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Abstract

We study the long-range force arising between two neutral—of electric charge—
aggregates of matter due to a neutrino-pair exchange, in the limit of zero neutrino mass.
The conceptual basis for the construction of the effective potential comes from the coherent
scattering amplitude at low values of ¢. This amplitude is obtained using the methodology
of an unsubtracted dispersion relation in ¢ at threshold for s, where (s, t) are the Lorentz
invariant scattering variables. The ultraviolet behavior is irrelevant for the long-range
force. In turn, the absorptive part in the t-dependence is given by the corresponding

5 at

unitarity relation. We show that the potential describing this force decreases as r~
large separation distance r. This interaction is described in terms of its own charge, which
we call the weak flavor charge of the interacting systems, that depends on the flavor of
the neutrino as Qf, = 2Z — N, @4, = Qf, = —N. The flavor dependence of the potential
factorizes in the product of the weak charges of the interacting systems, so that the
resulting force is always repulsive. Furthermore, this charge is proportional to the number
of constituent particles, which differs from the global mass, so this interaction could be

disentangled from gravitation through deviations from the Equivalence Principle.
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1. Introduction

It’s been 85 years since Wolfgang Pauli postulated the existence of the neutrino
in order to explain the continuous spectrum in f-decays, and 59 years since Reines and
Cowan discovered it. In those years, we've learnt many properties about this particle,
such as the fact that it only interacts through weak interactions—all of its charges but
weak isospin are zero. In fact, in the framework of the Standard Model [1], there are only
left-handed neutrinos, so Standard Model neutrinos are massless—we can’t generate a

neutrino mass through a Yukawa-type coupling with a Higgs doublet.

Other interesting phenomena related to this particle are neutrino oscillations [2],
which have been well established experimentally since 1998. This process is understood as
the fact that there is a mismatch between mass eigenstates and flavor eigenstates, so that
flavors get mixed along free propagation. Indeed, the observation of neutrino oscillations
is a direct measurement of the mass difference between the three states, proving that
neutrinos are massive particles, which is a first signal of Physics beyond the Standard
Model.

Therefore, the study of the origin of neutrino mass is one of the directions in
which we can expect finding new Physics, even though its small value (m, < 1 eV [3])
makes it hard to observe experimentally. As well as determining the absolute mass of the
neutrino, there’s still a more fundamental question about their nature unanswered: since
neutrinos can be neutral of all charges, their finite mass could be explained through a Dirac
mass term (implying that neutrinos and antineutrinos are different particles, described
by 4—component Dirac spinors) or through a Majorana one (implying that neutrinos are

self-conjugate of all charges, described by 2 independent degrees of freedom).

In any case, the fact that their masses are very low stands, and we discuss here
another property of neutrinos as mediators of a new force. As is well known, the processes
represented in Quantum Field Theory by the exchange of a massless particle give raise to
long-range interactions. An easy example is the scattering of two particles mediated by a
photon, which—at tree level-—describes Coulomb scattering. Our objective in this work
is the application of these ideas to a process mediated by neutrinos. According to the
Electroweak Lagrangian, the lowest-order process is a neutrino-pair exchange, which—

since neutrinos are nearly massless—describes an interaction of long range.

With this idea in mind, we review in Section 2 the relation between the Feynman

amplitude in Born approximation and an effective potential, which is a Fourier Transform.

7



8 A. Segarra

The amplitude at low ¢, associated to the long-range behavior, is obtained by means of an
unsubtracted dispersion relation. Its ultraviolet dependence is of no relevance. In order to
simplify the calculation of the potential, in Section 3 we exploit the untitarity of the S
matrix, writing the absorptive part of the 1—loop scattering amplitude with the amplitude

of the tree-level scattering process.

In Section 4, we study the low-energy limit of the Electroweak Lagrangian in terms
of a contact interaction, establishing the framework for the calculation of the scattering
amplitude including both neutral current and charged current vertices. We compute in
detail this amplitude in Section 5, where it’s natural to introduce the concept of a weak
flavor charge of matter. In terms of this amplitude, obtaining the interaction potential is
straightforward, and we find in Section 6 that it leads to a repulsive force which decreases

as 7’76.

We conclude this work analyzing the possibility of an experimental measurement of
this interaction, which is relevant between nanometers and microns, where there are also
residual electromagnetic interactions—such as Van der Waals or Casimir-Polder forces—
and gravitation. The measurement of this weak interaction is very compelling, since it
could give information about properties of the neutrino such as its absolute mass, which is
still unknown, or it could even help us to answer the most fundamental question regarding
neutrinos, whether they are Dirac or Majorana particles. These points are considered in

Sections 7 and 8.



2. From a Quantum Field Theory to an Effective Po-
tential
We are interested in calculating the interaction potential resulting from a neutrino-
pair exchange between aggregates of matter, which is an interaction described in the

framework of a Quantum Field Theory. Therefore, we will begin this work relating the

concepts of interaction potential and Feynman amplitude.

2.1. The Coulomb potential

It is known that the interaction between two electrically charged particles, say A

and B, is described by the Coulomb potential,

VC(T) o 6_2 QAQB

A7 r

(2.1)

where e is the charge of the proton, (); the charge of the particle J in units of e and r the
distance between the two particles. Throughout this work, we’ll use the Natural System

of Units and the Heaviside electric system—all conventions are stated in Appendix A.

We are interested in calculating this potential using the Quantum Electrodynamics

(QED), which is described by the interaction Lagrangian
Lawp = —eQ UV P Ay (2.2)

In this framework, the AB — AB elastic scattering is described—at leading order—
by the Feynman graph from Fig.1a. Using the QED Feynman rules [1], the amplitude of
the process is
1

M = 2QaQp [a(ps)y"u(p1)] 2 [P (2] (2.3)

Since we are looking for a long-range coherent interaction, we can simplify

M ~ 2 QaQp [u(ps)y u(p1)] % [@(pa)you(p2)] (2.4)

taking into account the fact that 7° is related to the electric charge, which is coherent,

while = is related to the electromagnetic current, which is not a coherent quantity.

9
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A(p1) A(ps) A(p1) A(ps)
@a \\/
7(q) ¢(q)
0 PN
B(p2) B(p4) B(p2) B(p4)
(a) (b)

Figure 1: Lowest-order Feynman diagrams for AB — AB elastic scattering. (a) QED
interaction, mediated by a photon, where A and B are particles of electric charge () 4 and
@p. (b) Yukawa interaction, mediated by a scalar ¢ of mass p.

Using (fyo)2 = 1 and dropping external-line factors, we get
2 2 1
M(q") = e QaQp 2 (2.5)

where we defined M (¢?) as M(¢?) = @™ (p3)a'® (ps) M (¢*)u™® (p2)ul (py).

Since this is a scattering process, we can work in the Breit reference frame (defined

by ¢° = 0), which describes the non-relativistic limit (low energy transfer), where
2 2 1
M(q”) = —e"QaQp pER (2.6)

We can compute the 3-dimensional Fourier Transform of this quantity (see Appen-
dix B.2.1), and we find

g

(27)?

2
T M(q?) = —Z—W QATQB = —Ve(r). (2.7)

F M) (r) = J

This expression shows the relation between the Quantum Field Theory Feynman
amplitude and the interaction potential used in a potential description of the system
dynamics. Before considering a more general case, let’s look at another simple one: the

Yukawa interaction.
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2.2. The Yukawa interaction

Another well-known potential is Yukawa’s, which describes an effective central
strong nuclear force acting between nucleons,
92 e kT

Vy(T) = . (28)

dmor

From a Quantum Field Theory point of view, this interaction is described by the
Lagrangian

gY = —9¢1E?/17 (29)

where ¢ is a scalar field and 1) is a fermionic field. Such a scalar can be physically associated
to the o meson for the interacting m-m mediation. The AB — AB scattering amplitude

described by this Lagrangian is the one represented in Fig.1b, so it is

M = g [ua(ps)u(py)] ﬁ [a(pa)u(pa)] (2.10)

where p is mass of the scalar, and

M(q*) = : (2.11)

Again, we can work in the Breit reference frame, so that

M) = —9 2.12
(¢°) PR (2.12)

The potential must be related to the Fourier Transform of this M (¢?), which is
also calculated in Appendix B.2.1,

g2 e T

FAM; (1)

= y— = _VY(T)a (2.13)

which is the same relation between M (¢?) and V(r) that we obtained in the Coulomb

case.
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B B

Figure 2: Feynman diagram for AB — AB elastic scattering mediated by a, b exchange.

2.3. A more general case: particle-pair exchange

As we have just seen, the interaction potential between particles A and B is the

Fourier Transform

V(r) = —J%eiqrM(qQ), (2.14)

where M is the lowest order Feynman amplitude for the process AB — AB, with both A
and B on-shell, but without external-leg factors, as is discussed in [4]'. In the case of a

pair exchange, this process will be the one represented in Fig.2.

In order to compute integral (2.14), we rewrite the amplitude as a dispersion re-
lation following the steps mentioned in [5]. We can extend ¢ to the complex plane and
expand the amplitude using Cauchy’s Formula [(],

1 !/
f(z) = — dz'M (2.15)

o o T A =2
which is valid whenever f(z) is analytic inside C.

The physical region of the ¢ variable of elastic scattering processes has ¢t < 0, so we
want the R™ axis inside C'. Also, the t—channel amplitude will have a branching point at
t = (mg+my)? =ty = 0, so we can use Cauchy’s Formula with the integration path shown
in Fig.3. In fact, the physical region is —s < t < ty, but we are only interested in the
long-range interaction, which is associated to low values of |t|. Since [t| ~ s ~ (M4 + Mp)?

describes interactions of much shorter range than the nuclear size whenever A and B are

!Beware a minus sign between their convention for the Feynman amplitude and ours.
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Im{t}
TC=0C,+C_+C,
Cx
Cy
Q > Re{t}
o C_

Figure 3: Integration path (in the complex plane of the ¢ Mandelstam variable) used
in the dispersion relation decomposition of the Feynman amplitude of the process, as
discussed in the text.

aggregates of matter, we can take s — oo without affecting the long-range amplitude, as

we have done in considering the path in Fig.3.

If the amplitude vanishes along the Cy circumference, as [t| — o0, the only con-

tribution is the one coming from the integral on both sides of the cut along the real ¢

axis,
1 fo Mt —i 1 0 Mt +i
M(t) = —lim dt’ M + lfm ar’ M _
21 >0 o0 ' —t 271 e—0 to t — ¢t
1 O M +ie) — M(t—i
=Ly [T MU = M=) (2.16)
271 e—0 to H — ¢

If not vanishing at Cy, we’d have to either rewrite the dispersion relation for the
subtracted amplitude or include the contribution of C,. We continue with the formula-
tion without subtractions, because the contribution along Cy, is of short range. We then

understand Eq.(2.16) for the long-range amplitude.

In order to compute the analytically extended amplitude both above and below

the unitarity cut, we can relate them using Schwarz Reflexion Principle [(],

M(t — i) = M*(t + ie) . (2.17)
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Using this relation, we can easily write

M(t) = %fo dt’%, (2.18)

which is the so-called t—channel dispersion relation of the Feynman amplitude. Putting

this expression into (2.14) and rewriting (¢’ —¢)~! as (B.20) states, we get

V(r) _1J o F dt'T {M(t’>}fd3f igrr €V
= — e m e — =
YT e (2m)3 to : r
_ —1 ” dt/I M t/ d3 ,6*\/1‘77'/ 5(3) AN
) . m {M(t')} T (r—r') =
_ U7 vty (2.19)
C4r? o r '
Therefore, the non-relativistic potential
1 [ P
= dt' Tm {M (t')} e~ V'™ 2.2
Vi) = gy | imae)) o (2.20)

is determined by the absorptive part of the Feynman amplitude. Since we are not interes-
ted in the whole M (), but only in the Im{M (¢)}, we can make a profit from the unitarity

of the S matrix to simplify our calculations.



3. Unitarity Relation. Absorptive Part

Physical processes are determined by matrix elements of the scattering matrix S.
The S matrix relates the orthonormal basis of initial states with the final states’ one, so

it has to be a unitary operator,

STS = 1. (3.1)

We define the reduced scattering matrix 7" as S = 1+ T, which describes processes
where there really is an interaction—initial and final states are not the same ones. In terms

of this operator, the unitarity relation (3.1) becomes
1=8'S=01—iTH(A+iT)=1—4iT' +iT + T'T,

SO
—i(T-TNH =T1'T. (3.2)

In order to describe a physical process, we have to consider the matrix element

(fI S —1liy =i {f|T]iy=1i(2m)*0™ (p; — pi)M(i — f), where |i) is the initial state and
|f) is the final one. Therefore, we need to sandwich the previous relation between those

states—we begin computing the left-hand side (LHS),

(fILHS|iy = —i (f| T = T']i) =

= —i [{fIT iy =G T|f)"] =
= —i x 2 Im {(f| T i)}, (3.3)

where we assumed that time reversal is a good symmetry to write
T(i — f) = T(f — i) = 2Im {T(i — f)} . (3.4)
On the other hand,
(FIRHS [iy = (f| T'T|i) =
T d QJ N
-air |y H e Il [ T1) =

—ZJH d;gE FIT gy <anl T1i) (3.5)

15
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s channel
(b)

Figure 4: Feynman diagrams for the neutrino-pair mediated (a) AB — AB scattering
and (b) AA — BB scattering. The labels in the figures denote the fields which describe
the particles in the process.

where in the second line we have inserted an identity—a sum over all possible states, with

|q,) representing a state of n particles with 4-momenta ¢1, ¢s... gy-

Now we can write the unitarity relation {(f| LHS |i) = (f|RHS |¢) as

W {710} = 53] [ dQua| 719" @l Tl | (36)

Let’s apply this relation to our process. We are interested in calculating the absor-
ptive part of the AB — AB amplitude mediated by a neutrino-pair, so we need to do a
t-channel unitarity cut of the diagram in Fig.4a. Therefore, we should write Eq.(3.6) for
the crossed process AA — BB, Fig.4b, with a vv intermediate state?,

W(k)o(ko)| T |BB)" (w(k1)v(k)| T |AA) .
(3.7)

~ B 1 d3k;1 d3k71
m {(BB|T|AA)} = 5 f (2m)32Ey, (27)*2E;,

2Since the intermediate state is a fermionic one, there should be a spin sum. However, only left-handed
neutrinos exist, so in this case it is not necessary.
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Dropping the (27)*0™ (p; —p;) global factor from both sides, this equation becomes

Im { M(AA - BB)} =

1 f d3ky A3k
2 ) (2n)32E,, (21)32E,,

(27)*0W (k1 + ky — ps) M(BB — vi)* M(AA — vi).
(3.8)

Finally, we can write this expression in an explicitly Lorentz invariant manner,

Im { M(AA - BB)} =

_ lf T 502) TR 5042) (21169 (ks + by — p) M(BB — v)* M(AT — 1)
2 (271')3 1 (271')3 2 )

(3.9)







4. Low-Energy Contact Interaction

The weak interactions of fermions, charged and neutral currents, are described by

the Lagrangian densities [1, 7]

e _ _
ZLoc = —m {WJ [@y" (1 —s) Vijdj + vy (1 — ) €] + h.c. } ) (4.1a)

(4,7 = 1, 27 3™ gen.)
Ao = —eAy Q" v — T — V" (9v; = 94,%) ¥ (4.1b)

= Zqep + Z7, (Y; =u,d, ve,e...)

(&

where 0y is the weak mixing angle.

For any elementary particle, the weak neutral couplings are given by
gy = 2T5 — 4Q sin? Oy, ga = 275, (4.2)

where T3 is the third component of weak isospin and () is the electric charge. The elec-

troweak charges of the SM fermions are written in Table 1.

We are interested in calculating the potential associated to a process at low energy,
where the limit |¢?| « M7, M3 is valid, so now we’ll focus in obtaining the low-energy

effective interactions from the above Lagrangians.

4.1. Effective charged current couplings

We are describing neutrino scattering against an aggregate of matter, so only the

ve-e charged current contributes to the scattering. Therefore, the only two terms of the

Table 1: Electroweak charges of the Standard Model fermions. The index ¢ = 1,2, 3 labels
the three generations, so that u; = u, us = ¢, ug = t...

Particle | @ gv ga
U; 2/3 1-— g sin2 ew 1
d; -3 14 % sin? Oy, -1
Vi 0 1 1
€ -1 —1+44sin?6y -1

19
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e e e e € €
2 2 )
w q° < My, Fierz
———
v v v v v v

() (b) (c)

Figure 5: Tree-level Feynman diagrams for the e — ve scattering corresponding to (a)
the Standard Model charged current Lagrangian, (b) the effective low-energy Lagrangian
obtained integrating out the W degrees of freedom and (c) this last Lagrangian after Fierz
reordering the fields and writing the interaction currents as flavor-diagonal.

interaction Lagrangian which are interesting to our process are
Lec = MpWIWH + WHp.THe + W, el v, (4.3)

where
e

T (] =
2\/§SH10W7 ( ’75)

I =

and we also wrote the kinetic term of the W, field.

In order to calculate the effective Lagrangian, we integrate the W, degrees of

freedom out of the Lagrangian using its equations of motion,

0%
0= =8 = M3 W"+ 7, I"e, (4.4)
SO
W, L T < Ze v (1 — 75) (4.5)
=——Vvl,e= Ve — e. .
: M, : 2v/2M2, sin Oy Tu 75

Putting this relation into Eq.(4.3) one easily gets

288 = —% 77" (1 — ) €] [e 9 (1 —75) ve] | (4.6)

e2

. . . Gr _
where the Fermi constant is given by Vi = SMZ s 0w

It is convenient to write this Lagrangian as flavour diagonal-—as shown in Fig.5—,

so that we can add both CC and NC Lagrangians. In order to do so, we use the Fierz
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V; V; Vi Vi
> >
| « M3
A
v v
1% 1%

(a) (b)

Figure 6: Tree-level Feynman diagrams for the v — v scattering corresponding to (a)
the Standard Model neutral current Lagrangian and (b) the effective low-energy Lagran-
gian obtained integrating out the Z degrees of freedom.

identity (B.8) and the relation 7,7,v* = —2, to write

ngé = —% [Te " (1 —v5) ve] [€7, (1 —5) €] . (4.7)

4.2. Effective neutral current couplings

In this case, the interesting Lagrangian to our process is

1
gNC == 5 %Z“Z'u -

(&

Zy i (gv. — ga, ; 4.8
4SiIl9WcOS€W MPJ’Y (gV] gAJ75) wja ( )

where j = u,d, e, Ve, vy, Vs

As in the previous section, we integrate out the Z degrees of freedom using its

equations of motion,

’- 0522110 = Mz2" - 4 sin G;COS Oy Ui (g, = 94;%) Ui (4.9)
SO
7= Tsin 0w ceos Oy M2 Vi Y (9v; = 94,7%5) ¥j - (4.10)
Putting this relation in Eq.(4.8) we get
L = _QGT]% (79" (1 =) v] [ 7 (9v; — 94,%) ¥5] (4.11)

as is represented in Fig.6.
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4.3. Low-energy effective Lagrangian for matter particles

Let us now consider some aggregate of matter A. In the scattering process Av — Av
at low energy, the neutrino can interact with the three “elementary” particles which matter

is formed with—electrons, protons and neutrons.

We can consider that nucleons are point-like Dirac particles because the scattering
happens at low energy—i.e. the neutrino is like a large scale probe, so it cannot resolve
the structure of nucleons. The vector current is conserved, so both the electric charge )

and the weak vector charge gy of the nucleon are the sum of its valence quarks’ charges,

Qp=1, gb =1—4sin® Oy,
Qn =0, g = —1. (4.12)

On the other hand, the axial current is not conserved, so this argument does
not apply to the weak axial charge of the nucleon. In fact, Eq.(4.2) shows that the axial
coupling is independent of the electric charge—it only depends on the weak isospin coupled
to the Wi boson. Therefore, it can be expected due to weak isospin® symmetry that the
weak neutral axial coupling at low momentum transfer, g> — 0, is the same as the coupling

to the VV#i mediated charge current responsible of the n — p process, g4 = 1.2723+0.0023
[3].

Taking all of this into account, the Lagrangian describing the Av — Av interaction

has three terms, related to the processes

Ve t€e— 1, + e,
vit+e—vte, (i=p,7)
Vj+N—>Vj+N- (j:e7u’7_)

The first one is mediated by both charged and neutral currents. Therefore, we have
to add the Lagrangians (4.7) and (4.11), so we get
Gr, . )
0%1 = T = [Vefy (1 - ’75) Ve] [6’)/“ (1 - 75) 6] -

V2

- 57% (e (1 —5) ve] [E7u (97 — gavs) €] =
_ _2% (74" (1= 5) el [e7 (3 — s ] (4.13)

3In fact, for the first generation of quarks, weak and strong isospin coincide.
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Y; Vi
o ) ) 77Z)] =6&p,n
a3 e (90 = 9a5) 7 (1= 75)
Vi = Ve, Vy, Vr
¥; Vi

Figure 7: Fundamental vertex of the effective low-energy Lagrangian (4.17). The
couplings gy, g4 depend on both the neutrino flavor and which is the charged fermion, as
discussed in the text.

where we have defined

gy =2+gy =1+ 4sin’ by,
Jh=2+g53=1. (4.14)

The second and third ones are only mediated by neutral currents, so they are
described by the Lagrangian (4.11),

B =~ = (1= 50wl e (06— gi)el (i=pr)  (115)
Ly = _2617% (757" (1 =18) vl [N (90 — g47s) N] - sz_e:;g) (4.16)

With all this information, we finally have our whole interaction Lagrangian . =
L+ L + £, which s

F = —QGTF? {[ﬂe ,yﬂ (1 - ’75) Ve] [67M (g‘c} - 916475) 6] +

+ [y (L =) vl [evu (gv — gars) el + (i = p,7)
+ [7j " (1 —s) v4] [N Yy (gy - gg%) N] } (j=epT)
(N =p,n)
(4.17)

All fundamental vertices of this Lagrangian have the same structure, as is repre-
sented in Fig.7. As a check, the couplings we obtained here are (indeed) the same ones
stated in [7].






5. Neutrino-Matter Scattering

Once the interaction Lagrangian is written, we can focus on calculating the scat-
tering amplitude between an aggregate of matter and a neutrino, M(Av — Av). For
simplicity, A can be understood as a molecule, composed of Z4 protons and electrons and
N4 neutrons—we’d better study electrically neutral systems, with the same number of
protons and electrons, because any net-charge electric interaction would be much stronger

than the weak interaction we’re looking for.

As shown in Fig.8, the process Av — Av is described by an elementary vertex of
the interaction Lagrangian (4.17). The different terms of this Lagrangian show explicitly
that the coupling neutrino-matter must depend on the flavor of the neutrino, so we will

consider them separately.

5.1. Electron neutrino
In the A(py) ve(k1) — A(p2) ve(kso) case, the amplitude is determined by
iT,, = <A1/€|ifd4:c [L(z) + L(z) + L(2)] |[Ave) =i TV +i TP +i TS, (5.1)

which we can calculate separately. The contribution of the first term is

—Gr = ~e ~e
70 = G [ dto 58 (1= 26) vl e G~ a)e] [ An) =

G ~e
N 2} A (e ey (1 =) ve [vey (Al €, (5 — §as) e |A) =

= 2\f diz jt (2)J V(). (5.2)

Since neutrinos are elementary particles, the leptonic current is the usual

G () = Welk)| V(@) v (1 = 795) ve () |ve(k1)) =
= [t(ks) ¥ (1 = 75) u(ky)] e F17R2)e (5.3)

On the other hand, the molecular current matrix element will be

T () = emtormple JU = =i 0rp (A(py)| €(0)y, (35 — 3475) e(0) [Alpr)) - (5:4)

25
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q=p2—p1 =k — ko

v(ky) v (k)

Figure 8: Lowest order Feynman diagram for the Av — Av scattering in the low-energy
effective weak theory.

Since we're looking for a low-energy coherent interaction, it’s interesting to analyze

separately the different terms in J),:

7% is a scalar quantity, related to the matrix element of efe, which is the number

operator, so its contribution is coherent.

7275 is a pseudo-scalar quantity, so its matrix element is related to oq/M, where
o is the spin of A, M its mass and q = p; — p». Since this contribution depends
on o, it’s not coherent. Also, any contribution of the form q/M gives a relativistic

correction to the potential, so this is another reason why we can ignore this term.

~ is a polar vector, so its matrix element must be proportional to q/M. Again, this

is a relativistic correction we won’t consider.

~7s5 is an axial vector, directly related to the spin of the particle, so this contribution

is not coherent.

Therefore, the coherent contribution to the molecular current is given by
J5" (x) = (Alpo)| &) G el@) [A(pr)) = G (Alpa)| el () e() |A(pr) =
=t )l | [yl 6l | d@reto) | [ atz1e el Lt -
— g [dtyatzemre e A ele)ela) [A(:)) -
=gy Jd4y d?z P2y gmirz §(4) (x —y) 5@ (x —2)Z4 =

=205 e ipi=p2)z (5.5)
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where we have inserted two Closure Relations,
I— Jd4x|x><x| | (5.6)

and we have taken into account the fact that ef(z)e(z) is the electron number operator

at x.

Even though J; is the only relevant component of J,, it is convenient to keep
a relativistic framework—Ilater we’ll consider the non-relativistic limit. Therefore, the T'

matrix element (5.2) is

—Gr

T = 2m)* W (g + Kk — k
ve = (2m)°07(q + k1 — k2) X WL

JM [a(ke) v (1= vs5) u(ky)] (5.7)

where ¢ = p; —po and J = ZAgy—this last equality, and the following giving J, values,
must be understood as the coherent contribution to Jy given by the number operator of

the particle constituents.

Analogously,

T =0, (5.8)

—Gr o [a(ka) 7" (1 — v5) u(ki)] - (5.9)

TP = (2m)'0" (g + k1 — ko) x EWORG

where J$¥ = Zagh, + Nagn.

Adding all contributions and dropping the (27)*d(p; — py) factor, we get

GF
Q\f

where J3 , is the molecular current in the scattering with an electron neutrino. Using the
weak charges from (4.12) and (4.14),

M(Av, — Av,) = % [a(k) v (1= 75) u(ky)] (5.10)

gh =1 —4sin Gy, gy = —1+4sin® Oy = g7,
gy = —1, Gy =2+g9v=2-gy,

we find me = 274 — N4. At this level, we remind the reader that the first term comes
from charged current interaction with electrons, while the second one comes from neutral

currents with neutrons—neutral currents with protons and electrons cancel out.
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5.2. Muon and tau neutrino

The muon and tau flavors have the same contribution to the Effective Lagrangian,
so the scattering amplitudes for the processes Av, — Ay, and Av, — Av, must be the

same. Therefore, we can consider both of them simultaneously and calculate
iT,, = (Av;|i Jd% [Z1(z) + La(z) + L5(2)] |Avy) = iTlEf) + iTVFf’) : (5.11)

where 7 = pu, 7 and %, does not contribute because it only has electron neutrinos. Follo-

wing the same steps than in the previous section, we get

T2 = (2m)'6D (g + ky — ko) x ;f/;g T [a(ks) v (1 —s) u(ky)] (5.12)
T = (2m)*6W (q + ky — ks) x —Gr T [a(ks) v (1= s) u(ky)] (5.13)

2v2

where Jf% = Zag5 and Jfﬁ% = Zagy + Nagi.

Finally, dropping the (27)*(p; — py) factor, we can write

M(Av; = Avy) = =2 3 filka) " (1 =) (k)] (G=m7). (5.14)

where J% , = —N4. As before, the neutral current interactions for electrons and protons

cancel each other in neutral (of electric charge) matter.

5.3. The weak flavor charge of aggregate matter

Up to this point, we have calculated the amplitudes of the processes described by
all fundamental vertices of our Lagrangian, so it’s convenient to sum up our results and

analyze them. In order to do that, it’s useful to compare with well-known theories.

Let’s consider QED. In this theory, a process described by the fundamental vertex
would involve two fermions and a photon. If we take the photon on-shell and drop external-

leg fermion factors, the iM would be
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= —ieQy"eu(k) (5.15)

where () is the electric charge of the fermion field. Due to vector current conservation,
this vertex does also apply to non-fundamental particles, which have an electric charge
equal to the sum of its constituents’ charges—and the amplitude would be this charge

times the coupling e.

This same behavior appears in weak interactions. The only flavor-diagonal inter-

action is the one mediated by neutral currents, with the fundamental vertex

P (0
= —im {(2T3 - 4Q Sin2 ew) ’)/'u‘ — 2T3")/‘LL’)/5} €N<k) . (516)
Z(k)
As is thoroughly discussed in [3], the vector current conservation allows us to talk

about a weak charge of the fermion field 1, which is Qu = 275 — 4@ sin? @y, such that
the weak charge of a composed particle is the sum of its constituents’, as happens with
electric charge. However, we can’t talk about the axial coupling as a charge, since the

axial current is not conserved.

Once the concept of a weak charge has been introduced, we see that the vector
part of this amplitude has the same structure as the QED one, a coupling times a charge
times a mediating-particle external-leg factor. According to this idea, we can expect our

amplitudes to have this structure too.

Indeed, both Egs.(5.10) and (5.14) can be written (in the non-relativistic limit) as
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A A
=25 T o [a(k)y (1 = 35)ulk1)] (5.17)
I/i(k'l) Vi(kQ)

where Q%V’ 4= Jz’o is the weak charge of the aggregate of matter A. It depends on the
flavor of the neutrino, so we can speak of three weak flavor charges of aggregate matter,

which are given by

Qwa=224—Na,
w4 = Qya=—Na. (5.18)

Eqgs.(5.18) state the fact that, whereas aggregate matter is neutral of electric charge, it is

not neutral of weak charges!

It’s interesting to analyze the value of those charges for “normal” matter. In order
to do that, we’ll look at stable nuclei. According to the semi-empirical mass formula [9],

the (Z, N) values of stable nuclei are related by

P A
T 24 0.0157A23

(5.19)

where A = Z + N, as is represented in Fig.9. Using those pairs of values, the weak
charges of each element (neutral atom) are represented in Fig.10, where we see that
the electron neutrino weak charge is always positive, while the muon and tau neutrino
charges are always negative. The weak charge of aggregate matter is obtained from Fig.10

by multiplying by the number of the constituent atoms.
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Figure 9: The valley of stability, composed of the pairs of (Z, N) for all elements, accor-
ding to the semi-empirical mass formula, Eq.(5.19).
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Figure 10: Weak flavor charges of the elements with (Z, N) in the valley of stability,
Fig.9. Beware a minus sign in the u, 7 flavor charges.






6. Long-Range Weak Interaction Potential

After analyzing the Av — Av scattering amplitude, we can focus on calculating
the interaction potential. We'll begin using Eq.(3.9) to determine the absorptive part of
the AB — AB amplitude. After that, we’ll use Eq.(2.20) to obtain the potential.

6.1. Absorptive part of AB — AB at low ¢

In order to get the absorptive part of the scattering amplitude, we need to compute
the crossed quantity Im{M(AA — BB)}, as written in Eq.(3.9). Therefore, we need to

cross the amplitude we calculated in the previous section, from

Gr 5 [(k2) v (1 = 75) (k)]

MAZHAZ = —
(V V) 2\/§A,,u

to
-MMAHWW=—§%3WWMMWLw@MML (6.1)

where J, is the crossed molecular current, which still satisfies J; = Qi in the non-

relativistic limit.

According to Eq.(3.9), the absorptive part of M(AA — BB) is determined by the
quantity M(AA — v;;) M*(BB — v;7;), which we can now evaluate. From now on we’ll

work in a simplified case, assuming that neutrinos are massless?, so
M(AA - v; 7)) M*(BB — v,;17;) =

s, Tag T [@(ka) 7 (1 = 55) v(k1)] [0(k1) 7 (L = 75) u(ks)] =

8
G2 -,

T8 Z5 Tr [y (1 = 45) By (1 — 75)] =
G -,

= =5 Zi T K By (1= 7)) =

- G2, Z;‘W [KEEY + KVEY — g* (kyks) + a™] | (6.2)

where we defined wa =J 4 Ji , and a" is some antisymmetric tensor which we will no
longer consider because it vanishes in the non-relativistic limit, where the only relevant

component is p = v = 0.

4The non-vanishing mass of neutrinos will affect the behavior of the potential at the longest range—its
implications will be announced in Section 8. Prospects.
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Considering the contributions of the three neutrino flavors, the absorptive part is

Im {M (AA - BB)} =

G% 5 4 2 9 L 1

G2 > f 4 2 2 hyw . o 1o,
=25 ;Z’” Aty 8(K2) 6(K2) | —2kMkY + (K'q” + K q )—539 _
_G% 71 2 ol (O Louw v Lol _
_@ ;Zuu El_g(QQ—ZtQ +§(qq +QQ)—§SQ _

G2 .
= 20 (Z Z,il) [q"q" — sg"] . (6.3)
f

where we used ko = g — ky in the second line and all integrals needed in the third line are

stated in [10]—we demonstrate them in Appendix B.3.

As seen, the tensor structure of Eq.(6.3) is transverse, a requirement which any
quantity built from conserved currents must satisfy. We can cross this result back to the
t—channel applying s — ¢, so that

G

Im {M(AB — AB)} = Sho (Z wa> [¢"q" —tg"] . (6.4)
f

Now it’s easy to evaluate the non-relativistic limit. As discussed before, the only

relevant component of the molecular current for coherent interactions is the scalar contri-

bution to Jy, so we can take
G%’ f f 0)2
I {M(AB — AB)} = 75 ( Y@l Qs ) (@) —1] - (6.5)
!
Besides, we are looking for a long-range interaction, so ¢° ~ 0 and

G2
Im (M(AB — AB)} = — "2 (2 Qlya @ﬁv,B) L, (6.6)
f

where

D QA Qs = (2Z4— Na)(2Zp — Np) + 2N4Np . (6.7)
f
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Figure 11: Weak coupling ZQ&,Q{;V, which is written in Eq.(6.7), for the elements of
the valley of stability (Fig.9), each one interacting with itself. The gravitational coupling
M 2/mZ?7 ~ (Z + N)?, neglecting binding energies, is also represented.

As Eq.(6.6) shows, all the flavor dependence of the absorptive part—and, therefore,

of the potential—in the limit of massless neutrinos is factorized in the weak charges.

As we saw in Fig.10, all the stable elements have the same sign for the weak charges,
Q% > 0 and Q7 < 0. This implies that, for any pair of elements—and therefore for any
pair of molecules—this coupling has a positive sign, so the resulting force will have the
same character—whether repulsive or attractive—for any pair of aggregates of matter.

We’ll find out which of those two cases is the right one in the next section.

Let’s see the behavior of this quantity for some cases. As we did in the previous
section, we’ll consider only stable nuclei. Since this is an interaction, we have to choose
sets of two elements—we’ll consider the interaction of each element with itself. In Fig.11
we show the quantity )| Q&,’ AQ&,} 4 for the element A as a function of the atomic number

Z 4 for the stable nuclei.

In the same Figure we compare the weak coupling with the gravitational one. It’s
seen that both of them increase with the number of particles of the systems interacting,
but they scale differently, even when the binding energy is neglected. That means that
our coherent weak interaction could introduce a deviation from the Equivalence Principle,

as was announced in [2].
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6.2. Neutrino-pair exchange potential

After obtaining this result, the only remaining step in the calculation of the inter-
action potential is computing the integral (2.20), with the branching point at ¢, = 0 (for
massless neutrinos). Using the Im{M} obtained in Eq.(6.6),

G2 1 0 i
f

so we have to evaluate this integral. A primitive P(¢) is calculated in Appendix B.4, so we
obtain the integral (say /) using Barrow’s Rule, [ = P(t — o) — P(t — 0). If we assume
r # 0 when calculating the limits—which is valid, since we are looking for a long-range

interaction—this contribution to the potential is

== (6.9)

With this result, we can finally write

=5 (Z@ AQWB> =

which has an associated force given by

(6.10)

F(r) = ~VV(r) = 2T (ZQWA@WB) uy (6.11)

where 7 is the radial unit vector.

We have obtained a long-range interaction which is repulsive for ordinary matter,
since the weak coupling is always positive—as we showed in Fig.11. This is a difference
with the gravitational force that we can use to distinguish them—and we can also look

for the deviations from the Equivalence Principle we discussed in the previous section.

The other interactions that appear in electrically neutral systems are the residual
electromagnetic Van der Waals (~ r~7) or Casimir-Polder (~ r~8) forces, which have a
lower range (larger inverse power law) than our weak force, even though they’re stronger.
It would be interesting to find systems with low electromagnetic momenta, so that this

interactions became weaker, as the ones described in [11].



7. Conclusions

We began this work reviewing the relation between the description of an interaction
process in the framework of a Quantum Field Theory and in terms of an interaction
potential. As shown in Section 2, the Feynman amplitude of an elastic scattering process
and the effective potential describing this interaction are related, in Born approximation,
by a Fourier Transform. This is the result one would expect, taking into account that
M(q?) describes the interaction process in momentum space, while V(r) describes the

interaction in position space.

Another interesting detail that stems from the fact that we are calculating a long-
range interaction is that we needn’t calculate the whole amplitude of the process in order
to determine the potential. This is due to the fact that M (q?) at |¢*| — oo gives short-
range contributions, so the potential is determined by Im{M (¢?)} through an unsubtracted
dispersion relation. Therefore, we could use the unitarity relation from Section 3 to avoid
the calculation of M(q?) (a 1—loop quantity) and compute a tree-level process instead.
Besides, the fact that we were interested in the low-energy limit allowed us to work in
the framework of an effective theory where Charged Currents and Neutral Currents could
be written in the form of a contact interaction, so we worked with only one interaction

vertex.

The results from Sections 2-4 made it clear that the effective potential was de-
termined by the amplitude of the process Av — Av, which we calculated in Section 5.
Although this was a quite straightforward calculation, it gave rise to a very interesting
concept—the weak flavor charge of aggregate matter. Indeed, the coupling of bulk mat-
ter to a neutrino is proportional to G with a charge that depends on the flavor of the
neutrino,

Qw =22 -N, w=CQy=-N.

These are the weak flavor charges for electrically neutral matter—the case we are inter-
ested in, since any non-zero electric charge would produce an electromagnetic interaction

much stronger than our weak interaction.

This amplitude was the last ingredient needed to compute the effective potential,

which gives raise to the repulsive force

A~

F= @ Q@i | 7

37



38 A. Segarra

where all flavor dependence is in the weak charges. This is the coherent contribution to
the force, which we obtained from the vector charge J°, proportional to 7°. The first
correction to this result would come from the spin dependent contribution to J, that
comes from ~7s. The other two contributions to the current, proportional to 7°vs and =,

give relativistic corrections ~ %

In the long-range regime we are looking at, there are two other important interac-
tions: residual electromagnetic interactions and gravitation. For ordinary molecules, Van
der Waals forces are much stronger than our weak interaction at short distances, so it
would be interesting to look for a system where the first electromagnetic moments are
zero. In the case of gravitation, there are two traits of this weak interaction that can help
to distinguish between them in an experiment: this force is repulsive—while gravitation
is attractive—and its charge is proportional to the number of particles but not to their

mass, so it would produce a signal that deviates from the Equivalence Principle.

In any case, joining the previous ideas with the recent development of atomic traps

[12]—not ionic traps—can be the key to observe this interaction in an experiment.



8. Prospects

The long-range potential obtained in this work, Eq.(6.10), is valid and of interest
for distances between nanometers and microns. The short-distance limit comes from the
requirement of having neutral (of electric charge) systems of aggregate matter, while
the long-distance limit is imposed by a non-vanishing value of the absolute mass of the

neutrino—indeed, the range of this interaction for neutrinos of m ~ 0.1 eV is of the order

of
he - 197 MeV fm

mc? 0.1 eV

In this region, the effective potential will become of Yukawa type instead of the inverse

R~ ~10° fm = 1 pm.

power law. We can get a first idea on the dependence of the potential with m chan-
ging slightly this work’s result. If we had integrated Eq.(6.8) from a branching point at

to = 4m?, the potential would have been

G? 1 2m  2m*  4m3\ _, .
Vi) =% (Z Qla Qév,3> (— Tt T ) e
f

which depends on m not only in the Yukawa exponential, but also in the preceding inverse

power terms®.

The neutrino mass dependence of the effective potential in the long-range behavior
opens novel directions in the study of the most interesting pending questions on neutrino
properties: absolute neutrino mass (from the range), flavor dependence and mixing (from
the weak charges in the interaction) and, hopefully, with two neutrino exchange, the
exploration of the most crucial open problem in neutrino physics: whether neutrinos are

Dirac or Majorana particles.

The study of these problems will be the subject of my immediate future research
work. On the one hand, it’s necessary to calculate the form of this interaction with a
finite mass for the neutrino. In fact, two calculations are needed: for Dirac neutrinos
and for Majorana neutrinos. On the other hand, the collaboration with the experimental
groups involved in neutral traps will be initiated this summer during my stay at CERN,
in order to find out whether the low electromagnetic interacting systems mentioned in

our Conclusions could be implemented.

50f course, the computation of the potential at finite m is not so trivial—the mass has to be included
in the absorptive part of the amplitude—, but it serves for illustrating the kind of changes that will occur.
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Appendices

A. Notations and Conventions

A.1. Units

This work is written using the Natural System of Units, where h = ¢ = kg = 1.
We describe electromagnetic quantities with the Heavyside system, ¢y = po = 1, so that

the fine-structure constant is given by a = e?/47 ~ 1/137.

A.2. Relativity end Tensors

We define the Minkowsi metric tensor with signature (+, —, —, —), as
1 0 0
0 -1 0
, =g = , Al
Iu 9 0 10 (A1)
0 0 -1

so that any 4-vector can be written as 7 = (2°, ). We also use the Einstein Summation

Convention, so scalar products can be written as z-p = 2*p, = g a'p” = 2°p" —x-p. We

0

can also write z, = g, 2" = (2", —x), and the derivative operator is 0, = % = (0, V).

We use the totally antisymmetric tensor with the convention €23 = 41 = —¢g;93.

A.3. Fourier Transforms

We define Fourier Transforms so that all 27 factors are included in the momentum

integration,
4—dimensional FT: 3—dimensional FT:
k. - Br ., -
@) = | e . @) = | e e k).
fi) = [ dtaet fa). fo) = [#ae®r@). (a2
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Other 27 factors come from the following expression for the Dirac delta,

J diz o — (27160 (k) (A.3)

A.4. Diracology

As is well known, Dirac gamma matrices are required to satisfy the relations

{77} = 29", [V, 7] = —2i0™. (A.4)
Also,
(V)2 =-(")?=1, 7= (A.5)
We define the fifth gamma matrix as 75 = i7°7'729% = — Leagys 777777, which
satisfies (75)? = —1, 75 = 5. Therefore, the quirality projectors can be written as
1+ 1—
Pp = 275, P, = 275. (A.6)

Some useful contractions are

’YM’VM =4, (A'7a)
Y v = =297, (A.7b)
Yy = 49°7, (A.7¢)
VAN = =29 " (A.7d)
Some useful trace identities are
Tr [v#4"] = 4g‘“’ (A.8a)
Tr [#9"5] = (A.8b)
Tr [y#4"7*” ] =4 (g™ g — g"*g"" + " g"*), (A.8c)
Tr [’y 7”70‘7575] — —4j P, (A.8d)
Tr [yfrk2 yF2ke] = 0. (A.8e)

For any 4—vector a", we define ¢ = ~,a".



B. Useful Relations

B.1. Fierz Identity

Let us consider the Dirac-scalar quantity
[ﬂlAPLUQ] [ngPRBU4] y (Bl)

where A and B are arbitrary matrices in Dirac space, P r are the quirality projectors

from Eq.(A.6) and the four u; are Dirac spinors®.

The set of matrices I'; = {1, s, v*Pp,y" Pr,c""} are a basis of Dirac space, so we

can expand

Uslly = Z a;li = oql + azys + oy, P + ogy, Pr + ol 0, . (B.2)

)

Since we have this expansion between quiarilty projectors, we can simplify

PruytusPr = Pr, (Z %D) Pr = o, Pr, (B.3)
where we have used the relations

P} p=Ppr, PrrPrr =0, PrrYy = VPR, Prrvs = PR

to show that all other terms are zero.

We need to calculate the o/ coefficient, so we evaluate the quantity

Tr[y” PLugtiz] = Tr [fy”PL (Z ozﬁ,»)] = oy Tr[v" Py, Pr] = 20, (B.4)
which means that we can get the coefficient by computing

1 1 1
oty = ETI"['YMPLUQTL?)] = Zﬂzﬁu(l —Y5)u2 = §ﬂ3V“PLU2‘ (B.5)

6Tf any of these spinors were a v spinor, nothing in this section would change—the Identity would still
hold.
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Putting this relation into Eq.(B.3) one gets
_ I
PrustusPr = §[U3’V Prus)y,Pr, (B.6)
so that Eq.(B.1) can be rewritten as
1
[leAPLUQ] [ﬂgPRB’LM] = 5[@1A’Y#PRBU4] [ﬂg’y‘uPLUQ] y (B7>

which is the identity we wanted to prove. Notice that, unlike spinors, fermionic fields

anticommute, so their version of the Fierz Identity is

|01 APLs | [1hsPrBibs] = —%[wlA’YuPRB%] [V37" PrLaps] (B.8)

with an extra minus sign.

B.2. Fourier Transforms

B.2.1. Yukawa/Coulomb propagator

Let’s compute the Fourier Transform of the Yukawa propagator,

d3q . 1
] = iqr B.9
f @ P (B.9)

where ¢ = |q|, which will also give the Fourier Transform of the Coulomb propagator

taking the limit ;1 — 0. In spherical coordinates, d®q = ¢?dg d cos @ d¢, we get

1 © q> 1 .
I = W J dq mJ dCOS GGWCOSG . (BlO)
0 —1

Integrating over cos we get
1 0 2 2 si 1 0 2 iqr
I f dq q singr _ m f dq q e _
@2m)?2Je @+ qr (2m)? o PR gr
L de Y i L fod f) (B.11)
= ——1Im ———eY i =—+1Im ) .
(2m)%r o P (2m)?r LY

The integration of f(y) along the circumference arc in Fig.12 is zero, since it goes
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LT

> Re{y}

o —iur

Figure 12: Integration path (in the complex plane of the y variable) used in the Residue
Theorem for the integral in expression (B.12).

as e 1 /|y| when y — io0. Therefore, using the Residue Theorem [6],

| "y fly) = | dwst) —2mi Res11(0). = ir] = ~2ri Res [ (0)y = igr] - (B.12)

The pole of f(y) in y = ipr is simple, so we can compute the residue as

Y w _ L

Res Jy =dur| = lim (y —iur = lim —F—— ¥ = —eH". B.13
).y = anr] = Jim (y —aur) fly) = Hm o= i (B.13)
Using this result, we can trivially write
1 e
[=—° (B.14)
AT r
B.2.2. A spherical wave
Let’s compute the integral
1 eV
I=— | dPre" —— B.15
| dre . (B.15)

where the 47 factor has been introduced for convenience.

In spherical coordinates d®r = r2dr dQ2 = r2dr d cos 0 d¢,

1(® (! 4
I = §J drre Ve J d cos § e eos? (B.16)
0 1
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where the {d¢ has been trivially computed and ¢ = |g|. The remaining angular integral

is also easy to calculate, so we can write

1 oo]
I = —J dre VT sin(qr) . (B.17)
4 Jo

This integral can be computed integrating by parts:

i b e [ -
_o+—f dre " cos(qr) =

- \/%fowd {;T l\;e Ve cos(qr)] - l\_/—;e\/%%cos(qr)]} _
) -

=5 {1 — qJ dre Vi sm(qr)} (B.18)
0
Taking into account the fact that ¢> = g2 = —t, this last relation can be written as
1 /
I= §<1 + 1) — -t =1. (B.19)

Therefore, we have proved the relation

1 1 5 igr e—x/?’r
- qr B.2
Pt ap )4 . (B.20)

B.3. Integrals for the absorptive part

In this appendix we are going to calculate the integrals

I= Jd“k 5(k*)0(k*) = g : (B.21a)
I = Jd‘*k 5(k2)5(k?) kM = %q“, (B.21b)
" = fd‘*k §(K*)8(K?) k"kY = % <q“q” — %w) , (B.21c)

where k = ¢ — k and ¢* = s.

Let’s consider the first one. Using k> = E? — k? in the first delta function, we
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compute the £ = k¥ integral,

I= J% §(k*) = f% §[q* —2(kq)] . (B.22)

We can evaluate the integral in the CM reference frame, where ¢* = (1/s,0), so
that

1 1 E
I:5[deEE<5@—2E\/§)=§deWg

1
- gfdQ - (B.23)

bo | 3

E=1/3/2
as we wanted to prove.

Due to Lorentz covariance, the I* integral must be of the form
= J Ak ()R ke — A gt (B.24)

Multiplying this relation by ¢,, we get

- - 1
Agt = fd“k S()5(R) (kR) = 5 1 = 77 (B.25)
SO
m="g (B.26)
4
Finally, we can also use Lorentz covariance to write
I = f d*k0(k*)6(k*) k'K = Ag"” + Bg"q” . (B.27)

We need to multiply by g,, and g,q, to determine A and B,

guI"™ = 4A + ¢*B = Jd‘*k S(HS(K*)K* =0, (B.28a)
Qv 1w _ 2 :ij4 2\ £ (7.2 —2:12 _ T2
" I A+qB 7 d*k 6(k°)o(k*) (kk) 1 I g4 (B.28b)

so we just need to solve the algebraic system of equations

4A + ¢*B =0,
A+ ¢*B = qu, (B.29)
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which gives

i 0
A=——¢* B=-. B.
514 G (B.30)
Therefore,
e q"q" — 1q2 gl . (B.31)
6 4

B.4. Integral for the interaction potential

We are interested in calculating a primitive P(t) of
Jdtte_ b (B.32)

which can be obtained quite straightforwardly using ¢ = /¢,

P(t) = Jdtte‘ﬁr = QJ dgg®e ™ =

3 o
23——2;5;5 (iqe =

d? [e

-9 —
dr3[r]
d? 1 q

W Y - P
dTQ[( r2 r)e ]
d 2 2 ¢\ _

N N Y (Pl S P
dr[(r3+r2+r>e ]

12 12 6> 243
:_( N q+&+&>e-qr_

rd 73 72 r

12 12yt 6t 2V
S (B 2
r

+ =+
T4 T3 T2

(B.33)
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