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Abstract. Both active and sterile sub-eV neutrinos can form the cosmic neutrino background
in the early Universe. We consider the beta-decaying (e.g., 3H) and EC-decaying (e.g., 163Ho)
nuclei as the promising targets to capture relic neutrinos in the laboratory. We calculate the
capture rates of relic electron neutrinos and antineutrinos against the corresponding beta decay
or electron capture (EC) decay backgrounds in the (3+Ns) flavor mixing scheme, and discuss the
future prospect in terms of the PTOLEMY project. We stress that such direct measurements
of hot DM might not be hopeless in the long term.

1. Introduction

Both active and sterile sub-eV neutrinos can form the cosmic neutrino background (CνB) when
they were decoupled from radiation and matter at a temperature of about one MeV and an age of
one second after the Big Bang [1]. Relic neutrinos played important roles in the evolution of the
Universe, and has been indirectly proved from cosmological data on the Big Bang nucleosynthesis
(BBN), cosmic microwave background (CMB) anisotropies and large-scale structures (LSS) [2].
Without considering the lepton asymmetries, the temperature and average number density for
one species of relic neutrinos can be expressed as

Tν =

(

4

11

)1/3

Tγ ≈ 1.945 K , nν =
3

11
nγ ≈ 112 cm−3 . (1)

As a consequence, one predicts the average three-momentum today for each species of the relic
neutrino is very small, i.e., 〈pν〉 = 3Tν ≈ 5× 10−4 eV [3].

Cosmological observations provide indirect evidence for the existence of the CνB, however, it
is a great challenge to the present experimental techniques for the direct detection in a laboratory
experiment. Among several detection possibilities [3], the most promising one seems to be the
neutrino capture experiment using radioactive β-decaying nuclei [4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
The PTOLEMY project [14] aims to detect the CνB using 100 grams of 3H as the capture target.
Other interesting methods include the electron-capture (EC) decaying nuclei [15, 16, 17, 18], the
annihilation of extremely high-energy cosmic neutrinos at the Z-resonance [19, 20, 21], and the
atomic de-excitation method [22].

The remaining parts of this work are organized as follows. In Sec. 2 we introduce methods
of relic neutrino captures on the beta-decaying and EC-decaying nuclei, and calculate the rates
and energy spectra of neutrino capture rates. Sec. 3 is devoted to the flavor effects of relic
neutrino captures including the neutrino mass hierarchy and presence of sterile neutrinos, and
then conclude in Sec. 4.

http://arxiv.org/abs/1606.04734v1


Figure 1. Idealized electron spectra for the tritium beta decay and relic neutrino capture. The
dashed and black-solid lines are shown for β-decay spectra of the massless and massive neutrinos
respectively. The red-solid line with the sharp peak is for the relic neutrino signal.

2. Captures on Beta-decaying or EC-decaying Nuclei

In the presence of 3+Ns species of active and sterile neutrinos, the flavor eigenstates of three
active neutrinos and Ns sterile neutrinos can be written as [1, 2]
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where νi is a mass eigenstate of active (for 1 ≤ i ≤ 3) or sterile (for 4 ≤ i ≤ 3 +Ns) neutrinos,
and Uαi stands for an element of the (3 +Ns)× (3 +Ns) neutrino mixing matrix.

For the nuclear β-decay process with the mass number A and atomic number Z of the parent
nucleus, i.e. N (A,Z) → N ′(A,Z + 1) + e− + νe, the differential decay rate of a β-decay can be
written as [23]

dλβ

dTe

=

∫ Q
β
−min(mi)

0
dT ′

e

{

G2
F cos2 θC
2π3

F (Z,Ee) |M|2Ee

√

E2
e −m2

e

×
(

Qβ − T ′

e

)

3+Ns
∑

i=1

[

|Uei|2
√

(

Qβ − T ′

e

)2
−m2

i Θ
(

Qβ − T ′

e −mi

)

]}

×R
(

Te, T
′

e

)

, (3)

where T ′

e = Ee −me denotes the kinetic energy of the outgoing electron, F (Z,Ee) is the Fermi
function, |M|2 is the dimensionless nuclear matrix elements [23], and θC ≃ 13◦ is the Cabibbo
angle. In addition, a Gaussian energy resolution function

R(Te, T
′

e) =
1√
2π σ

exp

[

−(Te − T ′

e)
2

2σ2

]

, (4)

is implemented in Eq. (3) to include the finite energy resolution, and the theta function
Θ(Qβ − T ′

e − mi) is adopted to ensure the kinematic requirement. The spectral shape near
the β-decay endpoint represents a kinetic measurement of the absolute neutrino masses, which
can be understood by comparing the dashed and black solid lines of Fig. 1.

On the other hand, the threshold-less neutrino capture process,

νe +N (A,Z) → N ′(A,Z + 1) + e− , (5)



is located well beyond the end point of the β-decay, where the signal is characterized by the
monoenergetic kinetic energy of the electron for each mass eigenstate (see the red-solid line
in Fig. 1). This capture process is suitable to detect relic active and sterile neutrinos, and a
measurement of the distance between the decay and capture processes will directly probe the
CνB. The differential neutrino capture rate of this process reads

dλν

dTe

=
∑

i

|Uei|2σνivνinνi
R(Te, T

′i
e ) , (6)

where the sum is for all the neutrino mass eigenstates and nνi
≡ ζi · 〈nνi

〉 denotes the number
density of the relic neutrinos νi around the Earth. The standard Big Bang cosmology predicts
〈nνi

〉 ≈ 〈nνi
〉 ≈ 56 cm−3 for each species of active neutrinos, and it is also expected to hold for

each sterile neutrino species if they could be fully thermalized in the early Universe. The number
density of relic active and sterile neutrinos may be enhanced by the gravitational clustering effect
(i.e., the factor ζi) when the neutrino mass is greater than 0.1 eV [24]. The capture cross-section
times the neutrino velocity can be written as σνivνi = 2π2 ln 2/(A×T1/2), where A is the nuclear
factor characterized by Qβ and Z and T1/2 is the half-life of the parent nucleus.

To get a better signal-to-background ratio, one can investigate different kinds of candidate
nuclei by considering factors including the cross-section, half-life, β-decay rate, and detector
energy resolution. Based on this selection criterion, several promising nuclei such as 3H, 106Ru,
and 187Re are identified after an exhaustive survey in Ref. [6].

The β-decay experiments of current generation include the spectrometer of KATRIN [25]
and the calorimeter of MARE [26]. KATRIN uses 50 µg of 3H as the effective target mass, and
MARE is planning to deploy 760 grams of 187Re. Therefore, we can estimate their respective
CνB event rates to be 10−6 yr−1 and 10−7 yr−1 without considering the gravitational clustering
effect. A first realistic proposal for the CνB detection is the PTOLEMY project [14], which is
designed to employ 100 grams of 3H as the capture target using a combination of a large-area
surface-deposition tritium target, the MAC-E filter, the RF tracking, the time-of-flight systems,
and the cryogenic calorimetry. Finally, the event rate of PTOLEMY are calculated to reach the
observable level:

Nν(PTOLEMY) ≃ 8.0×
∑

i

|Uei|2ζi yr−1 . (7)

According to Eq. (5), only electron neutrinos can be captured in the β-decaying nuclei. One
should consider other possibilities for the cosmic antineutrino background detection. Similar to
the process of captures on β-decaying nuclei, the EC-decaying nuclei can be the target of relic
antineutrino captures. The isotope 163Ho is a promising candidate in this respect [15, 16, 17, 18].
The properties of the relic antineutrino capture against the EC-decaying background are similar
to those of β-decaying nuclei [17]. As the order of magnitude estimate, one needs 30 kg 163Ho
to obtain one event per year for the relic antineutrino detection.

3. Flavor Effects

Besides the total capture rates, the CνB detection exhibits interesting properties of flavor effects
due to the neutrino mixing. In this section, we shall discuss the effects of the neutrino mass
hierarchy [8] and presence of light sterile neutrinos [10].

Fig. 2 shows the capture rate of the CνB as a function of the kinetic energy Te of electrons in
the standard three-neutrino scheme with ∆m2

31 > 0 and ∆m2
31 < 0. The gravitational clustering

of three active neutrinos has been neglected for simplicity. ∆ (i.e., ∆ = 2
√
2 ln 2σ) denotes the

finite energy resolution. As the lightest neutrino mass increases from 0 to 0.1 eV, the neutrino
capture signal moves towards the larger Te region. The distance between the signal peak and
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Figure 2. The relic neutrino capture rate as a function of the kinetic energy of electrons in
the standard scheme with ∆m2

31 > 0 (left panel) or ∆m2
31 < 0 (right panel). The gravitational

clustering of three active neutrinos has been neglected for simplicity. We adopt 100 grams of
3H, and best-fit values of the relevant three-neutrino oscillation parameters from Ref. [2].

the β-decay background becomes larger for a larger lightest neutrino mass, and therefore the
required energy resolution is less stringent. Comparing between the left panel and right panel,
one can observe that it is easier to detect the CνB in the ∆m2

31 < 0 case, where the capture signal
is separated more apparently from the β-decay background. The reason is that the dominant
mass eigenstates ν1 and ν2 in νe have greater eigenvalues than in the ∆m2

31 > 0 case.
Next we shall study the (3+2) mixing scheme with two light sterile neutrinos. Considering

the hints of short baseline oscillations [27, 28], we assume m4 = 0.2 eV and m5 = 0.4 eV
together with |Ue1| ≈ 0.792, |Ue2| ≈ 0.534, |Ue3| ≈ 0.168, |Ue4| ≈ 0.171 and |Ue5| ≈ 0.174 in
the numerical calculations. We illustrate the capture rate of the CνB against the corresponding
β-decay background for both ∆m2

31 > 0 and ∆m2
31 < 0 schemes in Fig. 3. To take account of

possible gravitational clustering effects, we assume ζ1 = ζ2 = ζ3 = 1 and ζ5 = 2ζ4 = 10. As one
can see from Fig. 3, the signals of sterile neutrinos are obviously enhanced because of ζ4 > 1
and ζ5 > 1. If the overdensity of relic neutrinos is very significant around the Earth, it will be
helpful for the CνB detection through the neutrino capture process.

4. Conclusion

The standard Big Bang cosmology predicts the existence of a cosmic neutrino background formed
at an age of one second after the Big Bang. A direct measurement of the relic neutrinos would
open a new window to the early Universe. We have discussed the future prospect for the direct
detection of the CνB, with the emphasis on the method of captures on β-decaying nuclei and
PTOLEMY project. We calculated the neutrino capture rate against the corresponding β-decay
background, and discussed the possible flavor effects including the neutrino mass hierarchy and
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Figure 3. The capture rate of the CνB as a function of the electron’s kinetic energy in the
(3+2) mixing scheme with ∆m2

31 > 0 (left panel) and ∆m2
31 < 0 (right panel) [10]. The

gravitational clustering of relic sterile neutrinos around the Earth has been illustrated by taking
ζ1 = ζ2 = ζ3 = 1 and ζ5 = 2ζ4 = 10.

presence of light sterile neutrinos. We stress that such direct measurements of the CνB in the
laboratory experiments might not be hopeless in the long term.
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