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Abstract

We study the long-range force arising between two neutral—of electric charge—

aggregates of matter due to a neutrino-pair exchange, in the limit of zero neutrino mass.

The conceptual basis for the construction of the effective potential comes from the coherent

scattering amplitude at low values of t. This amplitude is obtained using the methodology

of an unsubtracted dispersion relation in t at threshold for s, where ps, tq are the Lorentz

invariant scattering variables. The ultraviolet behavior is irrelevant for the long-range

force. In turn, the absorptive part in the t-dependence is given by the corresponding

unitarity relation. We show that the potential describing this force decreases as r´5 at

large separation distance r. This interaction is described in terms of its own charge, which

we call the weak flavor charge of the interacting systems, that depends on the flavor of

the neutrino as Qe
W “ 2Z ´N , Qµ

W “ Qτ
W “ ´N . The flavor dependence of the potential

factorizes in the product of the weak charges of the interacting systems, so that the

resulting force is always repulsive. Furthermore, this charge is proportional to the number

of constituent particles, which differs from the global mass, so this interaction could be

disentangled from gravitation through deviations from the Equivalence Principle.
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1. Introduction

It’s been 85 years since Wolfgang Pauli postulated the existence of the neutrino

in order to explain the continuous spectrum in β-decays, and 59 years since Reines and

Cowan discovered it. In those years, we’ve learnt many properties about this particle,

such as the fact that it only interacts through weak interactions—all of its charges but

weak isospin are zero. In fact, in the framework of the Standard Model [1], there are only

left-handed neutrinos, so Standard Model neutrinos are massless—we can’t generate a

neutrino mass through a Yukawa-type coupling with a Higgs doublet.

Other interesting phenomena related to this particle are neutrino oscillations [2],

which have been well established experimentally since 1998. This process is understood as

the fact that there is a mismatch between mass eigenstates and flavor eigenstates, so that

flavors get mixed along free propagation. Indeed, the observation of neutrino oscillations

is a direct measurement of the mass difference between the three states, proving that

neutrinos are massive particles, which is a first signal of Physics beyond the Standard

Model.

Therefore, the study of the origin of neutrino mass is one of the directions in

which we can expect finding new Physics, even though its small value (mν À 1 eV [3])

makes it hard to observe experimentally. As well as determining the absolute mass of the

neutrino, there’s still a more fundamental question about their nature unanswered: since

neutrinos can be neutral of all charges, their finite mass could be explained through a Dirac

mass term (implying that neutrinos and antineutrinos are different particles, described

by 4´component Dirac spinors) or through a Majorana one (implying that neutrinos are

self-conjugate of all charges, described by 2 independent degrees of freedom).

In any case, the fact that their masses are very low stands, and we discuss here

another property of neutrinos as mediators of a new force. As is well known, the processes

represented in Quantum Field Theory by the exchange of a massless particle give raise to

long-range interactions. An easy example is the scattering of two particles mediated by a

photon, which—at tree level—describes Coulomb scattering. Our objective in this work

is the application of these ideas to a process mediated by neutrinos. According to the

Electroweak Lagrangian, the lowest-order process is a neutrino-pair exchange, which—

since neutrinos are nearly massless—describes an interaction of long range.

With this idea in mind, we review in Section 2 the relation between the Feynman

amplitude in Born approximation and an effective potential, which is a Fourier Transform.

7



8 A. Segarra

The amplitude at low t, associated to the long-range behavior, is obtained by means of an

unsubtracted dispersion relation. Its ultraviolet dependence is of no relevance. In order to

simplify the calculation of the potential, in Section 3 we exploit the untitarity of the S

matrix, writing the absorptive part of the 1´loop scattering amplitude with the amplitude

of the tree-level scattering process.

In Section 4, we study the low-energy limit of the Electroweak Lagrangian in terms

of a contact interaction, establishing the framework for the calculation of the scattering

amplitude including both neutral current and charged current vertices. We compute in

detail this amplitude in Section 5, where it’s natural to introduce the concept of a weak

flavor charge of matter. In terms of this amplitude, obtaining the interaction potential is

straightforward, and we find in Section 6 that it leads to a repulsive force which decreases

as r´6.

We conclude this work analyzing the possibility of an experimental measurement of

this interaction, which is relevant between nanometers and microns, where there are also

residual electromagnetic interactions—such as Van der Waals or Casimir-Polder forces—

and gravitation. The measurement of this weak interaction is very compelling, since it

could give information about properties of the neutrino such as its absolute mass, which is

still unknown, or it could even help us to answer the most fundamental question regarding

neutrinos, whether they are Dirac or Majorana particles. These points are considered in

Sections 7 and 8.



2. From a Quantum Field Theory to an Effective Po-

tential

We are interested in calculating the interaction potential resulting from a neutrino-

pair exchange between aggregates of matter, which is an interaction described in the

framework of a Quantum Field Theory. Therefore, we will begin this work relating the

concepts of interaction potential and Feynman amplitude.

2.1. The Coulomb potential

It is known that the interaction between two electrically charged particles, say A

and B, is described by the Coulomb potential,

VCprq “
e2

4π

QAQB

r
, (2.1)

where e is the charge of the proton, QJ the charge of the particle J in units of e and r the

distance between the two particles. Throughout this work, we’ll use the Natural System

of Units and the Heaviside electric system—all conventions are stated in Appendix A.

We are interested in calculating this potential using the Quantum Electrodynamics

(QED), which is described by the interaction Lagrangian

LQED “ ´eQ ψ̄γ
µψAµ . (2.2)

In this framework, theAB Ñ AB elastic scattering is described—at leading order—

by the Feynman graph from Fig.1a. Using the QED Feynman rules [1], the amplitude of

the process is

M “ e2QAQB rūpp3qγ
µupp1qs

1

q2
rūpp4qγµupp2qs . (2.3)

Since we are looking for a long-range coherent interaction, we can simplify

M « e2QAQB

“

ūpp3qγ
0upp1q

‰ 1

q2
rūpp4qγ0upp2qs (2.4)

taking into account the fact that γ0 is related to the electric charge, which is coherent,

while γ is related to the electromagnetic current, which is not a coherent quantity.

9
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App1q App3q

QA

γpqq

Bpp2q Bpp4q

QB

(a)

App1q App3q

φpqq

Bpp2q Bpp4q

(b)

Figure 1: Lowest-order Feynman diagrams for AB Ñ AB elastic scattering. (a) QED
interaction, mediated by a photon, where A and B are particles of electric charge QA and
QB. (b) Yukawa interaction, mediated by a scalar φ of mass µ.

Using pγ0q
2
“ 1 and dropping external-line factors, we get

Mpq2
q “ e2QAQB

1

q2
, (2.5)

where we defined Mpq2q as Mpq2q ” ūpAqpp3qū
pBqpp4qMpq

2qupBqpp2qu
pAqpp1q.

Since this is a scattering process, we can work in the Breit reference frame (defined

by q0 “ 0), which describes the non-relativistic limit (low energy transfer), where

Mpq2
q “ ´e2QAQB

1

q 2
. (2.6)

We can compute the 3-dimensional Fourier Transform of this quantity (see Appen-

dix B.2.1), and we find

F tMu prq ”
ż

d3q

p2πq3
eiq rMpq2

q “ ´
e2

4π

QAQB

r
“ ´VCprq . (2.7)

This expression shows the relation between the Quantum Field Theory Feynman

amplitude and the interaction potential used in a potential description of the system

dynamics. Before considering a more general case, let’s look at another simple one: the

Yukawa interaction.



Section 2. From a Quantum Field Theory to an Effective Potential 11

2.2. The Yukawa interaction

Another well-known potential is Yukawa’s, which describes an effective central

strong nuclear force acting between nucleons,

VY prq “ ´
g2

4π

e´µr

r
. (2.8)

From a Quantum Field Theory point of view, this interaction is described by the

Lagrangian

LY “ ´gφψ̄ψ , (2.9)

where φ is a scalar field and ψ is a fermionic field. Such a scalar can be physically associated

to the σ meson for the interacting π-π mediation. The AB Ñ AB scattering amplitude

described by this Lagrangian is the one represented in Fig.1b, so it is

M “ ´g2
rūpp3qupp1qs

1

q2 ´ µ2
rūpp4qupp2qs , (2.10)

where µ is mass of the scalar, and

Mpq2
q “

´g2

q2 ´ µ2
. (2.11)

Again, we can work in the Breit reference frame, so that

Mpq2
q “

g2

q 2 ` µ2
. (2.12)

The potential must be related to the Fourier Transform of this Mpq2q, which is

also calculated in Appendix B.2.1,

F tMu prq “ g2

4π

e´µr

r
“ ´VY prq , (2.13)

which is the same relation between Mpq2q and V prq that we obtained in the Coulomb

case.
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A A

a
b

B B

Figure 2: Feynman diagram for AB Ñ AB elastic scattering mediated by a, b exchange.

2.3. A more general case: particle-pair exchange

As we have just seen, the interaction potential between particles A and B is the

Fourier Transform

V prq “ ´

ż

d3q

p2πq3
eiq rMpq2

q , (2.14)

where M is the lowest order Feynman amplitude for the process AB Ñ AB, with both A

and B on-shell, but without external-leg factors, as is discussed in [4]1. In the case of a

pair exchange, this process will be the one represented in Fig.2.

In order to compute integral (2.14), we rewrite the amplitude as a dispersion re-

lation following the steps mentioned in [5]. We can extend t to the complex plane and

expand the amplitude using Cauchy’s Formula [6],

fpzq “
1

2πi

ż

C

dz1
fpz1q

z1 ´ z
, (2.15)

which is valid whenever fpzq is analytic inside C.

The physical region of the t variable of elastic scattering processes has t ă 0, so we

want the R´ axis inside C. Also, the t´channel amplitude will have a branching point at

t “ pma`mbq
2 ” t0 ě 0, so we can use Cauchy’s Formula with the integration path shown

in Fig.3. In fact, the physical region is ´s ď t ď t0, but we are only interested in the

long-range interaction, which is associated to low values of |t|. Since |t| „ s „ pMA`MBq
2

describes interactions of much shorter range than the nuclear size whenever A and B are

1Beware a minus sign between their convention for the Feynman amplitude and ours.
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Rettu

Imttu

t0

C8

C`

C´

C “ C8 ` C´ ` C`

Figure 3: Integration path (in the complex plane of the t Mandelstam variable) used
in the dispersion relation decomposition of the Feynman amplitude of the process, as
discussed in the text.

aggregates of matter, we can take s Ñ 8 without affecting the long-range amplitude, as

we have done in considering the path in Fig.3.

If the amplitude vanishes along the C8 circumference, as |t| Ñ 8, the only con-

tribution is the one coming from the integral on both sides of the cut along the real t

axis,

Mptq “
1

2πi
ĺım
εÑ0

ż t0

8

dt1
Mpt1 ´ iεq

t1 ´ t
`

1

2πi
ĺım
εÑ0

ż 8

t0

dt1
Mpt1 ` iεq

t1 ´ t
“

“
1

2πi
ĺım
εÑ0

ż 8

t0

dt1
Mpt1 ` iεq ´Mpt´ iεq

t1 ´ t
. (2.16)

If not vanishing at C8, we’d have to either rewrite the dispersion relation for the

subtracted amplitude or include the contribution of C8. We continue with the formula-

tion without subtractions, because the contribution along C8 is of short range. We then

understand Eq.(2.16) for the long-range amplitude.

In order to compute the analytically extended amplitude both above and below

the unitarity cut, we can relate them using Schwarz Reflexion Principle [6],

Mpt´ iεq “M˚
pt` iεq . (2.17)
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Using this relation, we can easily write

Mptq “
1

π

ż 8

t0

dt1
Im tMpt1qu

t1 ´ t
, (2.18)

which is the so-called t´channel dispersion relation of the Feynman amplitude. Putting

this expression into (2.14) and rewriting pt1 ´ tq´1 as (B.20) states, we get

V prq “
´1

4π2

ż

d3q

p2πq3
eiq r

ż 8

t0

dt1 Im tMpt1qu

ż

d3r1 e´iq r 1 e
´
?
t1r1

r1
“

“
´1

4π2

ż 8

t0

dt1 Im tMpt1qu

ż

d3r1
e´
?
t1r1

r1
δp3qpr ´ r 1q “

“
´1

4π2

ż 8

t0

dt1 Im tMpt1qu
e´
?
t1r

r
. (2.19)

Therefore, the non-relativistic potential

V prq “
´1

4π2r

ż 8

t0

dt1 Im tMpt1qu e´
?
t1r (2.20)

is determined by the absorptive part of the Feynman amplitude. Since we are not interes-

ted in the whole Mptq, but only in the ImtMptqu, we can make a profit from the unitarity

of the S matrix to simplify our calculations.



3. Unitarity Relation. Absorptive Part

Physical processes are determined by matrix elements of the scattering matrix S.

The S matrix relates the orthonormal basis of initial states with the final states’ one, so

it has to be a unitary operator,

S:S “ 1. (3.1)

We define the reduced scattering matrix T as S ” 1`i T , which describes processes

where there really is an interaction—initial and final states are not the same ones. In terms

of this operator, the unitarity relation (3.1) becomes

1 “ S:S “ p1´ i T :qp1` i T q “ 1´ i T : ` i T ` T :T,

so

´ ipT ´ T :q “ T :T . (3.2)

In order to describe a physical process, we have to consider the matrix element

xf |S ´ 1 |iy “ i xf |T |iy ” i p2πq4δp4qppf ´ piqMpiÑ fq, where |iy is the initial state and

|fy is the final one. Therefore, we need to sandwich the previous relation between those

states—we begin computing the left-hand side (LHS),

xf |LHS |iy “ ´i xf |T ´ T : |iy “

“ ´i
“

xf |T |iy ´ xi|T |fy˚
‰

“

“ ´i ˆ 2i Im txf |T |iyu , (3.3)

where we assumed that time reversal is a good symmetry to write

T piÑ fq ´ T pf Ñ iq˚ “ 2 Im tT piÑ fqu . (3.4)

On the other hand,

xf |RHS |iy “ xf |T :T |iy “

“ xf |T :

«

ÿ

n

ż n
ź

j“1

d3qj
p2πq32Eqj

|qny xqn|

ff

T |iy “

“
ÿ

n

ż n
ź

j“1

d3qj
p2πq32Eqj

xf |T : |qny xqn|T |iy , (3.5)

15
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A A

ν
ν t channel

B B

(a)

A

A

ν

ν

s channel

B

B

(b)

Figure 4: Feynman diagrams for the neutrino-pair mediated (a) AB Ñ AB scattering
and (b) AĀ Ñ BB̄ scattering. The labels in the figures denote the fields which describe
the particles in the process.

where in the second line we have inserted an identity—a sum over all possible states, with

|qny representing a state of n particles with 4-momenta q1, q2... qn.

Now we can write the unitarity relation xf |LHS |iy “ xf |RHS |iy as

Im txf |T |iyu “
1

2

ÿ

n

ż

dQn xqn|T |fy
˚
xqn|T |iy . (3.6)

Let’s apply this relation to our process. We are interested in calculating the absor-

ptive part of the AB Ñ AB amplitude mediated by a neutrino-pair, so we need to do a

t-channel unitarity cut of the diagram in Fig.4a. Therefore, we should write Eq.(3.6) for

the crossed process AĀÑ BB̄, Fig.4b, with a νν intermediate state2,

Im
 

xBB̄|T |AĀy
(

“
1

2

ż

d3k1

p2πq32Ek1

d3k1

p2πq32Ek1
xνpk1qν̄pk2q|T |BB̄y

˚
xνpk1qν̄pk2q|T |AĀy .

(3.7)

2Since the intermediate state is a fermionic one, there should be a spin sum. However, only left-handed
neutrinos exist, so in this case it is not necessary.
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Dropping the p2πq4δp4qppf´piq global factor from both sides, this equation becomes

Im
 

MpAĀÑ BB̄q
(

“

“
1

2

ż

d3k1

p2πq32Ek1

d3k2

p2πq32Ek2
p2πq4δp4qpk1 ` k2 ´ piqMpBB̄ Ñ νν̄q˚MpAĀÑ νν̄q .

(3.8)

Finally, we can write this expression in an explicitly Lorentz invariant manner,

Im
 

MpAĀÑ BB̄q
(

“

“
1

2

ż

d4k1

p2πq3
δpk2

1q
d4k2

p2πq3
δpk2

2q p2πq
4δp4qpk1 ` k2 ´ piqMpBB̄ Ñ νν̄q˚MpAĀÑ νν̄q

(3.9)





4. Low-Energy Contact Interaction

The weak interactions of fermions, charged and neutral currents, are described by

the Lagrangian densities [1, 7]

LCC “ ´
e

2
?

2 sin θW

#

W :
µ rūiγ

µ
p1´ γ5qVij dj ` ν̄iγ

µ
p1´ γ5q eis ` h.c.

+

, (4.1a)

pi, j “ 1st, 2nd, 3rd gen.q

LNC “ ´eAµQjψ̄j γ
µ ψj ´

e

4 sin θW cos θW
Zµ ψ̄j γ

µ
`

gVj ´ gAjγ5

˘

ψj (4.1b)

” LQED `LZ , pψj “ u, d, νe, e...q

where θW is the weak mixing angle.

For any elementary particle, the weak neutral couplings are given by

gV “ 2T3 ´ 4Q sin2 θW , gA “ 2T3 , (4.2)

where T3 is the third component of weak isospin and Q is the electric charge. The elec-

troweak charges of the SM fermions are written in Table 1.

We are interested in calculating the potential associated to a process at low energy,

where the limit |q2| ! M2
W ,M

2
Z is valid, so now we’ll focus in obtaining the low-energy

effective interactions from the above Lagrangians.

4.1. Effective charged current couplings

We are describing neutrino scattering against an aggregate of matter, so only the

νe-e charged current contributes to the scattering. Therefore, the only two terms of the

Table 1: Electroweak charges of the Standard Model fermions. The index i “ 1, 2, 3 labels
the three generations, so that u1 “ u, u2 “ c, u3 “ t...

Particle Q gV gA

ui 2/3 1´ 8
3

sin2 θW 1
di -1/3 ´1` 4

3
sin2 θW -1

νi 0 1 1
ei -1 ´1` 4 sin2 θW -1

19
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ν

e

W

(a)

ν

e

q2 !M2
W

ν

e

(b)

ν

e

Fierz

ee

(c)

ν ν

Figure 5: Tree-level Feynman diagrams for the ν̄eÑ ν̄e scattering corresponding to (a)
the Standard Model charged current Lagrangian, (b) the effective low-energy Lagrangian
obtained integrating out the W degrees of freedom and (c) this last Lagrangian after Fierz
reordering the fields and writing the interaction currents as flavor-diagonal.

interaction Lagrangian which are interesting to our process are

LCC “M2
WW

:
µW

µ
`W :

µ ν̄e Γµ e`Wµ ēΓµ νe , (4.3)

where

Γµ ” ´
e

2
?

2 sin θW
γµp1´ γ5q

and we also wrote the kinetic term of the Wµ field.

In order to calculate the effective Lagrangian, we integrate the Wµ degrees of

freedom out of the Lagrangian using its equations of motion,

0 “
BLCC

BW :
µ

“M2
WW

µ
` ν̄e Γµ e , (4.4)

so

Wµ “ ´
1

M2
W

ν̄e Γµ e “
e

2
?

2M2
W sin θW

ν̄e γµ p1´ γ5q e . (4.5)

Putting this relation into Eq.(4.3) one easily gets

L eff
CC “ ´

GF
?

2
rν̄e γ

µ
p1´ γ5q es rē γµ p1´ γ5q νes , (4.6)

where the Fermi constant is given by GF?
2
“ e2

8M2
W sin2 θW

.

It is convenient to write this Lagrangian as flavour diagonal—as shown in Fig.5—,

so that we can add both CC and NC Lagrangians. In order to do so, we use the Fierz
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ψj ψj

Z

(a)

ν ν

|q2| !M2
Z

ψjψj

(b)

ν ν

Figure 6: Tree-level Feynman diagrams for the ψν Ñ ψν scattering corresponding to (a)
the Standard Model neutral current Lagrangian and (b) the effective low-energy Lagran-
gian obtained integrating out the Z degrees of freedom.

identity (B.8) and the relation γµγνγ
µ “ ´2γν to write

L eff
CC “ ´

GF
?

2
rν̄e γ

µ
p1´ γ5q νes rē γµ p1´ γ5q es . (4.7)

4.2. Effective neutral current couplings

In this case, the interesting Lagrangian to our process is

LNC “
1

2
M2

ZZµZ
µ
´

e

4 sin θW cos θW
Zµ ψ̄j γ

µ
`

gVj ´ gAjγ5

˘

ψj , (4.8)

where j “ u, d, e, νe, νµ, ντ .

As in the previous section, we integrate out the Z degrees of freedom using its

equations of motion,

0 “
BLNC

BZµ
“M2

ZZ
µ
´

e

4 sin θW cos θW
ψ̄j γ

µ
`

gVj ´ gAjγ5

˘

ψj , (4.9)

so

Zµ “
e

4 sin θW cos θWM2
Z

ψ̄j γµ
`

gVj ´ gAjγ5

˘

ψj . (4.10)

Putting this relation in Eq.(4.8) we get

L eff
NC “ ´

GF

2
?

2
rν̄ γµ p1´ γ5q νs

“

ψ̄j γµ
`

gVj ´ gAjγ5

˘

ψj
‰

, (4.11)

as is represented in Fig.6.
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4.3. Low-energy effective Lagrangian for matter particles

Let us now consider some aggregate of matter A. In the scattering process Aν Ñ Aν

at low energy, the neutrino can interact with the three “elementary” particles which matter

is formed with—electrons, protons and neutrons.

We can consider that nucleons are point-like Dirac particles because the scattering

happens at low energy—i.e. the neutrino is like a large scale probe, so it cannot resolve

the structure of nucleons. The vector current is conserved, so both the electric charge Q

and the weak vector charge gV of the nucleon are the sum of its valence quarks’ charges,

Qp “ 1 ,

Qn “ 0 ,

gpV “ 1´ 4 sin2 θW ,

gnV “ ´1 . (4.12)

On the other hand, the axial current is not conserved, so this argument does

not apply to the weak axial charge of the nucleon. In fact, Eq.(4.2) shows that the axial

coupling is independent of the electric charge—it only depends on the weak isospin coupled

to the W 3
µ boson. Therefore, it can be expected due to weak isospin3 symmetry that the

weak neutral axial coupling at low momentum transfer, q2 Ñ 0, is the same as the coupling

to the W˘
µ mediated charge current responsible of the nÑ p process, gA “ 1.2723˘0.0023

[3].

Taking all of this into account, the Lagrangian describing the Aν Ñ Aν interaction

has three terms, related to the processes

νe ` e ÝÑ νe ` e ,

νi ` e ÝÑ νi ` e , pi “ µ, τq

νj `N ÝÑ νj `N . pj “ e, µ, τq

The first one is mediated by both charged and neutral currents. Therefore, we have

to add the Lagrangians (4.7) and (4.11), so we get

L1 “ ´
GF
?

2
rν̄e γ

µ
p1´ γ5q νes rē γµ p1´ γ5q es ´

´
GF

2
?

2
rν̄e γ

µ
p1´ γ5q νes rē γµ pg

e
V ´ g

e
Aγ5q es “

“ ´
GF

2
?

2
rν̄e γ

µ
p1´ γ5q νes rē γµ pg̃

e
V ´ g̃

e
Aγ5q es , (4.13)

3In fact, for the first generation of quarks, weak and strong isospin coincide.
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ψj

ψj

GF
2
?

2
γµ

`

gjV ´ g
j
Aγ5

˘

νi

νi

γµ p1´ γ5q

ψj “ e, p, n

νi “ νe, νµ, ντ

Figure 7: Fundamental vertex of the effective low-energy Lagrangian (4.17). The
couplings gV , gA depend on both the neutrino flavor and which is the charged fermion, as
discussed in the text.

where we have defined

g̃eV “ 2` geV “ 1` 4 sin2 θW ,

g̃eA “ 2` geA “ 1 . (4.14)

The second and third ones are only mediated by neutral currents, so they are

described by the Lagrangian (4.11),

L2 “ ´
GF

2
?

2
rν̄i γ

µ
p1´ γ5q νis rē γµ pg

e
V ´ g

e
Aγ5q es , pi “ µ, τq (4.15)

L3 “ ´
GF

2
?

2
rν̄j γ

µ
p1´ γ5q νjs

“

N̄ γµ
`

gNV ´ g
N
A γ5

˘

N
‰

.
pj “ e, µ, τq

pN “ p, nq
(4.16)

With all this information, we finally have our whole interaction Lagrangian L “

L1 `L2 `L3, which is

L “ ´
GF

2
?

2

#

rν̄e γ
µ
p1´ γ5q νes rē γµ pg̃

e
V ´ g̃

e
Aγ5q es `

` rν̄i γ
µ
p1´ γ5q νis rē γµ pg

e
V ´ g

e
Aγ5q es ` pi “ µ, τq

` rν̄j γ
µ
p1´ γ5q νjs

“

N̄ γµ
`

gNV ´ g
N
A γ5

˘

N
‰

+

pj “ e, µ, τq

pN “ p, nq

(4.17)

All fundamental vertices of this Lagrangian have the same structure, as is repre-

sented in Fig.7. As a check, the couplings we obtained here are (indeed) the same ones

stated in [7].





5. Neutrino-Matter Scattering

Once the interaction Lagrangian is written, we can focus on calculating the scat-

tering amplitude between an aggregate of matter and a neutrino, MpAν Ñ Aνq. For

simplicity, A can be understood as a molecule, composed of ZA protons and electrons and

NA neutrons—we’d better study electrically neutral systems, with the same number of

protons and electrons, because any net-charge electric interaction would be much stronger

than the weak interaction we’re looking for.

As shown in Fig.8, the process Aν Ñ Aν is described by an elementary vertex of

the interaction Lagrangian (4.17). The different terms of this Lagrangian show explicitly

that the coupling neutrino-matter must depend on the flavor of the neutrino, so we will

consider them separately.

5.1. Electron neutrino

In the App1q νepk1q Ñ App2q νepk2q case, the amplitude is determined by

i Tνe “ xAνe| i

ż

d4x rL1pxq `L2pxq `L3pxqs |Aνey ” i T p1qνe ` i T
p2q
νe ` i T

p3q
νe , (5.1)

which we can calculate separately. The contribution of the first term is

T p1qνe “ xAνe|

ż

d4x
´GF

2
?

2
rν̄e γ

µ
p1´ γ5q νes rē γµ pg̃

e
V ´ g̃

e
Aγ5q es |Aνey “

“ ´
GF

2
?

2

ż

d4x xνe| ν̄e γ
µ
p1´ γ5q νe |νey xA| ē γµ pg̃

e
V ´ g̃

e
Aγ5q e |Ay ”

” ´
GF

2
?

2

ż

d4x jµνepxqJ
p1q
µ pxq . (5.2)

Since neutrinos are elementary particles, the leptonic current is the usual

jµpxq “ xνepk2q| ν̄epxq γ
µ
p1´ γ5q νepxq |νepk1qy “

“ rūpk2q γ
µ
p1´ γ5qupk1qs e

´ipk1´k2qx . (5.3)

On the other hand, the molecular current matrix element will be

J p1qµ pxq “ e´ipp1´p2qx J p1qµ “ e´ipp1´p2qx xApp2q| ēp0qγµ pg̃
e
V ´ g̃

e
Aγ5q ep0q |App1qy . (5.4)

25
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App1q App2q

νpk1q νpk2q

q “ p2 ´ p1 “ k1 ´ k2

Figure 8: Lowest order Feynman diagram for the Aν Ñ Aν scattering in the low-energy
effective weak theory.

Since we’re looking for a low-energy coherent interaction, it’s interesting to analyze

separately the different terms in Jµ:

γ0 is a scalar quantity, related to the matrix element of e:e, which is the number

operator, so its contribution is coherent.

γ0γ5 is a pseudo-scalar quantity, so its matrix element is related to σq{M , where

σ is the spin of A, M its mass and q “ p1 ´ p2. Since this contribution depends

on σ, it’s not coherent. Also, any contribution of the form q{M gives a relativistic

correction to the potential, so this is another reason why we can ignore this term.

γ is a polar vector, so its matrix element must be proportional to q{M . Again, this

is a relativistic correction we won’t consider.

γγ5 is an axial vector, directly related to the spin of the particle, so this contribution

is not coherent.

Therefore, the coherent contribution to the molecular current is given by

J
p1q
0 pxq “ xApp2q| ēpxq g̃

e
V γ

0epxq |App1qy “ g̃eV xApp2q| e
:
pxq epxq |App1qy “

“ g̃eV xApp2q|

„
ż

d4y |yy xy|



e:pxq epxq

„
ż

d4z |zy xz|



|App1qy “

“ g̃eV

ż

d4y d4z eip2y e´ip1z xApyq| e:pxq epxq |Apzqy “

“ g̃eV

ż

d4y d4z eip2y e´ip1z δp4qpx´ yq δp4qpx´ zqZA “

“ ZA g̃
e
V e

´ipp1´p2qx , (5.5)



Section 5. Neutrino-Matter Scattering 27

where we have inserted two Closure Relations,

I “

ż

d4x |xy xx| , (5.6)

and we have taken into account the fact that e:pxqepxq is the electron number operator

at x.

Even though J0 is the only relevant component of Jµ, it is convenient to keep

a relativistic framework—later we’ll consider the non-relativistic limit. Therefore, the T

matrix element (5.2) is

T p1qνe “ p2πq
4δp4qpq ` k1 ´ k2q ˆ

´GF

2
?

2
J p1qµ rūpk2q γ

µ
p1´ γ5qupk1qs , (5.7)

where q ” p1´ p2 and J
p1q
0 “ ZAg̃

e
V —this last equality, and the following giving J0 values,

must be understood as the coherent contribution to J0 given by the number operator of

the particle constituents.

Analogously,

T p2qνe “ 0 , (5.8)

T p3qνe “ p2πq
4δp4qpq ` k1 ´ k2q ˆ

´GF

2
?

2
J p3qµ rūpk2q γ

µ
p1´ γ5qupk1qs . (5.9)

where J
p3q
0 “ ZAg

p
V `NAg

n
V .

Adding all contributions and dropping the p2πq4δppi ´ pf q factor, we get

MpAνe Ñ Aνeq “ ´
GF

2
?

2
JeA,µ rūpk2q γ

µ
p1´ γ5qupk1qs , (5.10)

where JeA,µ is the molecular current in the scattering with an electron neutrino. Using the

weak charges from (4.12) and (4.14),

gpV “ 1´ 4 sin2 θW ,

gnV “ ´1 ,

geV “ ´1` 4 sin2 θW “ ´gpV ,

g̃eV “ 2` geV “ 2´ gpV ,

we find JeA,0 “ 2ZA ´ NA. At this level, we remind the reader that the first term comes

from charged current interaction with electrons, while the second one comes from neutral

currents with neutrons—neutral currents with protons and electrons cancel out.
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5.2. Muon and tau neutrino

The muon and tau flavors have the same contribution to the Effective Lagrangian,

so the scattering amplitudes for the processes Aνµ Ñ Aνµ and Aντ Ñ Aντ must be the

same. Therefore, we can consider both of them simultaneously and calculate

i Tνj “ xAνj| i

ż

d4x rL1pxq `L2pxq `L3pxqs |Aνjy ” i T p2qνj
` i T p3qνj

, (5.11)

where j “ µ, τ and L1 does not contribute because it only has electron neutrinos. Follo-

wing the same steps than in the previous section, we get

T p2qνj
“ p2πq4δp4qpq ` k1 ´ k2q ˆ

´GF

2
?

2
J
p2q
A,µ rūpk2q γ

µ
p1´ γ5qupk1qs , (5.12)

T p3qνj
“ p2πq4δp4qpq ` k1 ´ k2q ˆ

´GF

2
?

2
J
p3q
A,µ rūpk2q γ

µ
p1´ γ5qupk1qs , (5.13)

where J
p2q
A,0 “ ZAg

e
V and J

p3q
A,0 “ ZAg

p
V `NAg

n
V .

Finally, dropping the p2πq4δppi ´ pf q factor, we can write

MpAνj Ñ Aνjq “ ´
GF

2
?

2
J jA,µ rūpk2q γ

µ
p1´ γ5qupk1qs , pj “ µ, τq , (5.14)

where J jA,0 “ ´NA. As before, the neutral current interactions for electrons and protons

cancel each other in neutral (of electric charge) matter.

5.3. The weak flavor charge of aggregate matter

Up to this point, we have calculated the amplitudes of the processes described by

all fundamental vertices of our Lagrangian, so it’s convenient to sum up our results and

analyze them. In order to do that, it’s useful to compare with well-known theories.

Let’s consider QED. In this theory, a process described by the fundamental vertex

would involve two fermions and a photon. If we take the photon on-shell and drop external-

leg fermion factors, the iM would be
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ψ ψ

γpkq

“ ´ieQγµεµpkq , (5.15)

where Q is the electric charge of the fermion field. Due to vector current conservation,

this vertex does also apply to non-fundamental particles, which have an electric charge

equal to the sum of its constituents’ charges—and the amplitude would be this charge

times the coupling e.

This same behavior appears in weak interactions. The only flavor-diagonal inter-

action is the one mediated by neutral currents, with the fundamental vertex

ψ ψ

Zpkq

“ ´i e
4 sin θW cos θW

 `

2T3 ´ 4Q sin2 θW
˘

γµ ´ 2T3γ
µγ5

(

εµpkq . (5.16)

As is thoroughly discussed in [8], the vector current conservation allows us to talk

about a weak charge of the fermion field ψ, which is QW “ 2T3 ´ 4Q sin2 θW , such that

the weak charge of a composed particle is the sum of its constituents’, as happens with

electric charge. However, we can’t talk about the axial coupling as a charge, since the

axial current is not conserved.

Once the concept of a weak charge has been introduced, we see that the vector

part of this amplitude has the same structure as the QED one, a coupling times a charge

times a mediating-particle external-leg factor. According to this idea, we can expect our

amplitudes to have this structure too.

Indeed, both Eqs.(5.10) and (5.14) can be written (in the non-relativistic limit) as
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A A

νipk1q νipk2q

“ i GF
2
?

2
J iA,0 rūpk2qγ

0p1´ γ5qupk1qs , (5.17)

where Qi
W,A ” J iA,0 is the weak charge of the aggregate of matter A. It depends on the

flavor of the neutrino, so we can speak of three weak flavor charges of aggregate matter,

which are given by

Qe
W,A “ 2ZA ´NA ,

Qµ
W,A “ Qτ

W,A “ ´NA . (5.18)

Eqs.(5.18) state the fact that, whereas aggregate matter is neutral of electric charge, it is

not neutral of weak charges!

It’s interesting to analyze the value of those charges for “normal” matter. In order

to do that, we’ll look at stable nuclei. According to the semi-empirical mass formula [9],

the pZ,Nq values of stable nuclei are related by

Z «
A

2` 0.0157A2{3
, (5.19)

where A ” Z ` N , as is represented in Fig.9. Using those pairs of values, the weak

charges of each element (neutral atom) are represented in Fig.10, where we see that

the electron neutrino weak charge is always positive, while the muon and tau neutrino

charges are always negative. The weak charge of aggregate matter is obtained from Fig.10

by multiplying by the number of the constituent atoms.
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Figure 9: The valley of stability, composed of the pairs of pZ,Nq for all elements, accor-
ding to the semi-empirical mass formula, Eq.(5.19).
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Figure 10: Weak flavor charges of the elements with pZ,Nq in the valley of stability,
Fig.9. Beware a minus sign in the µ, τ flavor charges.





6. Long-Range Weak Interaction Potential

After analyzing the Aν Ñ Aν scattering amplitude, we can focus on calculating

the interaction potential. We’ll begin using Eq.(3.9) to determine the absorptive part of

the AB Ñ AB amplitude. After that, we’ll use Eq.(2.20) to obtain the potential.

6.1. Absorptive part of AB Ñ AB at low t

In order to get the absorptive part of the scattering amplitude, we need to compute

the crossed quantity ImtMpAĀ Ñ BB̄qu, as written in Eq.(3.9). Therefore, we need to

cross the amplitude we calculated in the previous section, from

MpAνi Ñ Aνiq “ ´
GF

2
?

2
J iA,µ rūpk2q γ

µ
p1´ γ5qupk1qs

to

MpAĀÑ νiν̄iq “ ´
GF

2
?

2
J̃ iA,µ rūpk2q γ

µ
p1´ γ5q vpk1qs , (6.1)

where J̃µ is the crossed molecular current, which still satisfies J̃ i0 “ Qi
W in the non-

relativistic limit.

According to Eq.(3.9), the absorptive part of MpAĀÑ BB̄q is determined by the

quantity MpAĀÑ νiν̄iqM˚pBB̄ Ñ νiν̄iq, which we can now evaluate. From now on we’ll

work in a simplified case, assuming that neutrinos are massless4, so

MpAĀÑ νiν̄iqM˚
pBB̄ Ñ νiν̄iq “

“
G2
F

8
J̃ iA,µ J̃

i
B,ν rūpk2q γ

µ
p1´ γ5q vpk1qs rv̄pk1q γ

ν
p1´ γ5qupk2qs “

“
G2
F

8
Z̃i
µν Tr r {k1γ

ν
p1´ γ5q {k2γ

µ
p1´ γ5qs “

“
G2
F

4
Z̃i
µν Tr r {k1γ

ν {k2γ
µ
p1´ γ5qs “

“ G2
F Z̃

i
µν rk

µ
1k

ν
2 ` k

ν
1k

µ
2 ´ g

µν
pk1k2q ` a

µν
s , (6.2)

where we defined Z̃i
µν ” J̃ iA,µ J̃

i
B,ν and aµν is some antisymmetric tensor which we will no

longer consider because it vanishes in the non-relativistic limit, where the only relevant

component is µ “ ν “ 0.

4The non-vanishing mass of neutrinos will affect the behavior of the potential at the longest range—its
implications will be announced in Section 8. Prospects.
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Considering the contributions of the three neutrino flavors, the absorptive part is

Im tM pAĀÑ BB̄q
(

“

“
G2
F

8π2

˜

ÿ

f

Z̃f
µν

¸

ż

d4k1 δpk
2
1q δpk

2
2q

„

kµ1k
ν
2 ` k

ν
1k

µ
2 ´

1

2
sgµν



“

“
G2
F

8π2

˜

ÿ

f

Z̃f
µν

¸

ż

d4k1 δpk
2
1q δpk

2
2q

„

´2kµ1k
ν
1 ` pk

µ
1 q

ν
` kν1q

µ
q ´

1

2
sgµν



“

“
G2
F

8π2

˜

ÿ

f

Z̃f
µν

¸

π

2

„

´
2

3

ˆ

qµqν ´
1

4
tgµν

˙

`
1

2
pqµqν ` qνqµq ´

1

2
sgµν



“

“
G2
F

24π

˜

ÿ

f

Z̃f
µν

¸

r qµqν ´ sgµν s , (6.3)

where we used k2 “ q´ k1 in the second line and all integrals needed in the third line are

stated in [10]—we demonstrate them in Appendix B.3.

As seen, the tensor structure of Eq.(6.3) is transverse, a requirement which any

quantity built from conserved currents must satisfy. We can cross this result back to the

t´channel applying sÑ t, so that

Im tMpAB Ñ ABqu “
G2
F

24π

˜

ÿ

f

Zi
µν

¸

rqµqν ´ tgµνs . (6.4)

Now it’s easy to evaluate the non-relativistic limit. As discussed before, the only

relevant component of the molecular current for coherent interactions is the scalar contri-

bution to J0, so we can take

Im tMpAB Ñ ABqu “
G2
F

24π

˜

ÿ

f

Qf
W,AQ

f
W,B

¸

”

`

q0
˘2
´ t

ı

. (6.5)

Besides, we are looking for a long-range interaction, so q0 « 0 and

Im tMpAB Ñ ABqu “ ´
G2
F

24π

˜

ÿ

f

Qf
W,AQ

f
W,B

¸

t , (6.6)

where
ÿ

f

Qf
W,AQ

f
W,B “ p2ZA ´NAqp2ZB ´NBq ` 2NANB . (6.7)
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Figure 11: Weak coupling
ř

Qf
WQ

f
W , which is written in Eq.(6.7), for the elements of

the valley of stability (Fig.9), each one interacting with itself. The gravitational coupling
M2

/m2
p « pZ `Nq

2, neglecting binding energies, is also represented.

As Eq.(6.6) shows, all the flavor dependence of the absorptive part—and, therefore,

of the potential—in the limit of massless neutrinos is factorized in the weak charges.

As we saw in Fig.10, all the stable elements have the same sign for the weak charges,

Qe
W ą 0 and Qµ,τ

W ă 0. This implies that, for any pair of elements—and therefore for any

pair of molecules—this coupling has a positive sign, so the resulting force will have the

same character—whether repulsive or attractive—for any pair of aggregates of matter.

We’ll find out which of those two cases is the right one in the next section.

Let’s see the behavior of this quantity for some cases. As we did in the previous

section, we’ll consider only stable nuclei. Since this is an interaction, we have to choose

sets of two elements—we’ll consider the interaction of each element with itself. In Fig.11

we show the quantity
ř

Qf
W,AQ

f
W,A for the element A as a function of the atomic number

ZA for the stable nuclei.

In the same Figure we compare the weak coupling with the gravitational one. It’s

seen that both of them increase with the number of particles of the systems interacting,

but they scale differently, even when the binding energy is neglected. That means that

our coherent weak interaction could introduce a deviation from the Equivalence Principle,

as was announced in [2].
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6.2. Neutrino-pair exchange potential

After obtaining this result, the only remaining step in the calculation of the inter-

action potential is computing the integral (2.20), with the branching point at t0 “ 0 (for

massless neutrinos). Using the ImtMu obtained in Eq.(6.6),

V prq “
G2
F

24π

˜

ÿ

f

Qf
W,AQ

f
W,B

¸

1

4π2r

ż 8

0

dt t e´
?
t r , (6.8)

so we have to evaluate this integral. A primitive P ptq is calculated in Appendix B.4, so we

obtain the integral (say I) using Barrow’s Rule, I “ P ptÑ 8q´ P ptÑ 0q. If we assume

r ‰ 0 when calculating the limits—which is valid, since we are looking for a long-range

interaction—this contribution to the potential is

I “
12

r4
. (6.9)

With this result, we can finally write

V prq “
G2
F

8π3

˜

ÿ

f

Qf
W,AQ

f
W,B

¸

1

r5
, (6.10)

which has an associated force given by

F prq “ ´∇V prq “
5G2

F

8π3

˜

ÿ

f

Qf
W,AQ

f
W,B

¸

r̂

r6
, (6.11)

where r̂ is the radial unit vector.

We have obtained a long-range interaction which is repulsive for ordinary matter,

since the weak coupling is always positive—as we showed in Fig.11. This is a difference

with the gravitational force that we can use to distinguish them—and we can also look

for the deviations from the Equivalence Principle we discussed in the previous section.

The other interactions that appear in electrically neutral systems are the residual

electromagnetic Van der Waals („ r´7) or Casimir-Polder („ r´8) forces, which have a

lower range (larger inverse power law) than our weak force, even though they’re stronger.

It would be interesting to find systems with low electromagnetic momenta, so that this

interactions became weaker, as the ones described in [11].



7. Conclusions

We began this work reviewing the relation between the description of an interaction

process in the framework of a Quantum Field Theory and in terms of an interaction

potential. As shown in Section 2, the Feynman amplitude of an elastic scattering process

and the effective potential describing this interaction are related, in Born approximation,

by a Fourier Transform. This is the result one would expect, taking into account that

Mpq2q describes the interaction process in momentum space, while V prq describes the

interaction in position space.

Another interesting detail that stems from the fact that we are calculating a long-

range interaction is that we needn’t calculate the whole amplitude of the process in order

to determine the potential. This is due to the fact that Mpq2q at |q2| Ñ 8 gives short-

range contributions, so the potential is determined by ImtMpq2qu through an unsubtracted

dispersion relation. Therefore, we could use the unitarity relation from Section 3 to avoid

the calculation of Mpq2q (a 1´loop quantity) and compute a tree-level process instead.

Besides, the fact that we were interested in the low-energy limit allowed us to work in

the framework of an effective theory where Charged Currents and Neutral Currents could

be written in the form of a contact interaction, so we worked with only one interaction

vertex.

The results from Sections 2-4 made it clear that the effective potential was de-

termined by the amplitude of the process Aν Ñ Aν, which we calculated in Section 5.

Although this was a quite straightforward calculation, it gave rise to a very interesting

concept—the weak flavor charge of aggregate matter. Indeed, the coupling of bulk mat-

ter to a neutrino is proportional to GF with a charge that depends on the flavor of the

neutrino,

Qe
W “ 2Z ´N , Qµ

W “ Qτ
W “ ´N .

These are the weak flavor charges for electrically neutral matter—the case we are inter-

ested in, since any non-zero electric charge would produce an electromagnetic interaction

much stronger than our weak interaction.

This amplitude was the last ingredient needed to compute the effective potential,

which gives raise to the repulsive force

F “
5G2

F

8π3

˜

ÿ

f

Qf
W,AQ

f
W,B

¸

r̂

r6
,
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where all flavor dependence is in the weak charges. This is the coherent contribution to

the force, which we obtained from the vector charge J0, proportional to γ0. The first

correction to this result would come from the spin dependent contribution to J , that

comes from γγ5. The other two contributions to the current, proportional to γ0γ5 and γ,

give relativistic corrections „ 1
M

.

In the long-range regime we are looking at, there are two other important interac-

tions: residual electromagnetic interactions and gravitation. For ordinary molecules, Van

der Waals forces are much stronger than our weak interaction at short distances, so it

would be interesting to look for a system where the first electromagnetic moments are

zero. In the case of gravitation, there are two traits of this weak interaction that can help

to distinguish between them in an experiment: this force is repulsive—while gravitation

is attractive—and its charge is proportional to the number of particles but not to their

mass, so it would produce a signal that deviates from the Equivalence Principle.

In any case, joining the previous ideas with the recent development of atomic traps

[12]—not ionic traps—can be the key to observe this interaction in an experiment.



8. Prospects

The long-range potential obtained in this work, Eq.(6.10), is valid and of interest

for distances between nanometers and microns. The short-distance limit comes from the

requirement of having neutral (of electric charge) systems of aggregate matter, while

the long-distance limit is imposed by a non-vanishing value of the absolute mass of the

neutrino—indeed, the range of this interaction for neutrinos of m „ 0.1 eV is of the order

of

R „
~c
mc2

“
197 MeV fm

0.1 eV
„ 109 fm “ 1µm .

In this region, the effective potential will become of Yukawa type instead of the inverse

power law. We can get a first idea on the dependence of the potential with m chan-

ging slightly this work’s result. If we had integrated Eq.(6.8) from a branching point at

t0 “ 4m2, the potential would have been

V prq “
G2
F

8π3

˜

ÿ

f

Qf
W,AQ

f
W,B

¸

ˆ

1

r5
`

2m

r4
`

2m2

r3
`

4m3

3r2

˙

e´2mr ,

which depends on m not only in the Yukawa exponential, but also in the preceding inverse

power terms5.

The neutrino mass dependence of the effective potential in the long-range behavior

opens novel directions in the study of the most interesting pending questions on neutrino

properties: absolute neutrino mass (from the range), flavor dependence and mixing (from

the weak charges in the interaction) and, hopefully, with two neutrino exchange, the

exploration of the most crucial open problem in neutrino physics: whether neutrinos are

Dirac or Majorana particles.

The study of these problems will be the subject of my immediate future research

work. On the one hand, it’s necessary to calculate the form of this interaction with a

finite mass for the neutrino. In fact, two calculations are needed: for Dirac neutrinos

and for Majorana neutrinos. On the other hand, the collaboration with the experimental

groups involved in neutral traps will be initiated this summer during my stay at CERN,

in order to find out whether the low electromagnetic interacting systems mentioned in

our Conclusions could be implemented.

5Of course, the computation of the potential at finite m is not so trivial—the mass has to be included
in the absorptive part of the amplitude—, but it serves for illustrating the kind of changes that will occur.
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Appendices

A. Notations and Conventions

A.1. Units

This work is written using the Natural System of Units, where ~ “ c “ kB “ 1.

We describe electromagnetic quantities with the Heavyside system, ε0 “ µ0 “ 1, so that

the fine-structure constant is given by α “ e2{4π « 1{137.

A.2. Relativity end Tensors

We define the Minkowsi metric tensor with signature p`,´,´,´q, as

gµν “ gµν “

¨

˚

˚

˚

˚

˝

1 0 0 0

0 ´1 0 0

0 0 ´1 0

0 0 0 ´1

˛

‹

‹

‹

‹

‚

, (A.1)

so that any 4-vector can be written as xµ “ px0,xq. We also use the Einstein Summation

Convention, so scalar products can be written as x ¨p “ xµpµ “ gµνx
µpν “ x0p0´x ¨p. We

can also write xµ “ gµνx
ν “ px0,´xq, and the derivative operator is Bµ ”

B

Bxµ
“ pBt,∇q.

We use the totally antisymmetric tensor with the convention ε0123 “ `1 “ ´ε0123.

A.3. Fourier Transforms

We define Fourier Transforms so that all 2π factors are included in the momentum

integration,

4´dimensional FT:

fpxq “

ż

d4k

p2πq4
e´ikx f̃pkq ,

f̃pkq “

ż

d4x eikx fpxq ,

3´dimensional FT:

fpxq “

ż

d3k

p2πq3
eikx f̃pkq ,

f̃pkq “

ż

d3x e´ikx fpxq , (A.2)
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Other 2π factors come from the following expression for the Dirac delta,

ż

d4x eikx “ p2πq4δp4qpkq . (A.3)

A.4. Diracology

As is well known, Dirac gamma matrices are required to satisfy the relations

tγµ, γνu “ 2gµν , rγµ, γνs “ ´2iσµν . (A.4)

Also,

pγ0
q
2
“ ´pγiq2 “ 1, γ:µ “ γ0γµγ

0. (A.5)

We define the fifth gamma matrix as γ5 ” iγ0γ1γ2γ3 “ ´ i
4!
εαβγδ γ

αγβγγγδ, which

satisfies pγ5q
2 “ ´1, γ:5 “ γ5. Therefore, the quirality projectors can be written as

PR “
1` γ5

2
, PL “

1´ γ5

2
. (A.6)

Some useful contractions are

γµγµ “ 4 , (A.7a)

γµγνγµ “ ´2γν , (A.7b)

γµγαγβγµ “ 4gαβ, (A.7c)

γµγνγαγβγµ “ ´2γβγαγν . (A.7d)

Some useful trace identities are

Tr rγµγνs “ 4gµν , (A.8a)

Tr rγµγνγ5s “ 0 , (A.8b)

Tr
“

γµγνγαγβ
‰

“ 4
`

gµνgαβ ´ gµαgνβ ` gµβgνα
˘

, (A.8c)

Tr
“

γµγνγαγβγ5

‰

“ ´4i εµναβ, (A.8d)

Tr rγµ1γµ2 ...γµ2k`1s “ 0 . (A.8e)

For any 4´vector aµ, we define {a ” γµa
µ.



B. Useful Relations

B.1. Fierz Identity

Let us consider the Dirac-scalar quantity

rū1APLu2s rū3PRBu4s , (B.1)

where A and B are arbitrary matrices in Dirac space, PL,R are the quirality projectors

from Eq.(A.6) and the four ui are Dirac spinors6.

The set of matrices Γi “ t1, γ5, γ
µPL, γ

µPR, σ
µνu are a basis of Dirac space, so we

can expand

u2ū3 “
ÿ

i

αiΓi “ α11` α5γ5 ` α
µ
LγµPL ` α

µ
RγµPR ` α

µν
S σµν . (B.2)

Since we have this expansion between quiarilty projectors, we can simplify

PLu2ū3PR “ PL

˜

ÿ

i

αiΓi

¸

PR “ αµRγµPR , (B.3)

where we have used the relations

P 2
L,R “ PL,R , PL,RPR,L “ 0 , PL,Rγµ “ γµPR,L , PL,Rγ5 “ γ5PL,R

to show that all other terms are zero.

We need to calculate the αµR coefficient, so we evaluate the quantity

TrrγνPLu2ū3s “ Tr

«

γνPL

˜

ÿ

i

αiΓi

¸ff

“ αµRTrrγνPLγµPRs “ 2αµR , (B.4)

which means that we can get the coefficient by computing

αµR “
1

2
TrrγµPLu2ū3s “

1

4
ū3γ

µ
p1´ γ5qu2 “

1

2
ū3γ

µPLu2 . (B.5)

6If any of these spinors were a v spinor, nothing in this section would change—the Identity would still
hold.
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Putting this relation into Eq.(B.3) one gets

PLu2ū3PR “
1

2
rū3γ

µPLu2sγµPR , (B.6)

so that Eq.(B.1) can be rewritten as

rū1APLu2s rū3PRBu4s “
1

2
rū1AγµPRBu4srū3γ

µPLu2s , (B.7)

which is the identity we wanted to prove. Notice that, unlike spinors, fermionic fields

anticommute, so their version of the Fierz Identity is

“

ψ̄1APLψ2

‰ “

ψ̄3PRBψ4

‰

“ ´
1

2
rψ̄1AγµPRBψ4srψ̄3γ

µPLψ2s , (B.8)

with an extra minus sign.

B.2. Fourier Transforms

B.2.1. Yukawa/Coulomb propagator

Let’s compute the Fourier Transform of the Yukawa propagator,

I ”

ż

d3q

p2πq3
eiq r 1

q2 ` µ2
, (B.9)

where q ” |q |, which will also give the Fourier Transform of the Coulomb propagator

taking the limit µÑ 0. In spherical coordinates, d3q “ q2dq d cos θ dφ, we get

I “
1

p2πq2

ż 8

0

dq
q2

q2 ` µ2

ż 1

´1

d cos θeiqr cos θ . (B.10)

Integrating over cos θ we get

I “
1

p2πq2

ż 8

0

dq
q2

q2 ` µ2

2 sin qr

qr
“

1

p2πq2
Im

"
ż 8

´8

dq
q2

q2 ` µ2

eiqr

qr

*

“

“
1

p2πq2r
Im

"
ż 8

´8

dy
y

y2 ` µ2r2
eiy

*

”
1

p2πq2r
Im

"
ż 8

´8

dy fpyq

*

. (B.11)

The integration of fpyq along the circumference arc in Fig.12 is zero, since it goes
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Retyu

Imtyu

iµr

´iµr

C8

Figure 12: Integration path (in the complex plane of the y variable) used in the Residue
Theorem for the integral in expression (B.12).

as e´|y|{|y| when y Ñ i8. Therefore, using the Residue Theorem [6],

ż 8

´8

dy fpyq “

ż

C8

dyfpyq´ 2πi Res rfpyq, y “ iµrs “ ´2πi Res rfpyq, y “ iµrs . (B.12)

The pole of fpyq in y “ iµr is simple, so we can compute the residue as

Res rfpyq, y “ iµrs “ ĺım
yÑiµr

py ´ iµrqfpyq “ ĺım
yÑiµr

y

py ` iµrq
eiy “

1

2
e´µr . (B.13)

Using this result, we can trivially write

I “
1

4π

e´µr

r
. (B.14)

B.2.2. A spherical wave

Let’s compute the integral

I ”
1

4π

ż

d3r e´iq r e
´
?
t1r

r
, (B.15)

where the 4π factor has been introduced for convenience.

In spherical coordinates d3r “ r2dr dΩ “ r2dr d cos θ dφ,

I “
1

2

ż 8

0

dr r e´
?
t1r

ż 1

´1

d cos θ e´iqr cos θ , (B.16)
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where the
ş

dφ has been trivially computed and q ” |q |. The remaining angular integral

is also easy to calculate, so we can write

I “
1

q

ż 8

0

dr e´
?
t1r sinpqrq . (B.17)

This integral can be computed integrating by parts:

I “
1

q

ż 8

0

dr

"

d

dr

„

´1
?
t1
e´
?
t1r sinpqrq



´

„

´1
?
t1
e´
?
t1r d

dr
sinpqrq

*

“

“ 0`
1
?
t1

ż 8

0

dr e´
?
t1r cospqrq “

“
1
?
t1

ż 8

0

dr

"

d

dr

„

´1
?
t1
e´
?
t1r cospqrq



´

„

´1
?
t1
e´
?
t1r d

dr
cospqrq

*

“

“
1

t1

"

1´ q

ż 8

0

dr e´
?
t1r sinpqrq

*

(B.18)

Taking into account the fact that q2 ” q 2 “ ´t, this last relation can be written as

I “
1

t1
p1` tIq ÝÑ pt1 ´ tqI “ 1 . (B.19)

Therefore, we have proved the relation

1

t1 ´ t
“

1

4π

ż

d3r e´iq r e
´
?
t1r

r
. (B.20)

B.3. Integrals for the absorptive part

In this appendix we are going to calculate the integrals

I ”

ż

d4k δpk2
qδpk̄2

q “
π

2
, (B.21a)

Iµ ”

ż

d4k δpk2
qδpk̄2

q kµ “
π

4
qµ , (B.21b)

Iµν ”

ż

d4k δpk2
qδpk̄2

q kµkν “
π

6

ˆ

qµqν ´
1

4
s gµν

˙

, (B.21c)

where k̄ “ q ´ k and q2 “ s.

Let’s consider the first one. Using k2 “ E2 ´ k 2 in the first delta function, we
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compute the E ” k0 integral,

I “

ż

d3k

2E
δpk̄2

q “

ż

d3k

2E
δ
“

q2
´ 2pkqq

‰

. (B.22)

We can evaluate the integral in the CM reference frame, where qµ “ p
?
s,0 q, so

that

I “
1

2

ż

dΩ dE E δ
`

s´ 2E
?
s
˘

“
1

2

ż

dω
E

2
?
s

ˇ

ˇ

ˇ

ˇ

E“
?
s{2

“
1

8

ż

dΩ “
π

2
, (B.23)

as we wanted to prove.

Due to Lorentz covariance, the Iµ integral must be of the form

Iµ ”

ż

d4k δpk2
qδpk̄2

q kµ “ Aqµ . (B.24)

Multiplying this relation by qµ, we get

Aq2
“

ż

d4k δpk2
qδpk̄2

q pkk̄q “
1

2
q2 I “

π

4
q2 , (B.25)

so

Iµ “
π

4
qµ . (B.26)

Finally, we can also use Lorentz covariance to write

Iµν ”

ż

d4k δpk2
qδpk̄2

q kµkν “ Agµν `Bqµqν . (B.27)

We need to multiply by gµν and qµqν to determine A and B,

gµνI
µν
“ 4A` q2B “

ż

d4k δpk2
qδpk̄2

q k2
“ 0 , (B.28a)

qµqν
q2

Iµν “ A` q2B “
1

q2

ż

d4k δpk2
qδpk̄2

q pkk̄q2 “
1

4
2 I “

π

8
q2 , (B.28b)

so we just need to solve the algebraic system of equations

4A` q2B “ 0 ,

A` q2B “
π

8
q2 , (B.29)
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which gives

A “ ´
π

24
q2 , B “

π

6
. (B.30)

Therefore,

Iµν “
π

6

ˆ

qµqν ´
1

4
q2 gµν

˙

. (B.31)

B.4. Integral for the interaction potential

We are interested in calculating a primitive P ptq of

ż

dt t e´
?
t r , (B.32)

which can be obtained quite straightforwardly using q ”
?
t,

P ptq “

ż

dt t e´
?
t r
“ 2

ż

dq q3 e´qr “

“ ´2
d3

dr3

ż

dq e´qr “

“ 2
d3

dr3

„

e´qr

r



“

“ 2
d2

dr2

„ˆ

´
1

r2
´
q

r

˙

e´qr


“

“ 2
d

dr

„ˆ

2

r3
`

2q

r2
`
q2

r

˙

e´qr


“

“ ´

ˆ

12

r4
`

12q

r3
`

6q2

r2
`

2q3

r

˙

e´qr “

“ ´

˜

12

r4
`

12
?
t

r3
`

6t

r2
`

2
?
t3

r

¸

e´
?
t r . (B.33)
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[9] K.S. Krane, Introductory Nuclear Physics, John Wiley&Sons, Inc. 2nd Edition (1988).

[10] G. Feinberg, J. Sucher, Long-Range Forces from Neutrino-Pair Exchange Phys. Rev.

166, A1638 (1968)

[11] R.S. Decca, D. López, H.B. Chan, E. Fischbach, D.E. Krause, C.R. Jamell, Cons-

training New Forces in the Casimir Regime Using the Isoelectronic Technique Phys.

Rev. Lett. 94 , 240401, arXiv:hep-ph/0502025 (2005)

[12] C.J. Foot, Atomic Physics, Oxford University Press (2005).

49

http://arxiv.org/abs/0705.4264
http://arxiv.org/abs/hep-ph/0502025

	 Abstract
	1 Introduction
	2 From a Quantum Field Theory to an Effective Potential
	2.1 The Coulomb potential
	2.2 The Yukawa interaction
	2.3 A more general case: particle-pair exchange

	3 Unitarity Relation. Absorptive Part
	4 Low-Energy Contact Interaction
	4.1 Effective charged current couplings
	4.2 Effective neutral current couplings
	4.3 Low-energy effective Lagrangian for matter particles

	5 Neutrino-Matter Scattering
	5.1 Electron neutrino
	5.2 Muon and tau neutrino
	5.3 The weak flavor charge of aggregate matter

	6 Long-Range Weak Interaction Potential
	6.1 Absorptive part of AB AB at low t
	6.2 Neutrino-pair exchange potential

	7 Conclusions
	8 Prospects
	Appendices
	A Notations and Conventions
	A.1 Units
	A.2 Relativity end Tensors
	A.3 Fourier Transforms
	A.4 Diracology

	B Useful Relations
	B.1 Fierz Identity
	B.2 Fourier Transforms
	B.2.1 Yukawa/Coulomb propagator
	B.2.2 A spherical wave

	B.3 Integrals for the absorptive part
	B.4 Integral for the interaction potential

	References



