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Abstract

Discarding the prejudice about fine tuning, we propose a novel and effi-

cient approach to identify relevant regions of fundamental parameter space in

supersymmetric models with some amount of fine tuning. The essential idea

is the mapping of experimental constraints at a low energy scale, rather than

the parameter sets, to those of the fundamental parameter space. Applying

this method to the non-universal Higgs masses model, we identify a new in-

teresting superparticle mass pattern where some of the first two generation

squarks are light whilst the stops are kept heavy as 6TeV. Furthermore, as

another application of this method, we show that the discrepancy of the muon

anomalous magnetic dipole moment can be filled by a supersymmetric contri-

bution within the 1 σ level of the experimental and theoretical errors, which

was overlooked by the previous studies due to the required terrible fine tuning.
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1 Introduction

Although the discovery of the Higgs boson in July 2012 verifies our thought that the

physics up to the electroweak scale should be well described by the standard model

(SM) of particle physics [1], the SM itself suffers from the uncomfortably large dis-

parity between the electroweak scale and the fundamental physics scale which is

supposedly close to the Planck scale. Supersymmetry (SUSY) has been recognized

as a promising candidate to solve this unease. The fact that superparticles have not

yet been discovered, however, constrains their mass spectra, if exists: e.g. colored

superparticles should weigh at least around 1 TeV [2]. In the minimal supersym-

metric standard model (MSSM), the measured Higgs boson mass of about 125 GeV

requires large radiative corrections due to supersymmetry breaking (SUSY-breaking)

to raise its tree-level mass below the Z boson mass [3]. As the Higgs boson strongly

couples to the top-stop sector, this typically requires that the stop mass has to be

around 6 TeV or so, unless a SUSY-breaking trilinear coupling is parametrically large

[4]. In this case, there will be a little hierarchy between the electroweak scale and

SUSY-breaking mass parameters, and thus some amount of fine tuning among these

parameters may be requisite in order that the electroweak symmetry breakdown

takes place at the correct energy scale.

This situation does not mean that nature rejects SUSY, but implies that we

should not have prejudice against the amount of fine tuning. Since SUSY is still a

promising candidate for physics beyond the SM, we should study the supersymmetric

SM with some amount of fine tuning (FT-SUSY: fine-tuned supersymmetry).

To identify an experimentally viable region or an interesting region of a model,

the scatter plot method has been widely used. This method represents a relevant

region by a collection of discretized points in the fundamental parameter space, just

like a “pointillism”. The collection of points is selected from a large number of ini-

tially chosen points in the fundamental parameter space to satisfy the experimental

(and other) constraints at the experimental scale. However, in a FT-SUSY the rele-

vant region might be too tiny to be represented in this way.

In this paper, we propose a novel approach to a FT-SUSY regardless of the

amount of fine tuning.

In Sec.2, we propose a method to identify the relevant region of a FT-SUSY. In

contrast to the ordinary top-down renormalization group (RG) picture, in which a

1



point chosen in the fundamental parameter space at the fundamental scale flows to

that at the experimental scale, we map a constraint for the parameter space at the

experimental scale to that at the fundamental scale. Then, we can directly identify

the restricted space by the mapped constraints as the relevant region written in the

fundamental parameters. This procedure is like a “coloring”. This procedure allows

us to identify the whole relevant region as well as its outlines in the fundamental

parameter space. Furthermore, the area near an outline can be easily identified as

a phenomenologically interesting region, if this outline corresponds to the boundary

of a constraint given by an on-going experiment. Since the constraints we map can

also include the requirement of a characteristic property, if we choose a suitable

requirement, a fine-tuned region is identified.

In Sec.3, to illustrate our idea and to show its efficiency, we apply this procedure

to the non-universal Higgs masses model (NUHM) [5] which has the MSSM particle

contents with universal SUSY breaking masses except for the Higgs masses at the

GUT scale. We identify the experimental viable region of the NUHM and argue its

features. We find an interesting region with a new superparticle mass pattern, where

some of the first two generation squarks are light (Sec.3.1). This mass pattern is

a consequence of the RG running where a negative Higgs mass squared dominantly

raises the third generation squark masses due to their rather large Yukawa couplings.

Since this effect never happens in the CMSSM, this region should be one of the

characters of the NUHM (Sec.3.2).

In Sec.4, using another application of our method, we find there is a terribly

fine-tuned region that explains the anomaly of the muon anomalous magnetic dipole

moment (muon g − 2) [6], [7], [8] within the 1 σ experimental and theoretical errors

in the NUHM. Furthermore, with sufficiently large tanβ, we also show that there is

a parameter region explaining the muon g−2 anomaly with most of the 1st and 2nd

generation sfermions light. These regions were overlooked by the previous studies

using the scatter plot method which is not practical to find such a tiny and terribly

fine-tuned region. This fact shows the power of our approach to a FT-SUSY.
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2 A Novel Approach to FT-SUSY

We propose a novel approach to tackle a FT-SUSY.1 In this approach, we can directly

identify the relevant region in the FT-SUSY without being bothered with some

amount of fine tuning.

For the sake of simplicity, suppose that a fundamental supersymmetric model,

such as a grand unified theory (GUT), can be described as a generic MSSM. The

generic MSSM is defined as an effective theory with most general SUSY-breaking

soft mass parameters of the particle contents, below the fundamental scale tf of

the fundamental model. tf could be log
(

10O(10)GeV
mz

)

depending on the model we

consider, where mz is the Z boson mass. In the parameter space of the generic

MSSM, Mgen
f , a point is specified by a set of O(100) dimensionful parameters, gfi

at the scale tf , where we have assumed tan β is a given constant and no parameters

are dimensionless. This assumption is only for simplicity and the generalization

is straightforward. In contrast the fundamental model has a restricted parameter

space, the fundamental parameter space Mfund
f , with coordinates of much fewer

fundamental parameters Ga. Since below the scale tf , the fundamental model is

described by the generic MSSM, Mfund
f is embedded into a subspace of Mgen

f by a

set of relations,

g
f
i = f

f
i (Ga). (1)

This defines a map,

f f : Mfund
f → Mgen

f , and f f(Mfund
f ) =

{

g
f
i ∈ Mgen

f |gfi = f
f
i (Ga), Ga ∈ Mfund

f

}

.

(2)

On the other hand, the solution of the RG equation [9] which gives correspondence

among the parameters of the same theory at different scales can also be considered

as a map fRG.
2Since the fundamental model can be described by the generic MSSM,

we consider fRG in the context of the generic MSSM:

fRG : Mgen
f → Mgen

e , and fRG(M
gen
f ) =

{

gei ∈ Mgen
e |gei = gsoli (te; tf , g

f
j ), g

f
i ∈ Mgen

f

}

.

(3)

Mgen
e is the parameter space at the experimental scale te = log (O(100)GeV

mz

), and a

1In fact, the method developed here can apply to many models even without SUSY. However,

for ease of explanation, we only apply our method to a FT-SUSY in this paper.
2For simplicity, we suppose that fRG is a bijection, so that the image satisfies the equality,

imfRG ≡ fRG(M
gen

f ) = Mgen
e , and the inverse map, f−1

RG, can be defined.
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set of gsoli (te; tf , g
f
j ) is the solution of the RG equation [9] in the generic MSSM at te

with an initial condition of a set of parameters, gfj at tf .

Suppose that M̃gen
e denotes the region of interest of the generic MSSM at te,

which may be either a viable region, i.e. the part of the parameter space that

survives the experimental constraints, or a phenomenologically interesting region

with some characteristic properties. M̃gen
e is characterized by a set of conditions

expressed as φl(g
e
i ) > 0 or φl(g

e
i ) = 0:

Mgen
e ⊃ M̃gen

e = {gei ∈ Mgen
e |φ1(g

e
i ) > 0, φ2(g

e
i ) > 0, ...., φn(g

e
i ) > 0} . (4)

Here φl(g
e
i ) is a condition function for the generic MSSM parameters at te, which

could either correspond to a fitted function of an experimental constraint or a re-

quirement to have a characteristic property. The conditions in equalities, such as

the ones for correct electroweak symmetry breaking and the Higgs boson mass, re-

duce the dimension of Mgen
e . On the other hand, the conditions in inequalities, such

as the mass bounds for superparticles, restrict the parameter space Mgen
e and hence

constitute the outlines of M̃gen
e . In Eq.(4), we have written down only the conditions

in inequalities for illustrative purpose.

What we would like to do is to identify the region of interest at tf , M̃
fund
f in

the parameter space of the fundamental model, Mfund
f . A conventional definition of

M̃fund
f is given as

Mfund
f ⊃ M̃fund

f =
{

Ga ∈ Mfund
f |fRG ◦ f f(Ga) ∈ M̃gen

e

}

. (5)

Namely, given a set of the fundamental parameters, Ga ∈ Mfund
f , we apply the

RG procedure to obtain the corresponding parameters at te, and check whether they

satisfy the conditions characterizing the region of interest of the generic MSSM M̃gen
e .

The ordinary scatter plot method follows this procedure recursively by using

sample points, S =
{

G
(1)
a , G

(2)
a , ...G

(N)
a

}

, which are chosen in some way from the

fundamental parameter space. Here N is the total number of the sample points.

The region of interest of the fundamental model, M̃fund
f is approximated as a col-

lection of discretized points, like a “pointillism”. Therefore, when applying to a

FT-SUSY, in which the region of interest is so tiny, the ordinary method requires a

huge number of sample points, N , as well as luck, and hence is time-consuming in

numerical computation and sometimes misleading.
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We now propose a novel approach to identify the region of interest, M̃fund
f , in a

fundamental model regardless of the amount of fine tuning M̃fund
f has. Our definition

of M̃fund
f can be written,

M̃fund
f =

{

Ga ∈ Mfund
f |ψ1(Ga) > 0, ψ2(Ga) > 0, ...., ψn(Ga) > 0

}

, (6)

where ψl(Ga) is a condition function for the fundamental parameter space, expressed

as

ψl(Ga) = φl

(

gsoli

(

te; tf , f
f
j (Ga)

))

= φl ◦ fRG ◦ f f(Ga), (7)

and hence should be equivalent to Eq.(5). However, what we would like to obtain is

not the correspondence among points in Mfund
f and M̃gen

e , but the correspondence

between the two condition functions, φl(g
f
i ) and ψl(Ga). Namely, we map the given

set of conditions, φl(g
e
i ) > 0 that characterizes M̃gen

e , to the corresponding one,

φl ◦ fRG(g
f
i ) > 0, for the parameter space Mgen

f at tf within the generic MSSM,

and transform the latter into the corresponding conditions in Mfund
f . Since the

boundaries of these mapped conditions constitute the outlines of Mfund
f and what

we identify as M̃fund
f is the interior of the outlines, our procedure is like a “coloring”.

Since the map, f f , is given, what we would like to know is the RG map of the

condition function, φl(g
e
i ), within the generic MSSM,

φl ◦ fRG(g
f
j ) = φl

(

gsoli (te; tf , g
f
j )
)

, (8)

and we will show how to derive the explicit form of this. One way is to solve the RG

equation of the generic MSSM so that we can express gsoli (te; tf , g
f
j ) in terms of the

set of the parameters gfj at tf .

Alternatively, we can solve the differential equation which follows the RG map

of the condition function, Φl(gj, t) ≡ φl

(

gsoli (te; t, gj)
)

, by varying t:

(

∂

∂t
+
∑

i

βi
∂

∂gi

)

Φl(gj, t) = 0, (9)

where βi is the RG beta function for gi [9].

If the perturbative expansion

Φl(mj , t) =
∑

n=0

1

n!
φ
i1,i2...in
l (t)gi1gi2 ...gin (10)
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is allowed, a set of linear differential equations

∂

∂t
φ
i1,i2...in
l (t) =

n
∑

m=1

β̃
i1,i2...in
j1,j2...jm

φ
j1,j2...jm
l (t), (11)

for the coefficients, φi1,i2...in(t), are derived by requiring the vanishing of each Taylor

coefficient in Eq.(9). The upper limit of the summation in Eq.(11) comes from

the fact that a perturbative RG beta function always contains parameters of total

exponents > 1. Eq.(11) is the running equation for coefficients of constraint (RECC)

for φl(g
e
i ). If all the parameters are dimensionful as in our case, β̃i1,i2...in

j1,j2...jm
in Eq.(11)

can be non-zero only if the dimension of gi, d(i), satisfies
∑n

l d(il) =
∑m

l d(jl).

Hence the coefficients can be evaluated by numerically solving the derived linear

differential equation.3 We show the explicit derivation of RECC in the generic MSSM

in Appendix A.

Notice that gsoli (te; tf , g
f
i ) in terms of a set of parameters, gfi , is obtained, once we

choose a condition function φi(g
e
j ) = gei . We also note that in the derivation of RECC,

βi and β̃
i1,i2...in
j1,j2...jm

can even depend on the scale t. This is a convenient fact because we

may take a shortcut to derive RECC with some parameters approximately treated

as constants. Namely, if possible, we can numerically solve the RG equations for

these parameters in advance, and substitute the numerical solutions as constants in

the remaining RG equations. Then we can derive RECC from these remaining RG

equations which explicitly depend on t. This is what we do in Appendix A.

Solving the corresponding RECCs, we can obtain the set of conditions in terms of

g
f
i , φl ◦ fRG(g

f
i ) > 0, and applying the given map, f f , a set of ψl(Ga) > 0 is derived

from Eq.(7). Therefore the whole region of interest, M̃fund
f , is identified from Eq.(6).

There are two additional advantages in our approach.

Since a boundary of a constraint could correspond to an outline of M̃fund
f , the

viable region near such an outline may be testable if this constraint is given by an

ongoing experiment. This implies that a viable region near an outline can be a

phenomenologically interesting region. Therefore, checking the boundary profiles,

namely the constraints the boundaries correspond to, we can guess some of the

phenomenological interesting regions even without any additional requirement of

3If dimensionless parameters are included, we can also solve Eq.(11) but only perturbatively,

namely the solution can approximately represent a mapped constraint function up to a precision

depending on the order of the couplings we take into account.
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characteristic properties. On the other hand, the boundary profiles of a phenomeno-

logically interesting region in turn suggest the predictions that can be accompanied

with the characteristic property.

The second advantage is due to the fact that in our procedure the RG map of a

condition function is followed within the MSSM. In fact, we can define the region of

interest of the generic MSSM at tf ,

M̃gen
f =

{

g
f
i ∈ Mgen

f |φ1 ◦ fRG(g
f
i ) > 0, φ2 ◦ fRG(g

f
i ) > 0, ...., φn ◦ fRG(g

f
i ) > 0

}

.

(12)

Since the viable region of the generic MSSM at tf directly responds to the funda-

mental model, with stringent enough experimental constraints in future, M̃gen
f can

be a probe of the fundamental model. This approach may clarify the fundamental

model directly.

3 Region of Interest in the Non-Universal Higgs

Masses Model

Using the method advocated in the previous section, we would like to analyze

the non-universal-Higgs masses model (NUHM)[5] as an example of a fundamen-

tal model. The NUHM is an extension of the CMSSM motivated by GUT and has

universal masses for sfermions at the GUT scale tf ∼ log
(

2×1016GeV
mz

)

. The only

difference from the CMSSM is that in the NUHM the SUSY breaking Higgs mass

squared parameters are allowed to vary from that of sfermions at the GUT scale.

This may be a natural assumption as the origin of the Higgs particles may be different

from those of sfermions.

The NUHM has a fundamental parameter space, Mfund
f , where a point is specified

by the fundamental parameters,

Ga =
{

m2
0, m

2
Hu0, m

2
Hd0,M0, A0, µ0, B0

}

. (13)

As we have noted, tanβ, as well as the other dimensionless couplings, is taken to be

a given constant that is not included in the parameter set, Eq.(13). Since the NUHM

can be described by the generic MSSM below tf , a set of fundamental parameters in

Mfund
f is related to the parameters in Mgen

f :

m2
Q̃
= m2

ũ = m2
d̃
= m2

L̃
= m2

ẽ = m2
01 (14)
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M1 =M2 =M3 =M0 (15)

Au = Ad = Ae = A01 (16)

m2
Hu = m2

Hu0, m
2
Hd = m2

Hd0 (17)

B = B0, µ = µ0. (18)

Eqs. (14), (15) and (16) are the conditions of universal sfermion mass, gaugino mass

and A−term, respectively, where the bold characters are understood as three by

three matrices of generation. Eq.(17) expresses the condition of the non-universal

Higgs masses at tf which is the only difference from the CMSSM, and also is the

character of this fundamental model. The Higgs mixing parameter, µ, and the B−

term are taken to be free at tf in Eq.(18).

The experimental constraints of the generic MSSM at the experimental scale,

te ∼ log(100GeV
mz

), that restrict Mgen
e to its viable region M̃gen

e are given:

2Bµ− (m2
Hu +m2

Hd + 2µ2) sin 2β = 0

µ2 −
(m2

Hd −m2
Hu tan

2 β)

tan2 β − 1
−
m2

z

2
= 0

(19)

m2
Q̃3

·m2
ũ3 ≡ m4

soft ∼ (6TeV)4 (20)

m2
Q̃i,ũi,d̃i

> (1TeV)2, m2
L̃i,ẽi

> (300GeV)2

M2
3 > (2TeV)2, µ2 > (300GeV)2, m2

A > (300GeV)2.
(21)

Here Eqs.(19) are the constraints to obtain a correct electroweak vacuum at the tree

level. Eq.(20) is a rough requirement for the SM Higgs boson mass around ∼ 125GeV

suggested by FeynHiggs 2.11.2 [4]. Eqs.(21) are the LHC and LEP bounds of the

superparticles in the MSSM [2]. Neglecting the 1st and 2nd generation Yukawa

couplings, the SU(2) flavor symmetry suppresses flavor violation in the sfermion

sector, and we do not consider the constraints from flavor physics. Also we assume

that the parameters Eq.(13) are real and do not consider constraints of CP violation.

Since we will solve the RECCs at the 1loop level, which can be derived from the

given 1loop RG equations of the MSSM as in Appendix A, we ignore the threshold

corrections to the parameters. To apply a higher loop analysis, we can include the

threshold corrections in these constraints and solve the RECCs derived from the

higher loop RG equations.
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3.1 Whole Viable Region and Phenomenologically Interest-

ing Regions

Solving the RECCs, which is derived from the given 1loop RG equations in [9] as

in Appendix A, we evaluate the Taylor coefficients of the conditions, Eqs.(19), (20)

and (21), in terms of the fundamental parameters Eq.(13). Directly solving these

constraints, we obtain M̃fund
f , namely the whole viable region of the NUHM.

M̃fund
f is characterized by four independent parameters, as the seven fundamental

parameters Ga are constrained by these three equations in Eqs.(19) and (20). A two

dimensional slice in the four dimensional viable region, Mfund
f , is shown in Fig.1.

Also shown are the mass bounds of superparticles and the pseudoscalar Higgs boson

(A Higgs), where we have used indices “12” and “3” to denote the 1st/2nd and 3rd

generations, respectively.

Fig. 1: The viable region and the boundaries of the experimental constraint on the

slice ofM0=750GeV, A0=500GeV with tanβ=10 (left). The region with green is ex-

perimentally allowed with the measured Higgs boson mass and a correct electroweak

vacuum. Magnified view near an outline is presented in the right-hand side, where

the boundary profiles are shown in detail. The black dot, (−15356iGeV, 8836GeV),

represents the low energy parameters given in Table.1

There is a new interesting region near the red solid line in Fig.1, the boundary

of which is given by the mass bound of the first two generation up-type squarks. We

note that the stops are kept heavy to reproduce the measured Higgs boson mass.

We call this region an inverted light squark (ILSQ) region. Here “inverted” stands

for the new superparticle mass pattern characterizing this region where the first two

generation squarks are light, contrary to the ordinary light stop. Table.1 illustrates

the low energy parameters corresponding to the point represented by the black dot

9



Table. 1: The low energy parameters corresponding to the black dot, (mHu0, mHd0,

M0, A0)=(−15400iGeV, 8840GeV, 750GeV, 500GeV) with tan β = 10, shown in

Fig.1. The other fundamental parameters, (m0, µ0, B0)=(3200GeV, 12600GeV,

1800GeV), are evaluated from the solution of Eqs.(19) and (20). “EW” stands for

electroweak.

EW scale mHu mHd
mQ̃3 mũ3 md̃3 mL̃3 mẽ3 mQ̃12

TeV −12.1i 8.3 6.6 7.5 4.3 1.3 5.1 4.1

mũ12 md̃12 mL̃12 mẽ12 M1 M2 M3 µ mA

1.6 4.4 1.4 5.2 0.31 0.62 2.2 12.2 14.9

shown in Fig.1, where the up-type squarks in the first two generations may be within

the reach of forth coming experiments. We have confirmed that the Higgs boson mass

124(1)GeV is evaluated from FeynHiggs 2.10.2 [4] with the parameters in Table.1 as

an input. We have also confirmed that the ILSQ region still exists including 2loop

RG running by solving RECCs at the two-loop level.

Furthermore, we can observe a special point in the left-hand side of Fig.1, where

most of the contours including the gray dotted lines concentrate. Since they corre-

spond to the mass bounds for the sfermions, the concentrating point, if near enough

to the viable region, implies a surprising possibility. That is most of the scalar

masses are just above the experimental bounds in spite of the heavy stops which

weigh around 6TeV. However, as in the right figure the approximately concentrating

point is too far away from the viable region, e.g. O((10TeV)2) in mass squareds. In

fact, the point is not excluded by the experimental mass bounds but excluded due to

the unstable electroweak vacuum namely the A Higgs is tachyonic, m2
A < 0. We will

discuss the instability in detail in Sec.3.2, and show the instability can be alleviated

with large tanβ in Sec.4.2.

3.2 Mechanism for the inverted light squark

In this subsection we will explain how the characteristic mass pattern in the ILSQ

region is generated in spite of the universal sfermion mass condition, Eq.(14), and

the requirement of heavy stops, Eq.(20). Since these two conditions are imposed at

two different scales, the RG running should be essential. The RG equation for a

10



right-handed up-type squark mass is,

d

dt
m2

ũi ∼
2

16π2

{

2y2tXtδi3 + Y g′2S −
16

3
g23M

2
3 − 4g′2Y 2M2

1

}

, (22)

S ≡
(

m2
Hu

−m2
Hd

+ Tr[m2
Q̃
−m2

L̃
− 2m2

ũ +m2
d̃
+m2

ẽ ]
)

, (23)

Xt ≡m
2
Hu

+m2
Q̃3

+m2
ũ3

+ |At|
2
, (24)

where i represents 12 or 3, and Y is the hypercharge, −2/3 [9]. yt is the top- Yukawa

coupling while g′ and g3 are gauge couplings of U(1)Y and SU(3)c, respectively. The

split between the 3rd and 1st/2nd generation up-type squarks should originate from

the Yukawa term, the first term in Eq.(22). To raise the stop mass mũ3 large enough

for the inverted hierarchy, we need a negative and large Xt that dominates over the

other terms in Eq.(22). This is realized when m2
Hu

is large and negative.

For sufficiently large tanβ, the bottom and tau Yukawa couplings can be effec-

tively large in spite of the observed small mass ratio of bottom/tau to top. If m2
Hd is

large and negative, the same argument applies to down-type squarks and sleptons.

In summary, the inverted hierarchy can be generated by the Yukawa contribution

through the RG running due to a negative and large Higgs mass squared parameter.

Furthermore, we would like to explain the sfermion mass splitting within a gen-

eration. This originates in the gauge interactions, especially for U(1)Y gauge sym-

metry. In particular, the value of S in Eq.(23) can largely deviate from zero in the

NUHM contrary to the CMSSM case where S is always zero. We find that when

our mechanism of the ILSQ works, S is non-zero in order to avoid the unstable elec-

troweak vacuum, unless tanβ is substantially large. We show this by reductio ad

absurdum. Suppose that S = 0 is satisfied with a large and negative m2
Hu0, namely

m2
Hu0 = m2

Hd0 ≪ 0 at the GUT scale. Since Xt dominates over the other terms

in Eq.(22), the RG equations of m2
Hu

and m2
Hd

are also controlled by the large and

negative Higgs masses [9],

βm2
Hu

∼
1

16π2
6y2tX

2
t ∼

1

16π2
6y2tm

2
Hu, (25)

βm2
Hd

∼
1

16π2

(

6y2bm
2
Hd + 2y2τm

2
Hd

)

. (26)

Hence, the RG running effect decreases the absolute value ofm2
Hu at the experimental

scale, while m2
Hd does not change so much due to the smaller Yukawa couplings. This

implies that at low energy

0 ≫ m2
Hu > m2

Hd (27)
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is satisfied and the problem of tachyonic instability of the electroweak vacuum occurs,

as m2
A < 0 by solving Eqs.(19). Therefore, we need a greater m2

Hd0 to stabilize the

electroweak vacuum and hence S < 0. Notice that this argument depends on the

sign of the Higgs mass squareds and the size of tan β. Since Eq.(25) decreases the

absolute value of m2
Hu, if S is cancelled by positive and large m2

Hu0 and m
2
Hd0, Eq.(27)

is replaced by 0 ≪ m2
Hu < m2

Hd and the instability problem does not occur. This is

the reason why the CMSSM is allowed to have a stable electroweak vacuum. Also

if tanβ is large enough, the RG running of m2
Hd, Eq.(26), can be effective and the

vacuum instability problem should be alleviated with S ∼ 0 in the ILSQ region.

For not so large tanβ, the property of S < 0 in the ILSQ region makes ũ12 the

lightest squark as in Table.1, because it has the least hypercharge. The requirement

of S < 0 is also the reason why the approximately concentrating point in the right-

hand side of Fig.1 is far away from the viable region. In fact, the approximately

concentrating point lies on the line of S = 0 where the first two generation sfermion

masses can be small without splitting. On the other hand, since S ∼ 0 may be

allowed when tanβ is sufficiently large, in this case there is a possibility to have an

ILSQ region including most of the first two sfermion masses just above the experi-

mental bounds. This is the case in Sec.4.2.

As we have discussed, the ILSQ region has a new superparticle mass pattern

essentially related to the non-universal Higgs masses. Therefore, this mass pattern

should be one of the most characteristic phenomenon of the NUHM, as the CMSSM

never realize this.

4 Terribly Fine-Tuned but Important Region

In Sec.3, we have presented the whole viable region of the NUHM by solving the ex-

perimental constraints in terms of the fundamental parameters which can be obtained

from the method advocated in Sec.2. We have found a new phenomenologically inter-

esting region near the boundary corresponding to a squark mass bound. However,

an interesting region with a characteristic property is not necessarily around the

outlines, rather inside the viable region. This is particularly the case when the

characteristic property requires a fairly large amount of fine tuning among the pa-

rameters. Notice that it would be difficult for the scatter plot method to identify

such a fine-tuned region.
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In this section we will show how to analyze a large and complicated viable region

to find out the characteristic properties localized inside of it, and argue this analysis

has an advantage when applied to a FT-SUSY.

To illustrate the idea, consider here the muon anomalous magnetic dipole moment

(muon g−2), αµ. The muon g−2 anomaly is a hint of new physics, as the discrepancy

between the theoretical and experimental values exceeds the 3 σ level of these errors

[6], [7], [8]

αexp
µ − αSM

µ = (26.1± 8.0)× 10−10. (28)

In the generic MSSM at least three light superparticles, weigh around 300GeV, are

needed to generate a large enough contribution [10], [11]. Therefore, the region of

the generic MSSM, M̃gen
e , that fills the discrepancy of the muon g − 2, should be

characterized by three parameters with very tiny values compared to the stop mass

parameters around 6TeV. Therefore, if exists, the region of interest of the NUHM

now, M̃fund
f , should be fine-tuned from the whole viable region in the previous section.

The particular diagram we consider for the SUSY contribution to the muon g−2

is made of a loop including a bino and smuons of both chiralities [10], [11]. Following

[10], we obtain an approximated formula of the SUSY contribution to the muon g−2,

δαµ ≡ αMSSM
µ − αSM

µ

∼
1

16π2

g′2m2
µM1µ tanβmin {m2

L̃12
, m2

ẽ12,M
2
1}

2m2
L̃12
m2

ẽ12M
2
1

∼ 5× 10−10
(100GeV)2M1µ tanβmin {m2

L̃12
, m2

ẽ12,M
2
1}

m2
L̃12
m2

ẽ12M
2
1

. (29)

This rough approximation will be corrected by fitting the results evaluated in Feyn-

Higgs 2.11.2 [4] by varying the overall coefficient of this function.

4.1 How large can the muon g − 2 be in the NUHM?

In order to clarify whether the NUHM can explain the muon g − 2 anomaly, an

efficient way is to evaluate the maximal value of the muon g − 2 in the NUHM.

This immediately draws a conclusion of whether the muon g − 2 anomaly can be

explained. Therefore we impose a condition,

maximize[δαµ] by varying m0, (30)

13



Fig. 2: The contour plot of the maximized muon g − 2 by varying m0 on a slice at

A0 = 0 with tanβ=35 (left). Magnified view of the yellow region is presented in the

right-hand side. The red (green, blue) region represents that the total muon g − 2,

including the maximal NUHM correction, is within the 1 σ (2 σ, 3 σ) level error of

the observed value. The black dot, (8700GeV, 2010GeV), represents the low energy

parameters given in Table.2.

in addition to Eqs.(19)–(21). In fact, we can vary all the free parameters to maximize

the muon g − 2, however, for the illustrative purpose we only vary one parameter.

This reduces a free parameter, m0, in Mfund
f .

By solving the conditions, Eqs.(19)–(21) and (30), in terms of A0,M0, and µ0,

we obtain a three dimensional region of interest, M̃fund
f . An A0 = 0 slice of the

solution is shown in Fig.2 with tanβ = 35. The contours represent the maximized

total muon g − 2 by varying m0.

We find the maximized muon g − 2 can exceed 18.1 × 10−10 with tanβ & 25,

namely the NUHM is able to fill the discrepancy of the muon g − 2 within the 1 σ

level error.

In fact, there are two kinds of regions, namely type 1 and type 2 regions, depend-

ing on the lightest particle in the loop diagram corresponding to Eq.(29). The type

1 region explains the muon g − 2 anomaly with either ẽ12 or L̃12 as the lightest par-

ticle in this diagram, while the type 2 region has bino as the lightest particle. Fig.2

corresponds to the former one, while the region of type 2 appears for tan β & 55 as

we will show in Sec.4.2.
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Table. 2: The low energy parameters corresponding to the black dot,

(M0, µ0, A0)=(2010GeV, 8700GeV, 0GeV), in Fig.2 with tanβ=35. The other fun-

damental parameters, (m0, mHu0, mHd0, B0) = (1186iGeV, 9375iGeV, 8326iGeV,

−768GeV), are the solution of Eqs.(19), (20) and (30).

EW scale mHu mHd
mQ̃3 mũ3 md̃3 mL̃3 mẽ3 mQ̃12

GeV 8044i 7992i 5834 6161 5089 1637 2275 5168

mũ12 md̃12 mL̃12 mẽ12 M1 M2 M3 Au3 Ad3

4920 4999 429 429 839 1659 5770 −4497 −6749

Ae3 Au12 Ad12 Ae12 µ mA FeynHiggs mh by FH δαµ by FH

−1011 −7891 −7820 −1372 8043 907 (2.11.2) [4] 126(1.4)GeV 2.5× 10−9

4.2 The region explaining the muon g − 2 anomaly and the

mechanism

Since the NUHM has a region where the muon g − 2 anomaly is explained, now we

would like to explore the features of this region. Since we know that an outline may

have some phenomenological information about the nearby region, it is meaningful

to show the outlines of the region where the muon g − 2 is just at the experimental

central value, rather than the maximal value. We impose a condition instead of

Eq.(30),

(100GeV)2M1µ tanβmin {m2
L̃12
, m2

ẽ12,M
2
1}

m2
L̃12
m2

ẽ12M
2
1

=

{

10 (tan β ∼ 35)

7.5 (tan β ∼ 60).
(31)

The factor 10 and 7.5 in the right-hand side are fitted experimentally using FeynHiggs

2.11.2 [4].

The solutions by solving Eqs.(19)–(21), and (31) in terms of A0,M0, and µ0, are

presented in Fig.3 and Fig.4 corresponding to type 1 and type 2 regions, respectively.

Also shown are the boundary profiles.

If the muon g − 2 anomaly is explained by the region in Fig.3, from the bound-

ary profiles some of light smuons, selectrons, right-handed stau and A-Higgs might

be within the reach of the forth coming experiments. On the other hand, Fig.4

implies that many superparticles might be within the reach of the forth coming

experiments, as many boundaries of the experimental constraints are within the dis-
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tances of . O(TeV) from this interesting region. A set of low energy parameters

corresponding to the type 2 region is given in Table.3. We have confirmed that

the Higgs mass and the muon g − 2 anomaly are explained using FeynHiggs 2.10.2

[4] with an input of these parameters. We have also confirmed that the parame-

ter region does not vanish but shifts to a different area in the parameter space by

solving the RECCs at the 2loop level with some of the 1loop threshold corrections

included in the conditions Eqs.(21). Chosen in this parameter region, some sets

of fundamental parameters are inputted into SOFTSUSY 3.7.1 [12] and a similar

pattern of the low energy parameters to those in Table.3 is produced. For exam-

ple, with an input {tanβ = 61,M0 = 919GeV, m2
Hd0 = −1.835 × 108GeV2, m2

Hu0 =

−2.200 × 108GeV2, m0 = 623.0GeV, µ0 > 0}, SOFTSUSY 3.7.14 shows a set of low

energy parameters from which the measured Higgs boson mass and the muon g − 2

within the 1σ error are evaluated by FeynHiggs [12, 4].

Now we would like to consider how the muon g − 2 anomaly is explained. From

Eq.(31), we find that large µ−term and tan β are favored for a large value of the muon

g − 2. This requires large and negative Higgs masses to have a correct electroweak

vacuum due to Eqs.(19). Therefore the mechanism of the ILSQ in Sec.3.2 can be

applied. As noted, a negative S−term is required to stabilize the electroweak vacuum

when tan β is not substantially large. Neglecting RG running due to gauginos, ũ12

becomes the lightest sfermion in most of the cases as in Table.1. This excludes a

smuon around 300GeV, as it should be heavier than ũ12 which is bounded below by

1TeV. If we would like to decrease the smuon masses in the ILSQ region, what we

should do is to increase the gluino mass. The RG effect from a heavy gluino, as the

third term in Eq.(22), raises the masses of squarks universally from those of sleptons.

However the universal gaugino mass condition, Eq.(15), implies a heavy bino. Hence,

the lightest particle in the loop diagram corresponding to Eq.(29) becomes a smuon

which can be seen from the boundary profiles in Fig. 3. This is the case for type 1

region.

The type 2 region where bino is the lightest particle in the loop diagram corre-

sponding to Eq.(29) can be realized with sufficiently large tan β. This is consistent

with the argument noted in Sec.3.2: S ∼ 0 can be realized with large tanβ. In this

case, we do not need a heavy gluino to raise the squark masses and the bino can be

4We have set the number of loops in the Higgs boson mass computation to be one, as otherwise

the computation would not converge due to the terrible fine tuning.
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Fig. 3: A0=0 slice of the region of type 1 with tanβ=35. The region with green

explains the muon g − 2 anomaly within its 1σ level error where one of the smuons

is lighter than the bino. The magnified view of the corresponding colored region is

also shown with the boundary profiles in detail. The profiles of the boundaries that

do not constitute the outlines are turned off.

as light as the smuons. Furthermore, all the 1st and 2nd generation sfermions will

be light because small gaugino masses and S− term imply the degeneration of the

sfermions in the first two generations, and the mechanism of ILSQ works for all of

them. This is actually the case in Table.3.

As we can see in Fig.2, Fig.3, and Fig.4, the relevant regions have small sizes due

to fine tuning. In fact, fine tuning is already alleviated in these figures as we have

reduced a free parameter that is fine-tuned contrary to the stop mass scale by solving

Eq.(30) or Eq.(31). On the other hand, after the discovery of the Higgs boson the

muon g − 2 correction in the NUHM is discussed in several studies [13] by using
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Fig. 4: A0=0 slice of the region of type 2 with tanβ = 60. The region with green

explains the muon g − 2 anomaly within its 1σ level error where the bino is lighter

than the smuons. The boundary profiles are also shown. The blue solid and dashed

lines denote the boundary of the condition to have type 2 region which constrains

the bino to be the lighter than the smuons. The black dot, (15120GeV, 700GeV),

has low energy parameters given in Table.3

the scatter plot method. In these studies, the tiny regions we found in this paper

had been overlooked, as the “pointillism” is not practical to find such a tiny and

terribly fine-tuned region. Therefore, we have shown that the method advocated in

this paper has a strong advantage in identifying a fine-tuned region and this should

be an efficient approach to a FT-SUSY.
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Table. 3: The low energy parameters corresponding to the black dot,

(M0, µ0, A0) =(700GeV, 15120GeV, 0GeV), represented in Fig.4 with tan β=60.

The other fundamental parameters, (m0, mHu0, mHd0, B0) =(898GeV, 14910iGeV,

13650iGeV,21GeV), are obtained by solving the conditions corresponding to

Eqs.(19), (20) and (31).

EW scale mHu mHd
mQ̃3 mũ3 md̃3 mL̃3 mẽ3 mQ̃12

GeV 11820i 11780i 6399 7553 4810 4540 6618 2125

mũ12 md̃12 mL̃12 mẽ12 M1 M2 M3 Au3 Ad3

1650 2146 326 1669 292 578 2010 −1511 −1998

Ae3 Au12 Ad12 Ae12 µ mA FeynHiggs mh by FH δαµ by FH

−118 −2748 −2724 −478 11820 946 (2.11.2)[4] 124.6(1.3)GeV 2.1× 10−9
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5 Conclusions

In this paper, we proposed a novel and efficient approach to the supersymmetric

models with some amount of fine tuning, in which the commonly used approach

of scatter plot is inefficient and sometimes even fails to find relevant regions in

the parameter space of superparticle masses with the limited number of plotted

points. The essential idea of our approach is to directly map the (experimental or

other) constraints at low energy to those in the fundamental parameter space. We

can identify the relevant region in the fundamental parameter space by filling the

interior of the mapped constraints as the boundaries of the constraints will form

the outlines of the relevant region. Furthermore the areas near the boundaries of

the experimental constraints which are rather easily identified in our method can be

phenomenologically interesting as they will be within forth coming experiments.

We applied this method to the non-universal Higgs masses (NUHM) model. The

features of the NUHM model are the same as the CMSSM except that the SUSY-

breaking Higgs masses differ from the universal sfermion mass at the GUT scale. By

using our method, we identified the phenomenologically viable regions of the param-

eter space and argued some interesting features of the model. Among other things,

we found, in some cases, that the inverted squark masses are realized, where the

renormalization group effects raise the third generation squark masses compared to

those of the first two generations. This mass pattern is a characteristic phenomenon

of the NUHM model and is never realized in the CMSSM.

Another application of our method is to identify, within the NUHM model, the

existing but tiny region in the parameter space, where the SUSY contribution ex-

plains the discrepancy of the muon g − 2 within the 1 σ level of experimental and

theoretical errors. The price to pay is the terrible fine tuning among the parame-

ters, and therefore the previous studies with the conventional scatter plot method

failed to find this region, drawing misleading conclusions. This example illustrates

the power of our method in particular when the required fine tuning is severe. The

relevance of our approach will even increase when the forth coming experiments will

give null results in superparticle searches and more fine tuning will be required to

correctly produce the electroweak scale.

The method advocated in this paper has a variety of applications, some of which

was given in [14] and also will be discussed elsewhere.
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A RECCs for the generic MSSM

We would like to show the derivation of RECCs in the generic MSSM with given

dimensionless couplings at te. In fact, the following argument can apply to the

derivation of RECCs at any loop order with given RG equation at the same order.

The parameters gfi and constants of the generic MSSM are classified by their

dimensions:

D=2 Sfermion masses, Higgs masses: m2
i

D=1 Gaugino masses, µ− and A− terms: Mi

D=0 Gauge couplings and Yukawa couplings: yi

where the set of m2
i is understood to include the off-diagonal elements of usual three

by three sfermion mass matrices etc.

A perturbative RG equation for the parameters of dimension d is written in terms

of the parameters with dimension≤ d:

d

dt
m2

i = ak2,i(yj)m
2
k + akl1,i(yj)MkMm,

d

dt
Mi = bki (yj)Mk,

d

dt
yi = ci(yj).

(32)

ak2,i(yj), a
kl
1,i(yj), b

k
i (yj) and ci(yj) are given functions that can be derived from loop

calculations in the generic MSSM [9]. The summation is understood.

Firstly, we can solve the RG equation for dimensionless constants numerically

with given yi at te. Substituting this numerical solution for yi, the (effective) RG

equation for dimensionful parameters become,

d

dt
m2

i = ak2,i(t)m
2
k + akl1,i(t)MkMl

d

dt
Mi = bki (t)Mk.

(33)

Secondly, using Eq.(33), we can derive the RECCs for condition functions,

φ2(m
2
i ) = m2

1(te)− (103GeV)2 and φ1(Mi) =M1(te)− (103GeV), (34)

corresponding to simplified experimental mass bounds of a scalar and a fermion,

respectively. Dimensional analysis allows us to guess the forms of the mapped con-
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dition functions at an arbitrary scale, t, to be

Φ2(t) ≡ φi
2(t)m

2
i + φ

ij
2 (t)MiMj + c2(t) (35)

Φ1(t) ≡ φi
1(t)Mi + c1(t). (36)

Therefore, employing Eq.(9) the RECCs for Eqs.(35) and (36) are derived as

d

dt
φi
2(t) = −φk

2(t)a
i
2,k(t)

d

dt
φ
ij
2 (t) = −φk

2(t)a
ij
1,k(t)− φ

kj
2 (t)bik(t)− φik

2 (t)b
j
k(t)

d

dt
φi
1(t) = −φk

1(t)b
i
k(t) (37)

d

dt
c1(t) =

d

dt
c2(t) = 0.

With the initial condition,

φi
2(te) = δi1, φ

ij
2 (te) = 0, c2(te) = −(103GeV)2 (38)

and

φi
1(te) = δi1, c1(te) = −103GeV, (39)

taken from Eq.(34), we obtain the mapped condition functions as the solutions of

Eq.(37).

Notice that a mapped condition function which equals to a dimensionful param-

eter at te, as

φ(te) = m2
i or φ(te) =Mi, (40)

is a solution of the RG equation with an explicit form in terms of the dimensionful

parameters at t. These solutions actually can be obtained by solving Eq.(37) with

proper initial conditions imposed where c1(t) = c2(t) = 0. Finally, substituting

all the solutions corresponding to the parameters at te, we can map any condition

functions to the parameter space at an arbitrary scale t.
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