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Abstract

Besides the traditional strong and electromagnetic decay modes, Υ(nS) meson can also decay

through the weak interactions within the standard model of elementary particle. With anticipation

of copious Υ(nS) data samples at the running LHC and coming SuperKEKB experiments, the two-

body nonleptonic bottom-changing Υ(nS) → B∗
cπ, B

∗
cK decays (n = 1, 2, 3) are investigated with

perturbative QCD approach firstly. The absolute branching ratios for Υ(nS) → B∗
cπ and B∗

cK

decays are estimated to reach up to about 10−10 and 10−11, respectively, which might possibly be

measured by the future experiments.
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I. INTRODUCTION

The upsilon Υ(nS) meson is the spin-triplet S-wave state of bottomonium (bound state

consisting of bottom quark b and anti-bottom quark b̄) with well-established quantum num-

ber of IGJPC = 0−1−− [1]. The characteristic narrow decay widths of Υ(nS) mesons for n =

1, 2 and 3 provide insight into the study of strong interactions. [see Table. I, and note that

for simplicity, Υ(nS) will denote Υ(1S), Υ(2S) and Υ(3S) mesons in the following content

if not specified definitely.] The mass of Υ(nS) meson is below the B meson pair threshold.

The Υ(nS) meson decays into bottomed hadrons through strong and electromagnetic inter-

actions are forbidden by the law of conservation of flavor number. The bottom-changing

Υ(nS) decays can occur only via the weak interactions within the standard model, although

with tiny incidence probability. Both constituent quarks of upsilons can decay individu-

ally, which provide an alternative system for investigating the weak decay of heavy-flavored

hadrons. In this paper, we will study the nonleptonic Υ(nS) → B∗
cP (P = π and K) weak

decays with perturbative QCD (pQCD) approach [2–4].

TABLE I: Summary of mass, decay width, on(off)-peak luminosity and numbers of Υ(nS).

properties [1] luminosity (fb−1) [5] numbers (106) [5]

meson mass (MeV) width (keV) Belle BaBar Belle BaBar

Υ(1S) 9460.30±0.26 54.02±1.25 5.7 (1.8) ...... 102±2 ......

Υ(2S) 10023.26±0.31 31.98±2.63 24.9 (1.7) 13.6 (1.4) 158±4 98.3±0.9

Υ(3S) 10355.2±0.5 20.32±1.85 2.9 (0.2) 28.0 (2.6) 11±0.3 121.3±1.2

Experimentally, (1) over 108 Υ(nS) data samples have been accumulated at Belle and

BaBar experiments [5]. More and more upsilon data samples will be collected at the running

hadron collider LHC and the forthcoming e+e− collider SuperKEKBa. There seems to exist

a realistic possibility to explore Υ(nS) weak decay at future experiments. (2) Signals of the

Υ(nS) → B∗
cπ, B

∗
cK decays should be easily distinguished with “charge tag” technique, due

to the facts that the back-to-back final states with different electric charges have definite

momentum and energy in the rest frame of Υ(nS) meson. (3) The B∗
c meson has not been

observed experimentally by now. The B∗
c meson production via the strong interaction are

a The SuperKEKB has started commissioning test run (http://www.kek.jp/en/NewsRoom/Release).
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suppressed due to the simultaneous presence of two heavy quarks with different flavors and

higher order in QCD coupling constant αs. The Υ(nS) → B∗
cπ, B

∗
cK decays provide a novel

pattern to study the B∗
c meson production. The identification of a single explicitly flavored

B∗
c meson could be used as an effective selection criterion to detect upsilon weak decays.

Moreover, the radiative decay of B∗
c meson provide a useful extra signal and a powerful

constraintb. Of course, any discernible evidences of an anomalous production rate of single

bottomed meson from upsilon decays might be a hint of new physics.

Theoretically, many attractive QCD-inspired methods have been developed recently to de-

scribe the exclusive nonleptonic decay of heavy-flavored mesons, such as the pQCD approach

[2–4], the QCD factorization approach [7–9], soft and collinear effective theory [10–13], and

have been applied widely to vindicate measurements on B meson decays. The upsilon weak

decay permits one to further constrain parameters obtained from B meson decay, and cross

comparisons provide an opportunity to test various phenomenological models. The upsilon

weak decay possess a unique structure due to the Cabibbo-Kobayashi-Maskawa (CKM) ma-

trix properties which predicts the channels with one B(∗)
c meson are dominant. The Υ(nS)

→ B∗
cP decay belongs to the favorable b → c transition, which should, in principle, have

relatively large branching ratio among upsilon weak decays. However, there is still no the-

oretical study devoted to the Υ(nS) → B∗
cP decay for the moment. In this paper, we will

present a phenomenological investigation on Υ(nS) → B∗
cP weak decay with the pQCD

approach to supply a ready reference for the future experiments.

This paper is organized as follows. Section II focus on theoretical framework and decay

amplitudes for Υ(nS) → B∗
cπ, B

∗
cK weak decays. Section III is devoted to numerical results

and discussion. The last section is a summary.

b The investigation on the radiative decay of B∗

c meson can be found in, for example, Ref. [6] with QCD

sum rules.
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II. THEORETICAL FRAMEWORK

A. The effective Hamiltonian

Theoretically, the Υ(nS) → B∗
cπ, B

∗
cK weak decays are described by an effective bottom-

changing Hamiltonian based on operator product expansion [14]:

Heff =
GF√
2

∑

q=d,s

VcbV
∗
uq

{

C1(µ)O1(µ) + C2(µ)O2(µ)
}

+ h.c., (1)

where GF ≃ 1.166×10−5GeV−2 [1] is the Fermi coupling constant; the CKM factors VcbV
∗
ud

and VcbV
∗
us correspond to Υ(nS) → B∗

cπ and B∗
cK decays, respectively; with the Wolfenstein

parameterization, the CKM factors are expanded as a power series in a small Wolfenstein

parameter λ ∼ 0.2 [1]:

VcbV
∗
ud = Aλ2 − 1

2
Aλ4 − 1

8
Aλ6 +O(λ7), (2)

VcbV
∗
us = Aλ3 +O(λ7). (3)

The local tree operators Q1,2 are defined as:

O1 = [c̄αγµ(1− γ5)bα][q̄βγ
µ(1− γ5)uβ], (4)

O2 = [c̄αγµ(1− γ5)bβ][q̄βγ
µ(1− γ5)uα], (5)

where α and β are color indices and the sum over repeated indices is understood.

The scale µ factorizes physics contributions into short- and long-distance dynamics. The

Wilson coefficients Ci(µ) summarize the physics contributions at scale higher than µ, and

are calculable with the renormalization group improved perturbation theory. The hadronic

matrix elements (HME), where the local operators are inserted between initial and final

hadron states, embrace the physics contributions below scale of µ. To obtain decay ampli-

tudes, the remaining work is to calculate HME properly by separating from perturbative

and nonperturbative contributions.

B. Hadronic matrix elements

Based on Lepage-Brodsky approach for exclusive processes [15], HME is commonly ex-

pressed as a convolution integral of hard scattering subamplitudes containing perturbative
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contributions with universal wave functions reflecting nonperturbative contributions. In or-

der to effectively regulate endpoint singularities and provide a naturally dynamical cutoff

on nonperturbative contributions, transverse momentum of valence quarks is retained and

the Sudakov factor is introduced within the pQCD framework [2–4]. Phenomenologically,

the pQCD’s decay amplitude could be divided into three parts: the Wilson coefficients Ci

incorporating the hard contributions above typical scale of t, process-dependent rescatter-

ing subamplitudes T accounting for the heavy quark decay, and wave functions Φ of all

participating hadrons, which is expressed as

∫

dk Ci(t) T (t, k) Φ(k)e
−S, (6)

where k is the momentum of valence quarks, and e−S is the Sudakov factor.

C. Kinematic variables

The light cone kinematic variables in the Υ(nS) rest frame are defined as follows.

pΥ = p1 =
m1√
2
(1, 1, 0), (7)

pB∗

c
= p2 = (p+2 , p

−
2 , 0), (8)

p3 = (p−3 , p
+
3 , 0), (9)

p±i = (Ei ± p)/
√
2, (10)

ki = xi pi + (0, 0, ~ki⊥), (11)

ǫ
‖
1 =

p1
m1

− m1

p1·n+

n+, (12)

ǫ
‖
2 =

p2
m2

− m2

p2·n−

n−, (13)

ǫ⊥1,2 = (0, 0,~1), (14)

n+ = (1, 0, 0), (15)

n− = (0, 1, 0), (16)

s = 2 p2·p3, (17)

t = 2 p1·p2 = 2m1E2, (18)

u = 2 p1·p3 = 2m1E3, (19)

5



p =

√

[m2
1 − (m2 +m3)2] [m2

1 − (m2 −m3)2]

2m1

, (20)

where xi and ~ki⊥ are the longitudinal momentum fraction and transverse momentum of

valence quarks, respectively; ǫ
‖
i and ǫ⊥i are the longitudinal and transverse polarization

vectors, respectively, and satisfy relations ǫ2i = −1 and ǫi·pi = 0; the subscript i on variables

pi, Ei, mi, ǫi corresponds to participating hadrons, namely, i = 1 for Υ(nS) meson, i = 2

for the recoiled B∗
c meson, i = 3 for the emitted pseudoscalar meson; n+ and n− are positive

and negative null vectors, respectively; s, t and u are the Lorentz-invariant variables; p is the

common momentum of final states. The notation of momentum is displayed in Fig. 2(a).

D. Wave functions

With the notation in [16, 17], wave functions are defined as

〈0|bi(z)b̄j(0)|Υ(p1, ǫ
‖
1)〉 =

fΥ
4

∫

dk1 e
−ik1·z

{

6 ǫ‖1
[

m1Φ
v
Υ(k1)−6 p1Φt

Υ(k1)
]}

ji
, (21)

〈0|bi(z)b̄j(0)|Υ(p1, ǫ
⊥
1 )〉 =

fΥ
4

∫

dk1 e
−ik1·z

{

6 ǫ⊥1
[

m1Φ
V
Υ(k1)−6 p1ΦT

Υ(k1)
]}

ji
, (22)

〈B∗
c (p2, ǫ

‖
2)|c̄i(z)bj(0)|0〉 =

fB∗

c

4

∫ 1

0
dk3 e

ik2·z
{

6 ǫ‖2
[

m2 Φ
v
B∗

c
(k2)+ 6 p2Φt

B∗

c
(k2)

]}

ji
, (23)

〈B∗
c (p2, ǫ

⊥
2 )|c̄i(z)bj(0)|0〉 =

fB∗

c

4

∫ 1

0
dk2 e

ik2·z
{

6 ǫ⊥2
[

m2Φ
V
B∗

c
(k2)+ 6 p2ΦT

B∗

c
(k2)

]}

ji
, (24)

〈P (p3)|ui(0)q̄j(z)|0〉

=
i fP
4

∫

dk3 e
ik3·z

{

γ5
[

6 p3Φa
P (k3) + µPΦ

p
P (k3) + µP (6 n−6 n+−1) Φt

P (k3)
]}

ji
, (25)

where fΥ, fB∗

c
, fP are decay constants of Υ(nS), B∗

c , P mesons, respectively.

Considering mass relations ofmΥ(nS) ≃ 2mb andmB∗

c
≃mb +mc, it might assume that the

motion of heavy valence quarks in Υ(nS) and B∗
c mesons is nearly nonrelativistic. The wave

functions of Υ(nS) and B∗
c mesons could be approximately described with nonrelativistic

quantum chromodynamics (NRQCD) [18–20] and time-independent Schrödinger equation.

For an isotropic harmonic oscillator potential, the eigenfunctions of stationary state with

quantum numbers nL are written as [21]

φ1S(~k) ∼ e−
~k2/2β2

, (26)

φ2S(~k) ∼ e−
~k2/2β2

(2~k2 − 3β2), (27)

6



φ3S(~k) ∼ e−
~k2/2β2

(4~k4 − 20~k2β2 + 15β4), (28)

where parameter β determines the average transverse momentum, i.e., 〈nS|k2
⊥|nS〉 ∼ β2.

Employing the substitution ansatz [22],

~k2 → 1

4

∑

i

~k2
i⊥ +m2

qi

xi
, (29)

where xi andmqi are the longitudinal momentum fraction and mass of valence quark, respec-

tively, then integrating out ~k⊥ and combining with their asymptotic forms, the distribution

amplitudes (DAs) for Υ(nS) and B∗
c mesons can be written as [21],

φv,T
Υ(1S)(x) = Axx̄ exp

{

− m2
b

8 β2
1 x x̄

}

, (30)

φt
Υ(1S)(x) = B t2 exp

{

− m2
b

8 β2
1 x x̄

}

, (31)

φV
Υ(1S)(x) = C (1 + t2) exp

{

− m2
b

8 β2
1 x x̄

}

, (32)

φv,t,V,T
Υ(2S) (x) = Dφv,t,V,T

Υ(1S) (x)
{

1 +
m2

b

2 β2
1 x x̄

}

, (33)

φv,t,V,T
Υ(3S) (x) = E φv,t,V,T

Υ(1S) (x)
{(

1− m2
b

2 β2
1 x x̄

)2
+ 6

}

, (34)

φv,T
B∗

c
(x) = F xx̄ exp

{

− x̄m2
c + xm2

b

8 β2
2 x x̄

}

, (35)

φt
B∗

c
(x) = G t2 exp

{

− x̄m2
c + xm2

b

8 β2
2 x x̄

}

, (36)

φV
B∗

c
(x) = H (1− t2) exp

{

− x̄m2
c + xm2

b

8 β2
2 x x̄

}

, (37)

where x̄ = 1 − x; t = x − x̄. According to NRQCD power counting rules [18], βi ≃ ξi αs(ξi)

with ξi = mi/2 and QCD coupling constant αs. The exponential function represents k⊥

distribution. Parameters of A, B, C, D, E, F , G, H are normalization coefficients satisfying

with the conditions

∫ 1

0
dx φi

Υ(nS)(x) =
∫ 1

0
dx φi

B∗

c
(x) = 1 for i = v, t, V, T . (38)

The shape lines of normalized DAs for Υ(nS) and B∗
c mesons are showed in Fig. 1. It is

clearly seen that (1) DAs for Υ(nS) and B∗
c mesons fall quickly down to zero at endpoint x, x̄
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FIG. 1: The normalized distribution amplitudes for Υ(nS) and B∗
c mesons.

→ 0 due to suppression from exponential functions; (2) DAs for Υ(nS) meson are symmetric

under the interchange of momentum fractions x ↔ x̄, and DAs for B∗
c meson are basically

consistent with the feature that valence quarks share momentum fractions according to their

masses.

Our study shows that only the leading twist (twist-2) DAs of the emitted light pseu-

doscalar meson P is involved in decay amplitudes (see Appendix A). The twist-2 DAs has

the expansion [16]:

φa
P (x) = 6 x x̄

∑

i=0

ai C
3/2
i (t), (39)

and are normalized as
∫ 1

0
φa
P (x) dx = 1, (40)

where C
3/2
i (t) are Gegenbauer polynomials,

C
3/2
0 (t) = 1, C

3/2
1 (t) = 3 t, C

3/2
2 (t) =

3

2
(5 t2 − 1), · · · (41)

and each term corresponds to a nonperturbative Gegenbauer moment ai; note that a0 = 1

due to the normalization condition Eq.(40); the G-parity invariance of the pion DAs requires

Gegenbauer moment ai = 0 for i = 1, 3, 5 · · ·.

E. Decay amplitudes

The Feynman diagrams for Υ(nS) → B∗
cπ weak decay are shown in Fig. 2. There are

two types. One is factorizable emission topology where gluon attaches to quarks in the same

meson, and the other is nonfactorizable emission topology where gluon connects to quarks

between different mesons.

With the pQCD master formula Eq.(6), the amplitude for Υ(nS) → B∗
cP decay can be

8
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b̄ b̄

G

(b)

Υ B∗
c

π

b c

d ū
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FIG. 2: Feynman diagrams for Υ(nS) → B∗
cπ decay with the pQCD approach, including factoriz-

able emission diagrams (a,b) and nonfactorizable emission diagrams (c,d).

expressed as [23],

A(Υ(nS)→B∗
cP ) = AL(ǫ

‖
1, ǫ

‖
2) +AN(ǫ

⊥
1 , ǫ

⊥
2 ) + iAT εµναβ ǫ

µ
1 ǫ

ν
2 p

α
1 p

β
2 , (42)

which is conventionally written as the helicity amplitudes [23],

A0 = −CA

∑

j

Aj
L(ǫ

‖
1, ǫ

‖
2), (43)

A‖ =
√
2CA

∑

j

Aj
N(ǫ

⊥
1 , ǫ

⊥
2 ), (44)

A⊥ =
√
2CAm1 p

∑

j

Aj
T , (45)

CA = i VcbV
∗
uq

GF√
2

CF

Nc

π fΥ fB∗

c
fP , (46)

where CF = 4/3 and the color number Nc = 3; the subscript i on Aj
i corresponds to three

different helicity amplitudes, i.e., i = L, N , T ; the superscript j on Aj
i denotes to indices of

Fig. 2. The explicit expressions of building blocks Aj
i are collected in Appendix A.

III. NUMERICAL RESULTS AND DISCUSSION

In the center-of-mass of Υ(nS) meson, branching ratio Br for Υ(nS) → B∗
cP decay are

defined as

Br =
1

12π

p

m2
ΥΓΥ

{

|A0|2 + |A‖|2 + |A⊥|2
}

. (47)

The input parameters are listed in Table I and II. If not specified explicitly, we will take

their central values as the default inputs. Our numerical results are collected in Table. III,

where the first uncertainty comes from scale (1±0.1)ti and the expression of ti is given in
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Eq.(A20) and Eq.(A21); the second uncertainty is from mass mb and mc; the third uncer-

tainty is from hadronic parameters including decay constants and Gegenbauer moments; the

fourth uncertainty is from CKM parameters. The followings are some comments.

TABLE II: The numerical values of input parameters.

The Wolfenstein parameters

A = 0.814+0.023
−0.024 [1], λ = 0.22537±0.00061 [1],

Mass, decay constant and Gegenbauer moments

mb = 4.78±0.06 GeV [1], fπ = 130.41±0.20 MeV [1],

mc = 1.67±0.07 GeV [1], fK = 156.2±0.7 MeV [1],

mB∗

c
= 6332±9 MeV [24], fB∗

c
= 422±13 MeV [26]c,

aK1 (1GeV) = −0.06±0.03 [16], fΥ(1S) = 676.4±10.7 MeV [21],

aK2 (1GeV) = 0.25±0.15 [16], fΥ(2S) = 473.0±23.7 MeV [21],

aπ2 (1GeV) = 0.25±0.15 [16], fΥ(3S) = 409.5±29.4 MeV [21].

TABLE III: Branching ratio for Υ(nS) → B∗
cP decays.

modes Υ(1S) → B∗
cπ Υ(2S) → B∗

cπ Υ(3S) → B∗
cπ

1010×Br 4.35+0.29+0.19+0.44+0.17
−0.24−0.41−0.31−0.30 2.28+0.13+0.26+0.40+0.09

−0.03−0.35−0.16−0.15 2.14+0.12+0.09+0.48+0.07
−0.12−0.41−0.15−0.15

modes Υ(1S) → B∗
cK Υ(2S) → B∗

cK Υ(3S) → B∗
cK

1011×Br 3.45+0.23+0.13+0.38+0.13
−0.21−0.35−0.27−0.25 1.91+0.11+0.07+0.36+0.07

−0.09−0.31−0.15−0.14 1.65+0.09+0.08+0.40+0.05
−0.21−0.33−0.13−0.12

(1) Branching ratio for Υ(nS) → B∗
cπ decay is about O(10−10) with pQCD approach,

which is well within the measurement potential of LHC and SuperKEKB. For example,

experimental studies have showed that production cross sections for Υ(nS) meson in p-

p and p-Pb collisions are a few µb at the LHCb [27, 28] and ALICE [29, 30] detectors.

Consequently, there will be more than 1012 Υ(nS) data samples per ab−1 data collected by

c The decay constant fB∗

c

cannot be extracted from the experimental data because of no measurement on

B∗

c weak decay at the present time. Theoretically, the value of fB∗

c

has been estimated, for example, in

Ref. [25] with the QCD sum rules. From Table. 3 of Ref. [25], one can see that the value of fB∗

c

are

model-dependent. In our calculation, we will take the latest value given by the lattice QCD approach [26]

just to offer an order of magnitude estimation on branching ratio for Υ(nS) → B∗

cP decays.
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the LHCb and ALICE, corresponding to a few hundreds of Υ(nS) → B∗
cπ events. Branching

ratio for Υ(nS) → B∗
cK decay, O(10−11), is generally less than that for Υ(nS) → B∗

cπ decay

by one order of magnitude due to the CKM suppression, |V ∗
us/V

∗
ud|2 ∼ λ2.

24.77

69.06

3.8
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FIG. 3: The contributions to branching ratios for Υ(1S) → B∗
cπ decay (a), Υ(2S) → B∗

cπ decay (b)

and Υ(3S) → B∗
cπ decay (c) from different region of αs/π (horizontal axises), where the numbers

over histogram denote the percentage of the corresponding contributions.

(2) As it is well known, due to the large mass of B∗
c , the momentum transition in the

Υ(nS) → B∗
cP decay may be not large enough. One might naturally wonder whether the

pQCD approach is applicable and whether the perturbative calculation is reliable. Therefore,

it is necessary to check what percentage of the contributions comes from the perturbative

region. The contributions to branching ratio for Υ(nS) → B∗
cπ decay from different αs/π

region are showed in Fig. 3. It can be clearly seen that more than 93% (97%) contributions

come from the αs/π ≤ 0.2 (0.3) region, implying that the Υ(nS) → B∗
cπ decay is computable

with the pQCD approach. As the discussion in [2–4], there are many factors for this,

for example, the choice of the typical scale, retaining the quark transverse moment and

introducing the Sudakov factor to suppress the nonperturbative contributions, which deserve

much attention and further investigation.

(3) Because of the relations among masses mΥ(3S) > mΥ(2S) > mΥ(1S) resulting in the

fact that phase space increases with the radial quantum number n, in addition, the relations

among decay widths ΓΥ(3S) < ΓΥ(2S) < ΓΥ(1S), in principle, there should be relations among

branching ratios Br(Υ(3S)→B∗
cP ) > Br(Υ(2S)→B∗

cP ) > Br(Υ(1S)→B∗
cP ) for the same

pseudoscalar meson P . But the numerical results in Table. III are beyond such expectation.

Why? The reason is that the factor of p/m2
Υ(nS) in Eq.(47) has almost the same value for

n ≤ 3, so branching ratio is proportional to factor f 2
Υ(nS)/ΓΥ(nS) with the maximal value

f 2
Υ(1S)/ΓΥ(1S) for n ≤ 3. Besides, contributions from αs/π ∈ [0.2, 0.3] regions decrease with

11



n (see Fig. 3), which enhance the decay amplitudes.

(4) Besides the uncertainties listed in Table III, other factors, such as the models of wave

functions, contributions of higher order corrections to HME, relativistic effects, and so on,

deserve the dedicated study. Our results just provide an order of magnitude estimation.

IV. SUMMARY

The Υ(nS) decay via the weak interaction, as a complementary to strong and electro-

magnetic decay mechanism, is allowable within the standard model. Based on the potential

prospects of Υ(nS) physics at high-luminosity collider experiment, Υ(nS) decay into B∗
cπ

and B∗
cK final states is investigated with the pQCD approach firstly. It is found that (1)

the dominant contributions come from perturbative regions αs/π ≤ 0.3, which might imply

that the pQCD calculation is practicable and workable; (2) there is a promiseful possibility

of searching for Υ(nS) → B∗
cπ (B∗

cK) decay with branching ratio about 10−10 (10−11) at

the future experiments.
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Appendix A: Building blocks for Υ → B∗
cP decays

The building blocks Aj
i , where the superscript j corresponds to indices of Fig. 2 and the

subscript i relates with different helicity amplitudes, are expressed as follows.

Aa
L =

∫ 1

0
dx1

∫ 1

0
dx2

∫ ∞

0
b1db1

∫ ∞

0
b2db2 Hab(αe, βa, b1, b2)Eab(ta)φ

v
Υ(x1)αs(ta)

a1(ta)
{

φv
B∗

c
(x2)

[

m2
1 s− (4m2

1 p
2 +m2

2 u) x̄2

]

+ φt
B∗

c
(x2)m2mb u

}

, (A1)

Aa
N =

∫ 1

0
dx1

∫ 1

0
dx2

∫ ∞

0
b1db1

∫ ∞

0
b2db2Hab(αe, βa, b1, b2)Eab(ta)φ

V
Υ(x1)

αs(ta) a1(ta)m1

{

φV
B∗

c
(x2)m2 (u− s x̄2) + φT

B∗

c
(x2)mb s

}

, (A2)

Aa
T = −2m1

∫ 1

0
dx1

∫ 1

0
dx2

∫ ∞

0
b1db1

∫ ∞

0
b2db2Hab(αe, βa, b1, b2)Eab(ta)

φV
Υ(x1)αs(ta) a1(ta)

{

φT
B∗

c
(x2)mb + φV

B∗

c
(x2)m2 x2

}

, (A3)
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Ab
L =

∫ 1

0
dx1

∫ 1

0
dx2

∫ ∞

0
b1db1

∫ ∞

0
b2db2Hab(αe, βb, b2, b1)Eab(tb)φ

v
B∗

c
(x2)

αs(tb) a1(tb)
{

φv
Υ(x1)

[

m2
2 u−m2

1 (s− 4 p2) x̄1

]

+ φt
Υ(x1)m1mc s

}

, (A4)

Ab
N =

∫ 1

0
dx1

∫ 1

0
dx2

∫ ∞

0
b1db1

∫ ∞

0
b2db2 Hab(αe, βb, b2, b1)Eab(tb)φ

V
B∗

c
(x2)

αs(tb) a1(tb)m2

{

φV
Υ(x1)m1 (s− u x̄1) + φT

Υ(x1)mc u
}

, (A5)

Ab
T = −2m2

∫ 1

0
dx1

∫ 1

0
dx2

∫ ∞

0
b1db1

∫ ∞

0
b2db2Hab(αe, βb, b2, b1)Eab(tb)

φV
B∗

c
(x2)αs(tb) a1(tb)

{

φV
Υ(x1)m1 x1 + φT

Υ(x1)mc

}

, (A6)

Ac
L =

1

Nc

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

∫ ∞

0
db1

∫ ∞

0
b2db2

∫ ∞

0
b3db3Hcd(αe, βc, b2, b3)

Ecd(tc)φ
a
P (x3)αs(tc)C2(tc)

{

φv
Υ(x1)φ

v
B∗

c
(x2) 4m

2
1 p

2 (x1 − x̄3)

+φt
Υ(x1)φ

t
B∗

c
(x2)m1m2 (u x1 − s x2 − 2m2

3 x̄3)
}

δ(b1 − b2), (A7)

Ac
N =

1

Nc

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

∫ ∞

0
db1

∫ ∞

0
b2db2

∫ ∞

0
b3db3Hcd(αe, βc, b2, b3)Ecd(tc)C2(tc)

αs(tc) δ(b1 − b2)φ
T
Υ(x1)φ

T
B∗

c
(x2)φ

a
P (x3)

{

m2
1 s (x1 − x̄3) +m2

2 u (x̄3 − x2)
}

, (A8)

Ac
T =

2

Nc

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

∫ ∞

0
db1

∫ ∞

0
b2db2

∫ ∞

0
b3db3Hcd(αe, βc, b2, b3)Ecd(tc)C2(tc)

αs(tc) δ(b1 − b2)φ
T
Υ(x1)φ

T
B∗

c
(x2)φ

a
P (x3)

{

m2
1 (x̄3 − x1) +m2

2 (x2 − x̄3)
}

, (A9)

Ad
L =

1

Nc

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

∫ ∞

0
db1

∫ ∞

0
b2db2

∫ ∞

0
b3db3Hcd(αe, βd, b2, b3)

Ecd(td)φ
a
P (x3)αs(td)C2(td)

{

φv
Υ(x1)φ

v
B∗

c
(x2) 4m

2
1 p

2 (x3 − x2)

+φt
Υ(x1)φ

t
B∗

c
(x2)m1m2 (s x2 + 2m2

3 x3 − u x1)
}

δ(b1 − b2), (A10)

Ad
N =

1

Nc

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

∫ ∞

0
db1

∫ ∞

0
b2db2

∫ ∞

0
b3db3 Hcd(αe, βd, b2, b3)Ecd(td)C2(td)

αs(td) δ(b1 − b2)φ
T
Υ(x1)φ

T
B∗

c
(x2)φ

a
P (x3)

{

m2
1 s (x3 − x1) +m2

2 u (x2 − x3)
}

, (A11)

Ad
T =

2

Nc

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

∫ ∞

0
db1

∫ ∞

0
b2db2

∫ ∞

0
b3db3Hcd(αe, βd, b2, b3)Ecd(td)C2(td)

αs(td) δ(b1 − b2)φ
T
Υ(x1)φ

T
B∗

c
(x2)φ

a
P (x3)

{

m2
1 (x1 − x3)−m2

2 (x2 − x3)
}

, (A12)
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where x̄i = 1 − xi; variable xi is the longitudinal momentum fraction of the valence quark;

bi is the conjugate variable of the transverse momentum ki⊥; and αs(t) is the QCD coupling

at the scale of t; a1 = C1 + C2/Nc.

The function Hi are defined as follows [21].

Hab(αe, β, bi, bj) = K0(
√
−αbi)

{

θ(bi − bj)K0(
√

−βbi)I0(
√

−βbj) + (bi↔bj)
}

, (A13)

Hcd(αe, β, b2, b3) =
{

θ(−β)K0(
√

−βb3) +
π

2
θ(β)

[

iJ0(
√

βb3)− Y0(
√

βb3)
]}

×
{

θ(b2 − b3)K0(
√
−αb2)I0(

√
−αb3) + (b2↔b3)

}

(A14)

where J0 and Y0 (I0 and K0) are the (modified) Bessel function of the first and second

kind, respectively; αe (αa) is the gluon virtuality of the emission (annihilation) topological

diagrams; the subscript of the quark virtuality βi corresponds to the indices of Fig. 2. The

definition of the particle virtuality is listed as follows [21].

α = x̄2
1 m

2
1 + x̄2

2 m
2
2 − x̄1 x̄2 t, (A15)

βa = m2
1 −m2

b + x̄2
2 m

2
2 − x̄2 t, (A16)

βb = m2
2 −m2

c + x̄2
1 m

2
1 − x̄1 t, (A17)

βc = x2
1 m

2
1 + x2

2 m
2
2 + x̄2

3m
2
3

− x1 x2 t− x1 x̄3 u+ x2 x̄3 s, (A18)

βd = x2
1 m

2
1 + x2

2 m
2
2 + x2

3m
2
3

− x1 x2 t− x1 x3 u+ x2 x3 s. (A19)

The typical scale ti and the Sudakov factor Ei are defined as follows, where the subscript

i corresponds to the indices of Fig. 2.

ta(b) = max(
√
−α,

√

−βa(b), 1/b1, 1/b2), (A20)

tc(d) = max(
√
−α,

√

|βc(d)|, 1/b2, 1/b3), (A21)

Eab(t) = exp{−SΥ(t)− SB∗

c
(t)}, (A22)

Ecd(t) = exp{−SΥ(t)− SB∗

c
(t)− SP (t)}, (A23)

SΥ(t) = s(x1, p
+
1 , 1/b1) + 2

∫ t

1/b1

dµ

µ
γq, (A24)

SB∗

c
(t) = s(x2, p

+
2 , 1/b2) + 2

∫ t

1/b2

dµ

µ
γq, (A25)
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Sπ,K(t) = s(x3, p
+
3 , 1/b3) + s(x̄3, p

+
3 , 1/b3) + 2

∫ t

1/b3

dµ

µ
γq, (A26)

where γq = −αs/π is the quark anomalous dimension; the explicit expression of s(x,Q, 1/b)

can be found in the appendix of Ref. [2].
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