first generation fields,

since our focus is on those operators which contribute directly to neutrinoless double β

decay.

3.1 Dimension–9

These operators necessarily involve 4 quark fields and 2 lepton fields, and therefore do not

involve any Higgs fields. We organize the operators by whether the lepton bilinear is ∼ ℓℓC ,
eRe

C
R or ℓeCR.

3.1.1 ℓℓC

The operators in this category involve two lepton doublets and therefore the number of

quark doublets must be even. Hypercharge isn’t conserved with zero or four quark dou-

blets. That leaves three operators containing two quark doublets, corresponding to three

possibilities for the remaining two (right-handed) quarks: uRuR, uRdR, and dRdR. To

obtain ud, each quark doublet has to SU(2)L contract with a lepton doublet, since they

can’t contract with each other: QQ = uLuL + dLdL and QQ = 0 if the two Q’s are from

the same generation. If two Q’s are from the different generation, then QQ′ can be non-

zero, but then the two lepton doublets would have to SU(2)L contract with each other and

6A previous version of this manuscript presented a larger minimal basis of 10 scalar operators equivalent

(after some Fierzing) to the 10 4-quark operators used in analyses of beyond-the-Standard Model contribu-

tions to ∆S = 2 processes [31]. The author thanks V. Cirigliano, W. Dekens, E. Mereghetti and B. Tiburzi

for discussions on reducing the operator basis through eliminating 4-quark operators of the form σµν
⊗σµν .

The author finds that all of the vector operators of the form γν ⊗ σνµ appearing in a previous version of

the manuscript can be removed by Fierz identities.
7See footnote 5.
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that would require lepton doublets from two different generations, a possibility we do not

explore here. The electroweak contractions are unique.

LM1 = iσ
(2)
ab (Qaγ

µQc)(uRγµdR)(ℓbℓ
C
c )

= (uRγ
µdR)

[

(uLγµdL)(eLe
C
L ) + (uLγµuL − dLγµdL)(eLνCL )

− (dLγµuL)(νLν
C
L )
]

LM2 = iσ
(2)
ab (Qaγ

µλAQc)(uRγµλ
AdR)(ℓbℓ

C
c )

LM3 = (uRQa)(uRQb)(ℓaℓ
C
b )

=
[

(uRdL)(uRdL)(eLe
C
L ) + 2(uRdL)(uRuL)(eLν

C
L )

+ (uRuL)(uRuL)(νLν
C
L )
]

LM4 = (uRλ
AQa)(uRλ

AQb)(ℓaℓ
C
b )

LM5 = iσ
(2)
ab iσ

(2)
cd (QadR)(QcdR)(ℓbℓ

C
d )

=
[

(uLdR)(uLdR)(eLe
C
L )− 2(uLdR)(dLdR)(eLν

C
L )

+ (dLdR)(dLdR)(νLν
C
L )
]

LM6 = iσ
(2)
ab iσ

(2)
cd (Qaλ

AdR)(Qcλ
AdR)(ℓbℓ

C
d )

Here we see that LM1–LM6 operators contribute to all three types of hadron collider

signatures. For the LM1 operator, for example, the individual component operators in

the first line contribute to a same-signed di-lepton signal and to MET + a single lepton,

and the component operator in the last line to 2j+ MET. Individually, each LM operator

contributes more or less with equal rates to each of these hadron collider signatures. In

LM1, LM3 and LM5, each quark bilinear is a color-singlet, whereas in the operators LM2,

LM4 and LM6, each quark bilinear transforms under SU(3)c as a color-octet.

3.1.2 eRe
C
R

Next we have our first dimension–9 operator that only contributes to a same–signed dilep-

ton signal, simply because the SU(2)L invariant operator does not involve any left-handed

lepton fields, and hence no neutrinos. It is

LM7 = (uRγ
µdR)(uRγµdR)(eRe

C
R)

A Fierz transformation shows this operator is identical to the operator where the color is

contracted between quark and anti-quarks of different bilinears. The color-octet operator

is therefore not independent from the operator above. There are no operators in this

sub-category involving quark doublets because one can’t conserve hypercharge.

3.1.3 ℓγµeCR

The operators in this set contain one right-handed eR and one left-handed ℓ field, so the

operators in this sub-category must have an odd number of quark doublets to obtain an
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SU(2)L invariant. The 4 quarks must have a total hypercharge of −3/2 to cancel that

of the leptons, a consideration that excludes the possibility of three quark doublets. The

two choices below correspond to having a quark doublet or an anti-quark doublet. The

electroweak contractions are unique.

LM8 = (uRγ
µdR)iσ

(2)
ab (QadR)(ℓbγµe

C
R)

= (uRγ
µdR)

[

(uLdR)(eLγµe
C
R)− (dLdR)(νLγµe

C
R)
]

LM9 = (uRγ
µλAdR)iσ

(2)
ab (Qaλ

AdR)(ℓbγµe
C
R)

LM10 = (uRγ
µdR)(uRQa)(ℓaγµe

C
R)

= (uRγ
µdR)

[

(uRdL)(eLγµe
C
R) + (uRuL)(νLγµe

C
R)
]

LM11 = (uRγ
µλAdR)(uRλ

AQa)(ℓaγµe
C
R)

They each contribute to a same-signed dilepton signal as well as to a lepton + MET signal,

but not to a 2j+ MET signal.

Operators of the form γν⊗σνµ can be eliminated by generalized Fierz transformations;

the reader is referred to Section 8.2 for further details.

3.1.4 Dimension-9 summary

In short, at this dimension we have the following set of 15 electroweak invariant operators:

LM1 = iσ
(2)
ab (Qaγ

µQc)(uRγµdR)(ℓbℓ
C
c ) (3.1a)

LM2 = iσ
(2)
ab (Qaγ

µλAQc)(uRγµλ
AdR)(ℓbℓ

C
c ) (3.1b)

LM3 = (uRQa)(uRQb)(ℓaℓ
C
b ) (3.1c)

LM4 = (uRλ
AQa)(uRλ

AQb)(ℓaℓ
C
b ) (3.1d)

LM5 = iσ
(2)
ab iσ

(2)
cd (QadR)(QcdR)(ℓbℓ

C
d ) (3.1e)

LM6 = iσ
(2)
ab iσ

(2)
cd (Qaλ

AdR)(Qcλ
AdR)(ℓbℓ

C
d ) (3.1f)

LM7 = (uRγ
µdR)(uRγµdR)(eRe

C
R) (3.1g)

LM8 = (uRγ
µdR)iσ

(2)
ab (QadR)(ℓbγµe

C
R) (3.1h)

LM9 = (uRγ
µλAdR)iσ

(2)
ab (Qaλ

AdR)(ℓbγµe
C
R) (3.1i)

LM10 = (uRγ
µdR)(uRQa)(ℓaγµe

C
R) (3.1j)

LM11 = (uRγ
µλAdR)(uRλ

AQa)(ℓaγµe
C
R) (3.1k)

The 11 operators above correspond to 11 of the 24 operators in Eqn.(2.1). At this leading

order in v/Λ only the following eleven 4-quark operators can appear, out of a possible set

of 16: O1LR, Oλ
1LR, O2RL, Oλ

2RL, O2LR, Oλ
2LR, O3R, Oµ

RRLR, O
λµ
RRLR, O

µ
RRRL, and O

λµ
RRRL.

The results obtained here suggest that lattice QCD efforts to study the matrix elements of

4-quark operators relevant to a neutrinoless double β decay signal should focus on this set of

operators. We note that out of the 8 scalar operators that are allowed by SU(3)c×U(1)em
invariance, 7 of these operators are allowed, by the full electroweak invariance of the theory,

at LO in v/Λ. To LO the only operator that does not appear is O3L. The results of this

Section are summarized in Table 1.
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operator content
hadron collider signatures

Low Energy χPT (ππ)
same-sign

dilepton

e+MET dijet+ MET

dimension 9

LM1 iσ
(2)
ab (Qaγ

µQc)(uRγµdR)(ℓbℓ
C
c )

√ √ √ O1LR ⊗ (LL) LO

LM2 iσ
(2)
ab (Qaγ

µλAQc)(uRγµλ
AdR)(ℓbℓ

C
c )

√ √ √ Oλ
1LR ⊗ (LL) LO

LM3 (uRQa)(uRQb)(ℓaℓ
C
b )

√ √ √ O2RL ⊗ (LL) LO

LM4 (uRλ
AQa)(uRλ

AQb)(ℓaℓ
C
b )

√ √ √ Oλ
2RL ⊗ (LL) LO

LM5 iσ
(2)
ab iσ

(2)
cd (QadR)(QcdR)(ℓbℓ

C
d )

√ √ √ O2LR ⊗ (LL) LO

LM6 iσ
(2)
ab iσ

(2)
cd (Qaλ

AdR)(Qcλ
AdR)(ℓbℓ

C
d )

√ √ √ Oλ
2LR ⊗ (LL) LO

LM7 (uRγ
µdR)(uRγµdR)(eRe

C
R)

√
⌢̈ ⌢̈ O3R ⊗ (RR) NNLO

LM8 (uRγ
µdR)iσ

(2)
ab (QadR)(ℓbγµe

C
R)

√ √
⌢̈ Oµ

RRLR ⊗ (LR) -

LM9 (uRγ
µλAdR)iσ

(2)
ab (Qaλ

AdR)(ℓbγµe
C
R)

√ √
⌢̈ Oλµ

RRLR ⊗ (LR) -

LM10 (uRγ
µdR)(uRQa)(ℓaγµe

C
R)

√ √
⌢̈ Oµ

RRRL ⊗ (LR) -

LM11 (uRγ
µλAdR)(uRλ

AQa)(ℓaγµe
C
R)

√ √
⌢̈ Oλµ

RRRL ⊗ (LR) -

Table 1. Table of dimension-9 electroweak invariant operators contributing to 0νββ decay and

hadron collider processes. A ‘
√
’ indicates the operator contributes to the hadron collider process,

whereas a ‘⌢̈’ indicates that it does not. In the “Low Energy” column the notation LL, LR, and

RR refer to whether the two leptons in the operator are eLe
C
L , eLγ

µeCR, or eRe
C
R, respectively. For a

given operator , the last column indicates at what chiral order the two-pion interactions first appear,

using the results summarized in Tables 2 and 3. A ‘-’ indicates the operator does not contribute to

NNLO order.

4 Mapping onto chiral perturbation theory

The next step is to obtain the effective Hamiltonian of these interactions inside a nucleus,

using chiral perturbation theory (χPT) to match the effective theory at the GeV scale onto

the effective theory involving pions and nucleons defined below that scale. The application

of χPT to neutrinoless double β was pioneered and developed in Ref. [22]. The processes

relevant to neutrinoless double β decay are shown in Figure 1. The strength of the contact

interaction involving two electrons to pions and nucleons can only be determined accurately

using lattice QCD. As noted in the Introduction, preliminary lattice results for the ππ

matrix elements now exist [27]. Approximate chiral SU(3) symmetry can also be used to

estimate the same ππ matrix elements, by relating them to Kππ [28] [29] and K0-K
0
[29]

matrix elements, which have been computed using lattice QCD.

The χPT formalism organizes the effective theory into a simultaneous expansion in

∂/(4πfπ) and mπ/(4πfπ), where ∂ ∼ mπ is a typical momentum transfer. Since quarks
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Figure 1. Representative Feynman diagrams contributing to neutrinoless double beta decay inside

of a nucleus. Diagram (a) due to induced ππee vertices, (b) due to induced πNNee vertices, and

(c) due to induced NNNNee vertices.

couple to all hadrons, intuitively these 4-quark operators will induce couplings of the lepton

bilinear to nucleons and importantly, to pions. In the power counting, the neutrinoless

double beta decay rate will be formally dominated by the long-distance contribution caused

by the exchange of pions, rather than the direct coupling of the two leptons to a 4-nucleon

contact operator.

This intuition can be formalized by the explicit power counting of the diagrams shown

in Fig. 1 that contribute to a 0νββ decay signal inside of a nucleus. The power counting

involves two parts. First, the quark operators O in Eqs. (2.2a-2.3h) are mapped onto

all possible hadronic operators Õ that have the same transformation properties under

SU(2)L × SU(2)R, with each such operator Õ appearing at some given chiral order. The

interactions Õ important to neutrinoless double β decay are vertices containing two pions,

a pion and two nucleons, or four nucleons. Then the operators Õee are inserted into a

diagram involving four external nucleons and two electrons, as shown in Fig. 1. If we

denote the chiral order of Õ as nL
Õ
, where nL

Õ
can be found from Tables 2 or 3, then the

chiral order of diagram (a) which has an insertion of a ππee interaction is nLππ−2, diagram

(b) which has a πNNee interaction is nLπNN − 1, and diagram (c) with an NNNNee

interaction insertion is nLN4 . An operator that contributes to a ππee interaction at lowest

order is seen to be “enhanced” in the neutrinoless double β decay amplitude due to the

long-distance pion exchange, as compared to its lowest order contribution to the other

vertices.

Inspecting the last column in Table 1, the power scaling of the amplitude due to an

insertion of one of the operators LM1–LM6 is p−2 and is dominated by the LO contribution

those operators make to the ππee interaction. The amplitude for an insertion of an operator

in LM8–LM13 has a higher chiral order since none of these operators contribute at LO to

the ππee interaction, as we show below.

To map quark operators O onto Õ operators in the effective chiral theory, we follow

Ref. [28] and write each 4-quark operator as

O = T ab
cd (q

cΓqa)(q
dΓ′qb) (4.1)

for some Dirac matrices Γ and Γ′. Here a, b are SU(2) flavor indices,

T ab
cd = (τ+) a

c (τ+) b
d , (4.2)

– 13 –



and qL = (u d)L and qR = (u d)R. The transformation of T under SU(2)L × SU(2)R is

then determined by the transformations of the quarks, 8 and by the requirement that O is

invariant under the chiral symmetry. This means that the transformation of T will involve

a product of Ls and Rs,

T → T ⊗X1 ⊗X2 ⊗X3 ⊗X4 (4.3)

where each Xi is L† for a qL, R
† for a qR, and L for a qL, R for a qR. Four such X’s

appear, one for each quark in the operator O. Quark operators O that differ in their Dirac

matrices Γ and Γ′ but that have the same SU(2)L×SU(2)R transformations will map onto

the same chiral operators Õ, and appear in the low-energy theory with different low-energy

constants.

In the chiral theory, one forms operators Õ(π,N) out of the pions (π) and nucleons

(N) such that T ab
cd Õcd

ab(π,N) is chirally invariant. In general a single 4-quark operator will

map onto multiple operators in the chiral theory.

To illustrate, recall that under SU(2)L×SU(2)R, the pion composite field ξ = Exp[π ·
τ/2Fπ ] has a bilinear transformation ξ → LξU † = UξR†, and the nucleon field N trans-

forms linearly, N → UN , for unitary L, R and U(ξ, L,R). The τa’s are the Pauli matrices.

To each operator O we have the transformation of T as described above. Using this T , we

first construct a “proto” Õ out of products of ξ and ξ†’s, such that under SU(2)L×SU(2)R,

the explicit dependence of L and R’s exactly cancels.

One can also create additional proto − Õ objects at higher chiral order by inserting

derivatives Dµ or quark masses. Recall the derivative is Dµ ≡ ∂µ+iVµ with Vµ = −i(ξ†∂µξ+
ξ∂µξ

†)/2. Under chiral transformations Vµ → U(Vµ+i∂µU)U †, such thatDµξ → U(Dµξ)R
†

transforms the same as ξ. Since the quark mass matrix transforms as mq → RmqL
†,

the combination mqξ transforms as mqξ → R(mqξ)U
† which is the same transformation

property as ξ†. This means that for any proto − Õ operator generated using the method

described in the previous paragraph, new operators with higher chiral order can be created

by substituting ξ → Dµξ, ξ
† → mqξ or ξ → ξ†m†

q.

Because ξ and ξ† transform bilinearly, the “proto”-Õ will not be invariant, but will

instead transform like

(proto− Õ) → (proto− Õ)⊗ Y1 ⊗ Y2 ⊗ Y3 ⊗ Y4 (4.4)

where each Yi is either a U or U †.

To obtain invariants, one simply does the following.

• To obtain Õ involving only pion fields, contract the four “free” indices of the proto−Õ
in all possible ways so that the product of U ’s and U †’s in Eqn. (4.4) give the identity

because U is unitary.

• To obtain Õ involving pion fields and only two nucleons, multiply two of the free

indices of proto− Õ by a nucleon and anti-nucleon, in all possible combinations, so

that a U and U † in Eqn. (4.4) cancel. Contract the remaining two free indices to form

an invariant. This procedure will generate chirally invariant two nucleon operators.

8That is, qLa → Lb
aqLb, q

a
L → qcLL

†a
c , where L†a

c Lb
a = δbc, L

†a
b ≡ (L∗)ba, and similar relations for L → R.
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• To obtain Õ involving pion fields and four nucleons, multiply the free indices of

proto − Õ by two nucleons and two-anti nucleons in all inequivalent combinations,

such that the U and/or U †’s cancel under the SU(2)L×SU(2)R transformation. This

procedure will generate chirally invariant four-nucleon operators.

• New operators having higher chiral order can also be generated. One can iterate

the process described above by substituting derivatives, ξ → Dµξ, or a quark mass

matrix, ξ† → mqξ or ξ → ξ†m†
q. Or one can also multiply in by other chirally

invariant operators such as tr(DµξDµξ
†), etc. Finally, one can form operators out of

additional products of T or T †’s, but the net number of T ’s −T †’s= 1 to conserve

electric charge.

We focus for the rest of this section on operators Õ that only involve pion fields and

no nucleons. The reason is that formally in the power counting these vertices give the

dominant contribution to the 0νββ decay amplitude in a nucleus, as discussed previously.

We note that the proto− Õ obtained for each Oi in the sections that follow are still useful

beyond the context of determining the ππ operators, for they are also needed as a first step

in systematically determining the πNN and NNNN operators. We next consider each

operator Oi in turn. In the subsections that follow we set Fπ = 1.

4.1 Scalar ππ operators

4.1.1 O1LR, Oλ
1LR

Since these three operators have the same SU(2)L × SU(2)R transformation properties,

they each map onto the same chiral operators. Because of that we will only discuss one

such operator, with the implication that our results apply to the other operator. We will

be illustrative in this way throughout this subsection and the one that follows.

With

O1LR ≡ (qLγ
µτ+qL)(qRγµτ

+qR),

T ab
cd → Tαβ

ρσ L
ρ
cR

σ
dL

†a
α R

†b
β

proto− Õ1LR = T ab
cd ξ

i
aξ

†j
b ξ

†c
k ξ

d
l

where to be specific ξia → Lb
aξ

k
bU

†i
k = U b

aξ
k
bR

†i
k , ξ

†j
b → U c

b ξ
†k
c L

†j
k = Rc

bξ
†k
c U

†j
k . To obtain an

invariant contract i with k and j with l, or i with l and k with j. The former option gives

a vanishing double trace operator, tr(ξ†τ+ξ)tr(ξτ+ξ†) = 0 since ξξ† = 1. The latter option

gives tr(ξξτ+ξ†ξ†τ+) = 2π−π− + · · · . Thus O1LR gives one pion operator at LO.

4.1.2 O2RL, Oλ
2RL

With

O2RL ≡ (qRτ
+qL)(qRτ

+qL),

T ab
cd → Tαβ

ρσ R
ρ
cR

σ
dL

†a
α L

†b
β

proto− Õ2RL = T ab
cd ξ

i
aξ

j
bξ

c
kξ

d
l
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As before, the two possible contractions give tr(τ+ξξτ+ξξ) = −2π−π− + O(π3), and a

double trace operator tr(τ+ξξ)tr(τ+ξξ) = (
√
2iπ−)2 + O(π3). Thus O2RL gives two pion

operators at LO.

4.1.3 O2LR, Oλ
2LR

With

O2LR ≡ (qLτ
+qR)(qLτ

+qR)

T ab
cd → Tαβ

ρσ L
ρ
cL

σ
dR

†a
α R

†b
β

proto− Õ2LR = T ab
cd ξ

i†
a ξ

†j
b ξ

†c
k ξ

†d
l

Likewise, here there are two invariant operators, tr(τ+ξ†ξ†τ+ξ†ξ†) = −2π−π− + O(π3),

and a double trace operator tr(τ+ξ†ξ†)tr(τ+ξ†ξ†) = (−
√
2iπ−)2 +O(π3) Thus O2LR gives

two pion operators at LO.

4.1.4 O3L

With

O3L ≡ (qLγ
µτ+qL)(qLγµτ

+qL)

T ab
cd → Tαβ

ρσ L
ρ
cL

σ
dL

†a
α L

†b
β

so two ξ’s and two ξ†’s are needed,

proto− Õ3L = T ab
cd ξ

i
aξ

j
bξ

†c
k ξ

†d
l (4.5)

To construct an invariant, we either can contract i with k and j with l, or i with l

and j with k. With T ab
cd = (τ+)ac (τ

+)bd, the first possibility gives a double trace oper-

ator tr(ξ†τ+ξ)tr(ξ†τ+ξ) which vanishes, because ξξ† = 1. The second possibility gives

tr(ξ†τ+ξξ†τ+ξ). However, for the same reasons this operator also vanishes.

Therefore to leading chiral order (LO), O3L does not have any purely pionic operators.

This finding confirms in a more systematic manner the same conclusion reached by Ref.

[22]. Turning to NNLO, here one does find non-vanishing operators obtained by applying

derivatives. One has three single trace operators,

tr(Dµξ†τ+Dµξξ
†τ+ξ), tr(Dµξ†τ+ξDµξ

†τ+ξ), tr(ξ†τ+Dµξξ†τ+Dµξ), (4.6)

and three double trace operators

tr(Dµξ†τ+ξ)tr(Dµξ
†τ+ξ), tr(ξ†τ+Dµξ)tr(Dµξ

†τ+ξ), tr(ξ†τ+Dµξ)tr(ξ†τ+Dµξ). (4.7)

For instance, the first single trace operator in Eq. (4.6) is = (∂µπ−)2/2 + · · · and the first

double trace operator in Eq. (4.7) is = −(∂µπ−)2/2+ · · · . To get a non-vanishing operator

from inserting quark masses one needs to insert two quark mass matrices, because at LO

both the single and double trace operators above have two instances of ξξ† = 1. Such

operators are however beyond NNLO.

– 16 –



scalar 4-quark operator

O1LR, Oλ
1LR, O2LR, Oλ

2LR, O2RL, Oλ
2RL O3L, O3R

nOππ LO NNLO

Table 2. Chiral order of ππ interactions induced by the 8 scalar operators O.

4.1.5 O3R

With

O3R ≡ (qRγ
µτ+qR)(qRγµτ

+qR) (4.8)

this operator will have the same transformation properties as O3L except with L → R.

Like O3L, it will not have any purely pionic operators at LO. More explicitly,

T ab
cd → Tαβ

ρσ R
ρ
cR

σ
dR

†a
α R

†b
β (4.9)

and since under L→ R, ξ → ξ†,

proto− Õ3R = T ab
cd ξ

†i
a ξ

†j
b ξ

c
kξ

d
l (4.10)

The two possible contractions in this case give tr(ξτ+ξ†)tr(ξτ+ξ†) = 0 and tr(ξτ+ξ†ξτ+ξ†) =

0.

O3R does not have any purely pionic operators to LO. This result is not surprising

given the previous result for O3L and the parity invariance of the QCD interactions. At

NNLO one finds 3 double trace and 3 single trace operators, and no operators involving

quark masses, just like with O3L. These operators can be obtained from Eqs. (4.6) and

(4.7) by the substitution ξ ←→ ξ†.

The results for the scalar operators are summarized in Table 2.

4.2 Vector ππ operators

It was noted in [22] that these operators don’t contribute at LO. The reason is that at LO

the effective Lagrangian must be of the form

π−∂µπ−eγµγ5e
c . (4.11)

By an integration of parts in the effective Lagrangian and use of the electron equations of

motion, this operator is seen to be proportional to electron mass and can be neglected.

At NNLO one can show that the same manipulations can be used to make all the two-

pion vector operators proportional to the electron mass. For instance, one has operators

such as

∂2π−∂µπ−eγµγ5e
c , ∂νπ−∂ν∂

µπ−eγµγ5e
c (4.12)

but here one can use the pion equations of motion [32] and integration by parts to again

obtain an operator of the form that appears in Eq. (4.11), which can be neglected.

In the following subsections we identify the purely pionic Õµ operators through to

NNLO. The reason for doing this is that as an intermediate step the proto-Õµ operators are

constructed, which can be used as a basis for determining the determining the inequivalent

two nucleon and four nucleon operators.
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4.2.1 Oµ
LLLR, O

λµ
LLLR

With

Oµ
LLLR ≡ (qLγ

µτ+qL)(qLτ
+qR) (4.13a)

T ab
cd → Tαβ

ρσ L
ρ
cL

σ
dL

†a
α R

†b
β (4.13b)

proto− Õµ
LLLR = Dµ ⊗ T ab

cd ξ
i
aξ

†j
b ξ

†c
k ξ

†d
l (4.13c)

where Dµ⊗ means the four independent operators formed out of Dµ contracted with a ξ or

a ξ†. By the linearity of D, operators such as D(ξξ),D(ξξξ), etc., are not independent from
operators having the derivative act on a single ξ. Because Dµξ has the same transformation

properties as ξ, we can construct invariants in the same way as before, leading to a set of

single and double trace operators, each involving a single derivative at LO. One can obtain

proto-operators at NNLO chiral order by either applying two derivatives Dν ⊗ Dν in all

possible ways, or insert a single quark mass matrix, to the proto-operators in Eq. (4.13c).

4.2.2 Oµ
RRLR, O

λµ
RRLR

One finds

Oµ
RRLR ≡ (qRγ

µτ+qR)(qLτ
+qR) (4.14a)

T ab
cd → Tαβ

ρσ R
ρ
cL

σ
dR

†a
α R

†b
β (4.14b)

proto− Õµ
RRLR = Dµ ⊗ T ab

cd ξ
†i
a ξ

†j
b ξ

c
kξ

†d
l (4.14c)

4.2.3 Oµ
LLRL, O

λµ
LLRL

One finds

Oµ
LLRL ≡ (qLγ

µτ+qL)(qRτ
+qL) (4.15a)

T ab
cd → Tαβ

ρσ L
ρ
cR

σ
dL

†a
α L

†b
β (4.15b)

proto− Õµ
LLRL = Dµ ⊗ T ab

cd ξ
i
aξ

j
bξ

†c
k ξ

d
l (4.15c)

4.2.4 Oµ
RRRL, O

λµ
RRRL

One finds

Oµ
RRRL ≡ (qRγ

µτ+qR)(qRτ
+qL) (4.16a)

T ab
cd → Tαβ

ρσ R
ρ
cR

σ
dR

†a
α L

†b
β (4.16b)

proto− Õµ
RRRL = Dµ ⊗ T ab

cd ξ
†i
a ξ

j
bξ

c
kξ

d
l (4.16c)

These results for the vector operators are summarized in Table 3.
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(vector 4-quark operator) ⊗ eγµγ5e
c

Õ , Õλ
∗

nOππ -

Table 3. Chiral order of ππee interactions induced by vector operators Õ∗ ≡ Oµ
∗ eγµγ5e

c and

Õλ
∗
≡ Oλµ

∗ eγµγ5e
c, where ∗ = LLLR, RRLR, LLRL or RRRL. These interactions with two

leptons can be eliminated to NNLO order as discussed in Ref. [22] and the text.

5 Dimension-11

The intent in this Section is find dimension-11 operators that after electroweak symmetry

reduce to those operators in Eqn. (2.1) that have not previously been found at dimension-

9. No attempt is made in this Section to find a complete basis at dimension-11, as for

example one can always take a previously appearing dimension-9 operator and multiply it

by H†H to get a dimension-11 operator. There are also qualitatively new operators that

appear, such as the following electroweak invariant operator

(uRγ
µT adR)(uRγ

νdR)G
a
µνeRe

C
R (5.1)

Twelve of the operators that don’t appear at dimension-9 are made SU(2)L × U(1)Y
gauge invariant through the insertion of additional Higgs fields, as follows.

5.1 eRe
C
R

LM12 = iσ
(2)
ab H

∗
aH

∗
c (Qbγ

µQc)(uRγµdR)(eRe
C
R)

→ −1

2
v2(uLγ

µdL)(uRγµdR)(eRe
C
R)

LM13 = iσ
(2)
ab H

∗
aH

∗
c (Qbγ

µλAQc)(uRγµλ
AdR)(eRe

C
R)

LM14 = H∗
aH

∗
b (uRQa)(uRQb)(eRe

C
R)

→ 1

2
v2(uRdL)(uRdL)(eRe

C
R)

LM15 = H∗
aH

∗
b (uRλ

AQa)(uRλ
AQb)(eRe

C
R)

LM16 = iσ
(2)
ab iσ

(2)
cd H

∗
aH

∗
c (QbdR)(QddR)(eRe

C
R)

→ 1

2
v2(uLdR)(uLdR)(eRe

C
R)

LM17 = iσ
(2)
ab iσ

(2)
cd H

∗
aH

∗
c (Qbλ

AdR)(Qdλ
AdR)(eRe

C
R)

Above and in what follows, ‘→’ means ‘insert Higgs vev’.

5.2 ℓℓC

LM18 = HaHb(uRγ
µdR)(uRγµdR)(ℓaℓ

C
b )

→ 1

2
v2(uRγ

µdR)(uRγµdR)(eLe
C
L )
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The next set of four operators contribute at low energy to the same 0νββ operator

(hence the same label), but contribute differently to lepton+MET and 2j+ MET.

LM19a = iσ(2)ae iσ
(2)
cf H

∗
bH

∗
d (Qaγ

µQb)(QcγµQd)(ℓeℓ
C
f )

→ 1

2
v2
[

(uLγ
µdL)(uLγµdL)(eLe

C
L )− 2(uLγ

µdL)(dLγµdL)(eLν
C
L )

+ (dLγ
µdL)(dLγµdL)(νLν

C
L )
]

,

LM19b = iσ(2)ae iσ
(2)
cf H

∗
eH

∗
d (Qaγ

µQb)(QcγµQd)(ℓbℓ
C
f )

→ 1

2
v2
[

(uLγ
µdL)(uLγµdL)(eLe

C
L ) + (uLγ

µuL − dLγµdL)(uLγµdL)(eLνCL )

− (uLγ
µuL)(dLγµdL)(νLν

C
L )
]

,

LM19c = iσ(2)ae iσ
(2)
cf H

∗
eH

∗
c (Qaγ

µQb)(QfγµQd)(ℓbℓ
C
d )

→ −1

2
v2
[

(uLγ
µdL)(uLγµdL)(eLe

C
L ) + 2(uLγ

µuL)(uLγµdL)(eLν
C
L )

+ (uγµuL)(uLγµuL)(νLν
C)
]

,

LM19d = iσ(2)ae iσ
(2)
cf H

∗
cH

∗
d (Qeγ

µQb)(QfγµQd)(ℓaℓ
C
b )

→ 1

2
v2(uLγ

µdL)
[

(uLγµdL)(eLe
C
L ) + (uLγµuL − dLγµdL)(eLνCL ),

− (dLγµuL)(νLν
C
L )
]

.

The color-octet versions of the above operators are not independent, as shown in Section

8.2.

5.3 ℓγµeCR

The next three operators contribute to both SS dilepton and lepton+ MET,

LM20 = iσ(2)ae iσ
(2)
cd H

∗
eH

∗
b (Qaγ

µQb)(QcdR)(ℓdγµe
C
R) (5.2)

→ 1

2
v2(uLγ

µdL)
[

(uLdR)(eLγµe
C
L )− (dLdR)(νLγµe

C
R)
]

(5.3)

LM21 = iσ(2)ae iσ
(2)
cd H

∗
eH

∗
b (Qaγ

µλAQb)(Qcλ
AdR)(ℓdγµe

C
R) (5.4)

The next three operators contribute at low - energy to the same 0νββ operator, but as

with LM19(a-d), contribute differently to the other processes (in this case, only to lepton
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operator content
hadron collider signatures

Low Energy χPT (ππ)
same-sign

dilepton

e+MET dijet+ MET

dimension 11

LM12 iσ
(2)
ab H

∗
aH

∗
c (Qbγ

µQc)(uRγµdR)(eRe
C
R)

√
⌢̈ ⌢̈ O1LR ⊗ (RR) LO

LM13 iσ
(2)
ab H

∗
aH

∗
c (Qbγ

µλAQc)(uRγµλ
AdR)(eRe

C
R)

√
⌢̈ ⌢̈ Oλ

1LR ⊗ (RR) LO

LM14 H∗
aH

∗
b (uRQa)(uRQb)(eRe

C
R)

√
⌢̈ ⌢̈ O2RL ⊗ (RR) LO

LM15 H∗
aH

∗
b (uRλ

AQa)(uRλ
AQb)(eRe

C
R)

√
⌢̈ ⌢̈ Oλ

2RL ⊗ (RR) LO

LM16 iσ
(2)
ab iσ

(2)
cd H

∗
aH

∗
c (QbdR)(QddR)(eRe

C
R)

√
⌢̈ ⌢̈ O2LR ⊗ (RR) LO

LM17 iσ
(2)
ab iσ

(2)
cd H

∗
aH

∗
c (Qbλ

AdR)(Qdλ
AdR)(eRe

C
R)

√
⌢̈ ⌢̈ Oλ

2LR ⊗ (RR) LO

LM18 HaHb(uRγ
µdR)(uRγµdR)(ℓaℓ

C
b )

√
⌢̈ ⌢̈ O3R ⊗ (LL) NNLO

LM19a iσ
(2)
ae iσ

(2)
cf H

∗
bH

∗
d(Qaγ

µQb)(QcγµQd)(ℓeℓ
C
f )

√ √ √ O3L ⊗ (LL) NNLO

LM19b iσ
(2)
ae iσ

(2)
cf H

∗
eH

∗
d(Qaγ

µQb)(QcγµQd)(ℓbℓ
C
f )

√ √ √
“same as LM19a” “same as LM19a”

LM19c iσ
(2)
ae iσ

(2)
cf H

∗
eH

∗
c (Qaγ

µQb)(QfγµQd)(ℓbℓ
C
d )

√ √ √
“same as LM19a” “same as LM19a”

LM19d iσ
(2)
ae iσ

(2)
cf H

∗
cH

∗
d (Qeγ

µQb)(QfγµQd)(ℓaℓ
C
b )

√ √ √
“same as LM19a” “same as LM19a”

Table 4. Table of dimension-11 electroweak invariant operators contributing to 0νββ decay and

hadron collider processes. After restricting the Higgs field to its vev, these operators do not repro-

duce any of the operators appearing in Table 1. Same notation as Table 1. All the quark operators

appearing in this Table are scalar.

+ MET).

LM22a = iσ
(2)
ab H

∗
bH

∗
c (Qaγ

µQc)(uRQd)(ℓdγµe
C
R)

→ 1

2
v2(uLγ

µdL)
[

(uRdL)(eLγµe
C
R) + (uRuL)(νLγµe

C
R)
]

LM22b = iσ
(2)
ab H

∗
bH

∗
d (Qaγ

µQc)(uRQd)(ℓcγµe
C
R)

→ 1

2
v2(uRdL)

[

(uLγ
µdL)(eLγµe

C
R) + (uLγ

µuL)(νLγµe
C
R)
]

LM22c = iσ
(2)
ab H

∗
cH

∗
d (Qaγ

µQc)(uRQd)(ℓbγµe
C
R)

→ 1

2
v2(uRdL)

[

(uLγ
µdL)(eLγµe

C
R)− (dLγµdL)(νLγµe

C
R)
]

We also have the color-octet versions

LM23a = iσ
(2)
ab H

∗
bH

∗
c (Qaγ

µλAQc)(uRλ
AQd)(ℓdγµe

C
R)

LM23b = iσ
(2)
ab H

∗
bH

∗
d (Qaγ

µλAQc)(uRλ
AQd)(ℓcγµe

C
R)

LM23c = iσ
(2)
ab H

∗
cH

∗
d (Qaγ

µλAQc)(uRλ
AQd)(ℓbγµe

C
R) .

In total there are 19 dimension-11 operators suppressed by an additional power of

v2/Λ2, that at low-energy lead to 12 of the operators in Eq. (2.1) that don’t appear at

dimension-9. The results of this Section are summarized in Tables 4 and 5.
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operator content
hadron collider signatures

Low Energy χPT (ππ)
same-sign

dilepton

e+MET dijet+ MET

dimension 11

LM20 iσ
(2)
ae iσ

(2)
cd H

∗
eH

∗
b (Qaγ

µQb)(QcdR)(ℓdγµe
C
R)

√ √
⌢̈ Oµ

LLLR ⊗ (LR) -

LM21 iσ
(2)
ae iσ

(2)
cd H

∗
eH

∗
b (Qaγ

µλAQb)(Qcλ
AdR)(ℓdγµe

C
R)

√ √
⌢̈ Oλµ

LLLR ⊗ (LR) -

LM22a iσ
(2)
ab H

∗
bH

∗
c (Qaγ

µQc)(uRQd)(ℓdγµe
C
R)

√ √
⌢̈ Oµ

LLRL ⊗ (LR) -

LM22b iσ
(2)
ab H

∗
bH

∗
d(Qaγ

µQc)(uRQd)(ℓcγµe
C
R)

√ √
⌢̈ “same as LM22a” -

LM22c iσ
(2)
ab H

∗
cH

∗
d(Qaγ

µQc)(uRQd)(ℓbγµe
C
R)

√ √
⌢̈ “same as LM22a” -

LM23a iσ
(2)
ab H

∗
bH

∗
c (Qaγ

µλAQc)(uRλ
AQd)(ℓdγµe

C
R)

√ √
⌢̈ Oλµ

LLRL ⊗ (LR) -

LM23b iσ
(2)
ab H

∗
bH

∗
d(Qaγ

µλAQc)(uRλ
AQd)(ℓcγµe

C
R)

√ √
⌢̈ “same as LM23a” -

LM23c iσ
(2)
ab H

∗
cH

∗
d(Qaγ

µλAQc)(uRλ
AQd)(ℓbγµe

C
R)

√ √
⌢̈ “same as LM23a” -

Table 5. Table of dimension-11 electroweak invariant operators contributing to 0νββ decay and

hadron collider processes. After restricting the Higgs field to its vev, these operators do not repro-

duce any of the operators appearing in Tables 1 or 4. Same notation as Table 1. All the quark

operators appearing in this Table are vector. A ‘-’ indicates the operator does not contribute to

NNLO order.

6 Dimension-13

At dimension-9 we found 11 operators and at dimension-11 we found 12 more operators

out of the complete set of 24 operators appearing in Eqns. (2.1). That leaves one operator

missing, namely ∼ (uLγ
µdL)(uLγ

µdL)(eRe
C
R) and it only involves left-handed quarks QL.

Since the lepton bilinear has hyper-charge 2 and the part of the operator involving 4-quarks

has 0 hyper-charge, 4 Higgs insertions are needed to make it U(1)Y invariant, and there is

a unique way to contract the SU(2)L indices to make it invariant:

LM24 = iσ
(2)
ab iσ

(2)
de H

∗
aH

∗
cH

∗
dH

∗
f (Qbγ

µQc)(Qeγ
µQf )(eRe

C
R) (6.1)

→ 1

4
v4(uLγ

µdL)(uLγµdL)(eRe
C) (6.2)

This operator only contributes to SS dilepton. This is the operator whose 4-quark matrix

element can be related using SU(3)L×SU(3)R flavor symmetry to the amplitude for K →
ππ [28]. In the effective Lagrangian after electroweak symmetry breaking the coefficient of

this operator is suppressed by v4/Λ4.

The results of this Section are summarized in Table 6.

7 Conclusions

In this paper we enumerate those short distance ∆L = 2 violating, baryon conserving,

dimension-9 operators involving 4-quarks and two charged leptons that can contribute to
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operator content
hadron collider signatures

Low Energy χPT (ππ)
same-sign

dilepton

e+MET dijet+ MET

dimension 13

LM24 iσ
(2)
ab iσ

(2)
de H

∗
aH

∗
cH

∗
dH

∗
f (Qbγ

µQc)(Qeγ
µQf )(eRe

C
R)

√
⌢̈ ⌢̈ O3L ⊗ (RR) NNLO

Table 6. Electroweak invariant dimension-13 operator contributing to 0νββ decay and hadron

collider processes. After restricting the Higgs field to its vev, this operator does not reproduce any

of the operators appearing in Tables 1, 4 or 5. Same notation as Table 1.

a neutrinoless double β decay signal. Compared to previous results [20–22], here we im-

pose electroweak invariance on the operators and determine their possible Lorentz and color

structures. At the level of color and electromagnetic invariance only, here we find a minimal

basis of 24 dimension-9 operators, which cannot be reduced any further through any combi-

nation of Lorentz or color Fierz transformations. The requirement of electroweak invariance

is found to imply a set of 11 dimension-9 operators, a set much smaller than is allowed

by electromagnetic invariance alone. Those operators that do not occur at dimension-9

because they violate electroweak invariance are found to first appear at dimension-11 and,

for one such operator, dimension-13. Electroweak invariance implies additional collider

signatures of such operators in final states involving neutrinos, which could in principle be

detected, but whether that is possible in practice deserves further study. These results are

summarized in Table 1.

We also set up a systematic mapping of the general set of 4-quark operators relevant for

neutrinoless double beta decay onto chiral operators defined in chiral perturbation theory.

Specifically, the chiral operators considered here involve pions coupled to 0, 2 or 4 nucleons.

It has been known that of these chiral operators, those that couple the two leptons to two

pions can lead to an enhanced decay rate compared to couplings between the leptons and

four nucleons or with two nucleons and a pion, due to the long-range feature of the pion

field. The reader is referred again to Fig. 1. Because of this possible enhancement, in this

paper we determine the mapping of the 4-quark operators onto two pions at leading chiral

order, confirming the leading order results found in Ref. [22]. For the phenomenology of

the neutrinoless double beta decay rate, an important finding of Ref. [22] and confirmed

here is that not all hadronic operators are found to have LO couplings to two-pions. These

results are summarized in Tables 2 and 3, and the last column of Table 1.

It is hoped that the results presented here provide a systematic basis for future ex-

plorations of the effects of short distance ∆L = 2 processes on neutrinoless double beta

decay. These directions include determining the complementarity between hadron collider

and neutrinoless double beta decay bounds on such operators, as done in Ref. [18] for a

specific model. Several physical effects must also be put together in order to perform accu-

rate predictions of the neutrinoless double beta decay rate and to relate constraints from

the LHC and neutrinoless double beta decay experiments. These inputs are: the QCD and

electroweak renormalization effects which in general mix such operators; the lattice QCD

matrix elements of such operators between pions and nucleons; and the mapping of the full
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set of neutrinoless double β operators onto chiral operators.
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8 Appendix

8.1 Charge Conjugation Notation

Charge conjugation is given here by ψc ≡ iγ2ψ
∗, which is the same as the FeynRules

definition CC[ψ] = C(ψ)T with C = iγ2γ0. We also denote eCR ≡ (eR)
c and ℓC ≡ (νL lL)

c.

8.2 Complete Basis of Dimension 9 operators after electroweak symmetry

breaking

In this Appendix, I enumerate all possible dimension-9 operators contributing to ∆L = 2

that are only SU(3)c × U(1)em invariant. Such a basis is relevant for both matching elec-

troweak invariant operators to operators defined below the scale of electroweak symmetry

breaking, and for matching onto the chiral effective field theory defined below the GeV

scale. We also refer the reader to the more concise Appendix of Ref. [22], that arrives at

some of the same conclusions as presented here.

The operators of interest involve four quarks and two leptons and will be a product of

three spinor bilinears that are one of the two following forms

(q1Γ1q2)(q3Γ2q4)(eΓ3e
c), (8.1)

or

(q1Γ4q2)(q3Γ5e
c)(eΓ6q4), (8.2)

for some gamma matrices Γ1−6 which are linear combinations of the sixteen gamma matrices

ΓA = {1, γµ, σµν , γµγ5, iγ5} that are a complete basis for 4 × 4 matrices, normalized to

tr[ΓAΓB] = 4δAB .

In Eqns. (8.1) and (8.2) the two leptons are either together, or one is each with one

quark. The second class of operators is redundant, for using the following generalized Fierz

transformation (with no sum over spinor indices i, j, i, j),

(ΓA)ij ⊗ (ΓB)ji =
1

16

∑

X,Y

tr[ΓAΓY ΓBΓX ](ΓX)ii ⊗ (ΓY )jj , (8.3)
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one can put operators of the second class into operators from the first class. Here the

sums for X and Y are each over the complete set of gamma matrices. As an aside, one

can show using the properties {ΓZ ,ΓZ′}± = 0 that if A = B (no sum) then only diagonal

terms X = Y contribute to the right-side of the above relation, and then the above formula

reduces to the “standard” Fierz table appearing in textbooks (see for e.g. [33]).

The quarks are made SU(3)c invariant by contracting a quark with an anti-quark,

giving two possibilities, or using the SU(3)c generators to form a singlet out of two color-

octet operators. These three options are not independent, because of the SU(N) Fierz

identity for the fundamental representation

δασδρβ =
1

N
δαβδρσ + λAαβλ

A
ρσ, (8.4)

where we normalize the generators as Tr[λAλB ] = δAB , α, β, ρ, σ = 1, ..., N , and we sum

over A = 1, ..., N2 − 1.

The next step is to enumerate possible Γ structures for the lepton bilinear and the two

quark bilinears. Since ψγµψc=ψσµνψc=ψσµνγ5ψ
c=0, the only same-flavor (SF) lepton

bilinears are ΓC = ψψc, ψγ5ψ
c, and ψγµγ5ψ

c. If we work with fields having definite

chirality, then these three possibilities correspond to eL/Re
c
L/R and eLγ

µecR − eRγµecL.
Next consider the two quark bilinears and work in the basis of quark fields with def-

inite chirality. Allowing for all possible chiralities for the four quarks, the possible tensor

products are either scalar or tensor:

• 1⊗ 1,

• σµν ⊗ σρσ,

• γµ ⊗ γν ,

or vector:

• 1⊗ γµ,

• γµ ⊗ σρσ.

We consider these in turn.

8.2.1 1⊗ 1

These operators are of the form

(qL/RqR/L)(qL/RqR/L), (qL/RqR/L)(qR/LqL/R)

where for each operator both types of color contractions must be considered. In the effective

Lagrangian these operators are multiplied by eec or eγ5e
c.
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A Fierz transformation relates the last operator to other operators above,

O′
2LR = (qαLqαR)(q

β
RqβL) = −

1

4
[(qαLγ

µqβL)(q
β
Rγ

µqαR) + (γµ → γ5γµ)]

= −1

2
[(qαLγ

µqβL)(q
β
Rγ

µqαR)]

= −
[

1

6
(qαLγ

µqαL)(q
β
Rγ

µqβR)

+
1

2
(qαLγ

µλAqαL)(q
β
Rγ

µλAqβR)

]

= −1

6
O1LR −

1

2
Oλ

1LR .

Of the operators O1LR, Oλ
1LR and O′

2LR only two are independent, out of which we choose

the first two. Similarly, the other color singlet operator is not independent of O1LR:

O′′
2LR = (qαLqβR)(q

β
RqαL) = −

1

4
[(qαLγ

µqαL)(q
β
Rγ

µqβR) + (γµ → γ5γµ)]

= −1

2
[(qαLγ

µqαL)(q
β
Rγ

µqβR)]

= −1

2
O1LR .

This leaves two four-quark operators of the form

(qL/RqR/L)(qL/RqR/L)

and two more with the SU(3)c generators inserted

(qL/Rλ
AqR/L)(qL/Rλ

AqR/L) .

The first two operators are just O2LR and O2RL, and the last two are just Oλ
2RL and Oλ

2LR.

8.2.2 σµν ⊗ σρσ

We cannot contract with a SF dilepton, because eσµνec = 0. And there aren’t the right

number of Lorentz indices to form a Lorentz scalar by contracting with eγµγ5e
c. That

leaves contracting σµν ⊗ σµν and multiplying by eec or eγ5e
c.

One can show using a Fierz transformation that

(qLσ
µνqR)(qRσµνqL) = 0,

(qLσ
µνλAqR)(qRσµνλ

AqL) = 0 .

Next, a Fierz transformation on the remaining σµν ⊗ σµν operators shows they can be

expressed in terms of previously defined operators. Namely,

O4RL = (qαRσ
µνqαL)(q

β
RσµνqβL)

= −8(qαRqβL)(qβRqαL) + 4(qαRqαL)(q
β
RqβL)

O4LR = (qαRσ
µνqβL)(q

β
RσµνqαL)

= −8(qαRqαL)(qβRqβL) + 4(qαRqβL)(q
β
RqαL)

In short, in a chiral basis, all operators of the form σµν ⊗ σρσ either vanish or can be

expressed in terms of previously defined operators.
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8.2.3 γµ ⊗ γν

Here we have to contract the two γµ’s with each other, since the alternative is to contract

them with the lepton bilinear, but for SF leptons eσµνec = 0. Operators in this category

are therefore of the form

O3L/3R ≡ (qL/Rγ
µqL/R)(qL/RγµqL/R), (8.5a)

O1LR ≡ (qL/Rγ
µqL/R)(qR/LγµqR/L), (8.5b)

Oλ
1LR ≡ (qL/Rλ

aγµqL/R)(qR/Lλ
aγµqR/L) (8.5c)

A standard Fierz transformation shows that

(uαLγ
µdβL)(u

β
Lγ

µdαL) = (uαLγ
µdαL)(u

β
Lγ

µdβL) (8.6)

and similarly for L → R, so that O3L/3R and Oλ
3L/3R are not independent. We choose

O3L,3R, O1LR, and Oλ
1LR to be part of the minimal basis.

8.2.4 1⊗ γµ

Here there are eight operators,

(qαL/Rγ
µqαL/R)(q

β
LqβR), (qαL/Rγ

µqαL/R)(q
β
RqβL), (8.7a)

(qαL/Rγ
µqβL/R)(q

β
LqαR), (qαL/Rγ

µqβL/R)(q
β
RqαL) (8.7b)

In the effective Lagrangian these operators are multiplied by eγµγ5e
c. These quark opera-

tors are just the operators previously defined in Eqns. (2.3a–2.3h), after color-Fierzing the

operators in the second line above.

8.2.5 γµ ⊗ σρσ

The only non-vanishing contraction with a lepton bilinear is (γν ⊗σνµ)(eγ5γµec). A gener-

alized Fierz transformation however relates all these operators to those appearing in Eqn.

(8.7b). To see that it is easier to work in two-component notation. In Appendix B of the

review by Dreiner, Haber, and Martin [34], one finds the 21 generalized Fierz identities

expressed in two-component notation. Four of these relations are relevant for this class of

operators, namely Eqns B.1.8-B.1.11 from that reference,

δ β
α σ

µ
γα̇ =

1

2
σµαα̇δ

β
γ − iσναα̇(σµν) β

γ (8.8a)

δ β
α σ

µβ̇γ =
1

2
δ γ
α σ

µβ̇β + i(σµν) γ
α σ

β̇β
ν (8.8b)

δα̇
β̇
σµβγ̇ =

1

2
δα̇

β̇
σµ
ββ̇

+ i(σµν)α̇γ̇σνββ̇ (8.8c)

δα̇
β̇
σµγ̇α =

1

2
σµα̇αδγ̇β − iσα̇αν (σµν)γ̇

β̇
(8.8d)

For a given color-ordering and helicity structure of an operator γν ⊗ σνµ, these Fierz

identities relate that operator to the two possible color ordering of operators of the same

helicity structure and type 1⊗ γµ. As a result, in a chiral basis, all operators in this class

can be eliminated.
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8.3 Relation of operator basis to prior literature

In this work we organize the 4-quark operators by their transformation properties under

chirality, which allows for an easier identification of their completion to SU(2)L × U(1)Y
invariant operators and of their mapping onto operators in the chiral theory. Ref. [22] or-

ganizes the 4-quark operators by their parity transformation properties, and here we briefly

make contact between the two notations. That reference defines nine 4-quark operators

Oab
1+ = (qLτ

aγµqL)(qRτ
bγµqR), (8.9a)

Oab
2± = (qRτ

aqL)(qRτ
bqL)± (qLτ

aqR)(qLτ
bqR), (8.9b)

Oab
3± = (qLτ

aγµqL)(qLτ
bγµqL)± (qRτ

aγµqR)(qRτ
bγµqR), (8.9c)

Oab,µ
4± = (qLτ

aγµqL ∓ qRτaγµqR)(qLτ bqR − qRτ bqL), (8.9d)

Oab,µ
5± = (qLτ

aγµqL ± qRτaγµqR)(qLτ bqR + qRτ
bqL) . (8.9e)

I find that for scalar operators:

O1LR = (qLγ
µτ+qL)(qRγµτ

+qR), (8.10a)

= O++
1+ , (8.10b)

O2RL = (qRτ
+qL)(qRτ

+qL), (8.10c)

=
1

2
(O++

2+ +O++
2− ), (8.10d)

O2LR = (qLτ
+qR)(qLτ

+qR), (8.10e)

=
1

2
(O++

2+ −O++
2− ) , (8.10f)

O3L = (qLγ
µτ+qL)(qLγµτ

+qL), (8.10g)

=
1

2
(O++

3+ +O++
3− ), (8.10h)

O3R = (qRγ
µτ+qR)(qRγµτ

+qR), (8.10i)

=
1

2
(O++

3+ −O++
3− ), (8.10j)

and for vector operators:

Oµ
LLLR = (qLγ

µτ+qL)(qLτ
+qR), (8.11a)

=
1

4
(Oµ

4+ +Oµ
4− +Oµ

5+ +Oµ
5−), (8.11b)

Oµ
RRLR = (qRγ

µτ+qR)(qLτ
+qR), (8.11c)

=
1

4
(−Oµ

4+ −O
µ
4− +Oµ

5+ +Oµ
5−), (8.11d)

Oµ
LLRL = (qLγ

µτ+qL)(qRτ
+qL), (8.11e)

=
1

4
(−Oµ

4+ +Oµ
4− +Oµ

5+ −O
µ
5−), (8.11f)

Oµ
RRRL = (qRγ

µτ+qR)(qRτ
+qL), (8.11g)

=
1

4
(Oµ

4+ −O
µ
4− +Oµ

5+ −O
µ
5−) . (8.11h)
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In addition to these operators, I also find additional operators - all involving color-

octets - to be part of the minimal basis. These are the following 3 scalar operators - Oλ
1LR,

Oλ
2LR, andOλ

2RL - and the following 4 vector operatorsOλµ
∗ , where ∗ = LLLR,RRLR,LLRL

or RRRL.

References

[1] GERDA Collaboration, M. Agostini et. al., Results on Neutrinoless Double-β Decay of 76Ge

from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111 (2013), no. 12 122503,

[arXiv:1307.4720].

[2] KamLAND-Zen Collaboration, A. Gando et. al., Search for Majorana Neutrinos near the

Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016), no. 8

082503, [arXiv:1605.0288]. [Addendum: Phys. Rev. Lett.117,no.10,109903(2016)].

[3] W. Rodejohann, Neutrino-less Double Beta Decay and Particle Physics, Int. J. Mod. Phys.

E20 (2011) 1833–1930, [arXiv:1106.1334].

[4] NEXT Collaboration, J. J. Gomez-Cadenas, The NEXT experiment, Nucl. Part. Phys.

Proc. 273-275 (2016) 1732–1739, [arXiv:1411.2433].

[5] SuperNEMO Collaboration, R. B. Pahlka, The SuperNEMO Experiment,

arXiv:0810.3169.

[6] M. Doi, T. Kotani, H. Nishiura, and E. Takasugi, DOUBLE BETA DECAY, Prog. Theor.

Phys. 69 (1983) 602.

[7] M. Doi, T. Kotani, and E. Takasugi, Double beta Decay and Majorana Neutrino, Prog.

Theor. Phys. Suppl. 83 (1985) 1.

[8] T. Tomoda, A. Faessler, K. W. Schmid, and F. Grummer, Neutrinoless Beta Beta Decay and

a New Limit on the Right-handed Current, Nucl. Phys. A452 (1986) 591–620.

[9] A. Ali, A. V. Borisov, and D. V. Zhuridov, Probing new physics in the neutrinoless double

beta decay using electron angular correlation, Phys. Rev. D76 (2007) 093009,

[arXiv:0706.4165].

[10] SuperNEMO Collaboration, R. Arnold et. al., Probing New Physics Models of Neutrinoless

Double Beta Decay with SuperNEMO, Eur. Phys. J. C70 (2010) 927–943,

[arXiv:1005.1241].

[11] M. Horoi and A. Neacsu, Analysis of mechanisms that could contribute to neutrinoless

double-beta decay, Phys. Rev. D93 (2016), no. 11 113014, [arXiv:1511.0067].

[12] J. C. Helo, M. Hirsch, H. Ps, and S. G. Kovalenko, Short-range mechanisms of neutrinoless

double beta decay at the LHC, Phys. Rev. D88 (2013) 073011, [arXiv:1307.4849].

[13] W.-Y. Keung and G. Senjanovic, Majorana Neutrinos and the Production of the

Right-handed Charged Gauge Boson, Phys. Rev. Lett. 50 (1983) 1427.

[14] V. Tello, M. Nemevsek, F. Nesti, G. Senjanovic, and F. Vissani, Left-Right Symmetry: from

LHC to Neutrinoless Double Beta Decay, Phys. Rev. Lett. 106 (2011) 151801,

[arXiv:1011.3522].

[15] M. Nemevsek, F. Nesti, G. Senjanovic, and Y. Zhang, First Limits on Left-Right Symmetry

Scale from LHC Data, Phys. Rev. D83 (2011) 115014, [arXiv:1103.1627].

– 29 –

http://xxx.lanl.gov/abs/1307.4720
http://xxx.lanl.gov/abs/1605.0288
http://xxx.lanl.gov/abs/1106.1334
http://xxx.lanl.gov/abs/1411.2433
http://xxx.lanl.gov/abs/0810.3169
http://xxx.lanl.gov/abs/0706.4165
http://xxx.lanl.gov/abs/1005.1241
http://xxx.lanl.gov/abs/1511.0067
http://xxx.lanl.gov/abs/1307.4849
http://xxx.lanl.gov/abs/1011.3522
http://xxx.lanl.gov/abs/1103.1627


[16] J. C. Helo, M. Hirsch, S. G. Kovalenko, and H. Pas, Neutrinoless double beta decay and lepton

number violation at the LHC, Phys. Rev. D88 (2013), no. 1 011901, [arXiv:1303.0899].

[17] F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis, Neutrinos and Collider Physics, New J.

Phys. 17 (2015), no. 7 075019, [arXiv:1502.0654].

[18] T. Peng, M. J. Ramsey-Musolf, and P. Winslow, TeV lepton number violation: From

neutrinoless double-β decay to the LHC, Phys. Rev. D93 (2016), no. 9 093002,

[arXiv:1508.0444].

[19] A. Friedland, M. L. Graesser, I. M. Shoemaker, and L. Vecchi, Probing Nonstandard

Standard Model Backgrounds with LHC Monojets, Phys. Lett. B714 (2012) 267–275,

[arXiv:1111.5331].

[20] K. S. Babu and C. N. Leung, Classification of effective neutrino mass operators, Nucl. Phys.

B619 (2001) 667–689, [hep-ph/0106054].

[21] H. Pas, M. Hirsch, H. V. Klapdor-Kleingrothaus, and S. G. Kovalenko, A Superformula for

neutrinoless double beta decay. 2. The Short range part, Phys. Lett. B498 (2001) 35–39,

[hep-ph/0008182].

[22] G. Prezeau, M. Ramsey-Musolf, and P. Vogel, Neutrinoless double beta decay and effective

field theory, Phys. Rev. D68 (2003) 034016, [hep-ph/0303205].

[23] F. Bonnet, M. Hirsch, T. Ota, and W. Winter, Systematic decomposition of the neutrinoless

double beta decay operator, JHEP 03 (2013) 055, [arXiv:1212.3045]. [Erratum:

JHEP04,090(2014)].

[24] J. C. Helo and M. Hirsch, LHC dijet constraints on double beta decay, Phys. Rev. D92

(2015), no. 7 073017, [arXiv:1509.0042].

[25] L. Gonzales, J. C. Helo, M. Hirsch, and S. G. Kovalenko, Scalar-mediated double beta decay

and LHC, JHEP 12 (2016) 130, [arXiv:1606.0955].

[26] A. Faessler, S. Kovalenko, F. Simkovic, and J. Schwieger, Dominance of pion exchange in

R-parity violating supersymmetry contributions to neutrinoless double beta decay, Phys. Rev.

Lett. 78 (1997) 183–186, [hep-ph/9612357].

[27] A. Nicholson, E. Berkowitz, C. C. Chang, M. A. Clark, B. Joo, T. Kurth, E. Rinaldi,

B. Tiburzi, P. Vranas, and A. Walker-Loud, Neutrinoless double beta decay from lattice QCD,

in Proceedings, 34th International Symposium on Lattice Field Theory (Lattice 2016):

Southampton, UK, July 24-30, 2016, 2016. arXiv:1608.0479.

[28] M. J. Savage, Pionic matrix elements in neutrinoless double Beta decay, Phys. Rev. C59

(1999) 2293–2296, [nucl-th/9811087].

[29] V. Cirigliano, W. Dekens, M. Graesser, and E. Mereghetti, Neutrinoless double beta decay

and chiral SU(3), arXiv:1701.0144.

[30] A. J. Buras, M. Misiak, and J. Urban, Two loop QCD anomalous dimensions of flavor

changing four quark operators within and beyond the standard model, Nucl. Phys. B586

(2000) 397–426, [hep-ph/0005183].

[31] J. A. Bagger, K. T. Matchev, and R.-J. Zhang, QCD corrections to flavor changing neutral

currents in the supersymmetric standard model, Phys. Lett. B412 (1997) 77–85,

[hep-ph/9707225].

[32] H. D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B172 (1980) 349–382.

– 30 –

http://xxx.lanl.gov/abs/1303.0899
http://xxx.lanl.gov/abs/1502.0654
http://xxx.lanl.gov/abs/1508.0444
http://xxx.lanl.gov/abs/1111.5331
http://xxx.lanl.gov/abs/hep-ph/0106054
http://xxx.lanl.gov/abs/hep-ph/0008182
http://xxx.lanl.gov/abs/hep-ph/0303205
http://xxx.lanl.gov/abs/1212.3045
http://xxx.lanl.gov/abs/1509.0042
http://xxx.lanl.gov/abs/1606.0955
http://xxx.lanl.gov/abs/hep-ph/9612357
http://xxx.lanl.gov/abs/1608.0479
http://xxx.lanl.gov/abs/nucl-th/9811087
http://xxx.lanl.gov/abs/1701.0144
http://xxx.lanl.gov/abs/hep-ph/0005183
http://xxx.lanl.gov/abs/hep-ph/9707225


[33] C. Itzykson and J. B. Zuber, Quantum Field Theory. International Series In Pure and

Applied Physics. McGraw-Hill, New York, 1980.

[34] H. K. Dreiner, H. E. Haber, and S. P. Martin, Two-component spinor techniques and

Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1–196,

[arXiv:0812.1594].

– 31 –

http://xxx.lanl.gov/abs/0812.1594

	1 Introduction
	2 Below the electroweak and L=2 mass scales
	3 Below the L=2 mass scale: weak scale operators
	3.1 Dimension–9
	3.1.1  C
	3.1.2 eR eCR
	3.1.3  eCR
	3.1.4 Dimension-9 summary


	4 Mapping onto chiral perturbation theory
	4.1 Scalar  operators
	4.1.1 O1LR, O1LR
	4.1.2 O2RL, O2RL
	4.1.3 O2LR, O2LR
	4.1.4 O3L
	4.1.5 O3R

	4.2 Vector  operators
	4.2.1 OLLLR, OLLLR
	4.2.2 ORRLR, ORRLR
	4.2.3 OLLRL, OLLRL
	4.2.4 ORRRL, ORRRL


	5 Dimension-11
	5.1 eR eCR
	5.2  C
	5.3  eCR

	6 Dimension-13
	7 Conclusions
	8 Appendix
	8.1 Charge Conjugation Notation
	8.2 Complete Basis of Dimension 9 operators after electroweak symmetry breaking
	8.2.1 1 1
	8.2.2  
	8.2.3 
	8.2.4 1 
	8.2.5 

	8.3 Relation of operator basis to prior literature


