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The independent participant model is generalized for skewness and kurtosis. The obtained rela-
tions allow to calculate the fluctuations of an arbitrarily high order. From the comparison with the
SPS and the LHC data it is found that the participants are not nucleons. The contribution of the
participant fluctuations increases with the order of fluctuations. The 5% centrality bins selected for
the analysis at the LHC by ALICE seems to be too large. The fluctuations measures are dominated
by the fluctuations of participants there. The method to quantify the value of participant number
fluctuations experimentally is proposed.
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Many observables in high energy collisions scale with the number of participants - NP - the nucleons that
interacted inelastically during a collision. The total number of charged particles is proportional to NP in the
measured energy range [1–3]. This effect was addressed first in Ref. [4] within the wounded nucleon model.
It is based on the optical limit of the famous Glauber model [5, 6], which physically means that the wounded
nucleons emit particles independently from each other. The latter is more general requirement the same as in
the independent source model or independent participant model. The term participants is the most commonly
used now, therefore it is used later on in this paper.

It was found that the behavior of the scaled variance of a multiplicity distribution as the function of NP can
be also qualitatively explained by the fluctuations of participants [7, 8]. The scaled variance is proportional to
the second moment of a multiplicity distribution. The ratio of the fourth to the square of the second moment
is called kurtosis. The STAR collaboration observes the non-monotonous behavior of the normalized kurtosis
for the net-proton distribution [9, 10]. This might be an indication of the critical point of strongly interacting
matter, as higher moments of fluctuations are more sensitive to the proximity of the QCD critical point [11].
It is quite intriguing that the kurtosis has a minimum in the vicinity of the collision energy where the NA49
and the STAR collaborations see the famous K+/π+ horn [12–15]. A significant effort of the NA61/SHINE
collaboration, the successor of the NA49, is going to be devoted to the study of high order fluctuations. A
most challenging background for these studies seems to be the fluctuations of nucleon participants, similar to
the case with the scaled variance. These fluctuations are experimentally unavoidable and, therefore, should
be reliably estimated. One can derive the necessary formulas for the third moment from the Ref. [16], see
also [17]. However, it seems that, in spite of the practical importance, the influence of the fluctuations of
nucleon participants for higher moments was not considered yet.

In the present paper the expressions for the third and the fourth moments are written explicitly for arbitrary
distributions of both measured particles and the participants. The only assumptions are that the participants
are identical and independent. The proposed method of calculation allows to derive straightforwardly the
influence of the participant fluctuations for arbitrarily high moments.

The multiplicity of some particles N created in a collision is the sum of the contributions from NP participants

N = n1 + n2 + . . . + n
NP
. (1)

The number of particles ni from a participant i fluctuates. If the participants are identical, then the average
〈ni〉 = 〈nj〉 = 〈n1〉 and

〈N〉 =
∑
NP

P (NP) 〈
NP∑
i=1

ni 〉 =
∑
NP

P (NP) NP 〈n1〉 = 〈NP〉 〈n1〉 , (2)
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where P (NP) is the probability distribution of the participants number. Similarly

〈N2〉 =
∑
NP

P (NP) 〈

(
NP∑
i=1

ni

)2

〉

=
∑
NP

P (NP)

NP∑
i=1

〈n2
i 〉 +

NP∑
i 6=j=1

〈ninj〉


= 〈NP〉 〈n2

1〉 + 〈NP(NP − 1)〉 〈n1〉2 , (3)

where the assumption that the participants are independent 〈ninj〉 = 〈ni〉〈nj〉 = 〈n1〉2 is used. Equations (2)
and (3) give the famous formula for the scaled variance,

ω =
〈N2〉 − 〈N〉2

〈N〉
= ω1 + 〈n1〉 ωP , (4)

which is present already in [4]. It is the sum of the fluctuations from one participant ω1 and the fluctuations of
participant number ωP times the mean multiplicity of particles of interest from one participant 〈n1〉. Using the
multinomial theorem,

(
n1 + n2 + . . .+ n

NP

)k
=

∑
k1,k2,...kNP

k!

k1!k2! . . . k
NP

!
nk11 n

k2
2 . . . n

k
NP

NP
δ

(
k −

NP∑
i=1

ki

)
, (5)

where δ is the Kronecker delta function, one can obtain arbitrarily high moment in the model of independent
participants. For the third and the fourth moments one has:

〈N3〉 = 〈NP〉 〈n3
1〉

+ 3 〈NP(NP − 1)〉 〈n2
1〉〈n1〉

+ 〈NP(NP − 1)(NP − 2)〉 〈n1〉3 , (6)

〈N4〉 = 〈NP〉 〈n4
1〉

+ 4 〈NP(NP − 1)〉 〈n3
1〉〈n1〉

+ 3 〈NP(NP − 1)〉 〈n2
1〉2

+ 6 〈NP(NP − 1)(NP − 2)〉 〈n2
1〉 〈n1〉2

+ 〈NP(NP − 1)(NP − 2)(NP − 3)〉 〈n1〉4 . (7)

The coefficients in front of the 〈nki1 〉kj terms are given by the product of the multinomial coefficient, the number

of permutations NP!
(NP−ki)! , and the additional degeneracy factor that appears due to the fact that the emitted

particles are indistinguishable. For example, the factor before 〈n1〉4 in (7) is equal to the multinomial coefficient
4!

1!1!1!1! = 4! times the number of ways to pick up four different participants NP!
(NP−4)! , divided by the degeneracy

factor 4! due to the replacement 〈ni〉〈nj〉〈nk〉〈nl〉 = 〈n1〉4. The coefficient in front of 〈n2
1〉〈n1〉2 in (7) is equal

to 4!
2!1!1!0! = 12 times NP!

(NP−3)! , divided by 2! due to 〈ni〉〈nj〉 = 〈n1〉2, etc.. The sum of all the coefficients for

〈nki1 〉kj = 1 before the averaging over participants gives Nk
P, which can be used for a quick check. The formulas

for higher moments can be derived in the similar way. The raw moments 〈Nk〉 are directly related to central
moments of a distribution P (N)

mk =
∑

(N − 〈N〉)kP (N) . (8)

The second, the third, and the fourth moments in the model of independent participants equal to:

m2 = 〈NP〉m1
2 + 〈n1〉2mP

2 , (9)

m3 = 〈NP〉m1
3 + 〈n1〉3mP

3 + 3 〈n1〉mP
2 m

1
2 , (10)

m4 = 〈NP〉 (m1
4 − 3(m1

2)2) + 3mP
2 (m1

2)2 + 4 〈n1〉mP
2 m

1
3 + 6 〈n1〉2mP

3 m
1
2

+ 〈n1〉4
[
mP

4 − 3(mP
2 )2

]
+ 3 (m2)2 , (11)
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where m1
k and mP

k are defined the same as mk (8) for the distribution of particles produced by one source P (n1)
and for the distribution of participants P (NP).

The combination of central moments gives the scaled variance, the normalized skewness, and the normalized
kurtosis:

ω =
m2

〈N〉
, S σ =

m3

m2
, κ σ2 =

m4

m2
− 3m2 , where σ2 = m2 . (12)

They describe the width, the asymmetry, and the sharpness of a distribution with a single maximum, corre-
spondingly. Skewness and kurtosis are much more sensitive to the properties of a multiplicity distribution. A
Poisson distribution has ω = Sσ = κσ2 = 1 for the same mean multiplicity, while ω is a free parameter and
Sσ = κσ2 = 0 for Normal (Gauss) distribution. In the independent participant model the normalized skewness
equals

S σ =
ω1 S1σ1 + 〈n1〉 ωP [ 3ω1 + 〈n1〉SP σP ]

ω1 + 〈n1〉 ωP
, (13)

and normalized kurtosis:

κσ2 =
ω1 κ1σ

2
1 + ωP

[
〈n1〉3 κP σ

2
P + 〈n1〉 ω1 ( 3ω1 + 4S1σ1 + 6 〈n1〉SP σP )

]
ω1 + 〈n1〉 ωP

. (14)

Scaled variance, skewness and kurtosis depend crucially on the strength of participant fluctuation ωP. If it is
zero, then the information about participants is left in the mean multiplicity, but is cancelled in fluctuations:

〈N〉 = 〈NP〉 〈n1〉 , ω = ω1 , S σ = S1 σ1 , κ σ2 = κ1 σ
2
1 , for ωP = 0 , (15)

so that one observes the fluctuations from one source. It is a desired situation, because participant fluctuations
are mainly driven by the uncertainty of the centrality determination. They may mimic or hide the QCD critical
point and any other signal. The fluctuations of participants seem to be unavoidable, because one always has
a finite centrality window in experiment. If this window is too narrow, then one may cut also the fluctuations
from one source. Therefore, one should find the balance between fluctuations of participants ωP, the number
and fluctuations of particles from one participant ω1/〈n1〉.

For small fluctuations of the participants, ωP, SPσP � ω1/〈n1〉 and κPσ
2
P � ω2

1/〈n1〉2, one obtains:

ω ' ω1 , S σ ' S1 σ1 + 3 〈n1〉 ωP , κ σ2 ' κ1 σ
2
1 + 〈n1〉 ωP (3ω1 + 4S1 σ1) , (16)

i.e., the scaled variance is determined by the fluctuations from one participant, however skewness and kurtosis
further depend on how large is the product 〈n1〉 ωP compared to the skewness and kurtosis for one source. The
fluctuations from one source should be large close to critical point or phase transition. For example, all moments
higher than k > 2 diverge at Bose-Einstein condensation [18], which is the third order phase transition.

For large enough fluctuations of the participants, ωP � ω1/〈n1〉, ωP � κ1σ
2
1/(〈n1〉ω1), and SPσP � ω1/〈n1〉,

SPσP � S1σ1/〈n1〉 one finds:

ω ' 〈n1〉ωP , S σ ' 〈n1〉 SP σP + 3ω1 , κ σ2 ' 〈n1〉2 κP σ
2
P + 6 〈n1〉ω1 SP σP , (17)

i.e., the observed fluctuations are determined mainly by the fluctuations of the participants. Note the 〈n1〉
and 〈n1〉2 multipliers in front of scaled variance, skewness and kurtosis from participants in (17). For large
energies 〈n1〉 grows fast and leads to the domination of participant fluctuations for high moments even for
relatively small ωP, SP σP and κP σ

2
P. The participant fluctuations are rather large in a standard centrality

interval. A finer centrality selection [19] or(and) special variables should be used to cancel the fluctuations of
participants [20–22].

The experimental information on participant fluctuations is quite ambiguous. The behavior of the scaled
variance of a multiplicity distribution in nucleus-nucleus (A+A) collisions as the function of NP was qualitatively
explained by the fluctuations of participants both at SPS and at RHIC [7, 8]. However, more recent data of
NA49 and NA61/SHINE [23–25] show that

ωch
Pb+Pb < ωch

p+Pb < ωch
p+p at SPS , (18)

while one would expect the opposite dependence from the participant model. Using Eq. (4) one obtains

ωch
Pb+Pb = ω1 + 〈nch

Pb+Pb〉 ωP , where 〈nch
Pb+Pb〉 =

〈N ch
Pb+Pb〉
〈NP〉

, (19)
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and 〈nch
Pb+Pb〉 is the number of charged particles per participant. One can see from Eqs. (18) and (19) that the

fluctuations in Pb+Pb and p+Pb can not be constructed from fluctuations of p+p. Both 〈nch
Pb+Pb〉 and ωP are

positive, therefore, if ω1 = ωch
p+p in (19), then fluctuations of participants, ωP, must be negative in this case. It

is impossible, since ω is positive by definition. However, the fluctuations in p+p and in Pb+Pb are similar at
SPS, therefore the relation (18) may be attributed to a combination of some other effects.

The situation should be clear at the LHC, because p+p roughly follow the KNO scaling, which leads to
ωch

p+p ∼ 〈N ch
p+p〉 and a fast rise of fluctuations with increasing the energy of the collision,

√
sNN , while for A+A

a weaker dependence of fluctuations with energy is expected [26]. The ALICE collaboration has published the
results for fluctuations of charged particles ωch in Pb+Pb collisions within the |η| < 0.8 rapidity range. Their
comparison with the AMPT and HIJING string transport models shows different fluctuations and the different
dependence on 〈NP〉 than in the experiment [27].

Instead of running a transport code one may solve the inverse task. Namely, determine how large should
be the fluctuations of the participants in order to describe the data, assuming different fluctuations of the
participants. The CMS and the ALICE collaborations have published the data for fluctuations in p+p [28, 29],
as well as the rapidity distributions of charged particles, and the number of participants at different centralities
in Pb+Pb at

√
sNN = 2.76 TeV [3, 30]. Therefore, one can check whether the fluctuations in Pb+Pb is the

sum of the fluctuations in p+p and the fluctuations of participants. One should take the measured fluctuations
in Pb+Pb, ωch Acc

Pb+Pb, from ALICE [27]. Calculate the rate of how many charged particles are accepted within
their rapidity window, |η| < 0.8, with respect to the number of charged particles in the full rapidity q =
〈N ch

Pb+Pb〉
∣∣
|η|<0.8

/〈N ch
Pb+Pb〉. Then one should use the well known acceptance formula for scaled variance, see

e.g. Ref. [31],

ωAcc = 1 − q + q ω , (20)

to reconstruct the fluctuations in the full rapidity range, ω = ωch
Pb+Pb, then use Eq. (19), and find

ωch Acc
Pb+Pb = 1 − q + q ωch

Pb+Pb = ωAcc
1 + 〈nch Acc

Pb+Pb〉 ωP, (21)

where ωAcc
1 = 1 − q + q ω1 and 〈nch Acc

Pb+Pb〉 = q 〈nch
Pb+Pb〉. The fluctuations in p+p equal to ωAcc

p+p '
4.6, 8.46, 11.36, 13.74 in the rapidity intervals |∆η| = 0.5, 1., 1.5, 2.4, correspondingly, therefore,

ωAcc
1 = ωAcc

p+p

∣∣
|∆η|<0.8

' 7. > ωch Acc
Pb+Pb ' 3. , (22)

and the fluctuations of the participants are negative in (21), similar to that at the SPS (18). The acceptance
q ' 15% in Pb+Pb at ALICE. It gives ωp+p = (ωAcc

p+p

∣∣
|∆η|<0.8

− 1 + q)/q ' 41 for the whole acceptance. One

may argue that some processes may damp the fluctuations from one participant in Pb+Pb compared to p+p.
Let us pick up some numbers in order to quantify a possible outcome and consider three cases.

First, the fluctuations from one source equal to the maximal measured fluctuations in p+p, ω1 =
ωch

p+p

∣∣
|η|<2.4

= 13.74. Let’s call this case ’Maximal’.

Second, the fluctuations from one source are Poisson-like, ω1 = ωPoisson = 1, called ’Poisson’. For these two
cases we know all the terms in Eq. (21), except for ωP, which is calculated from (21).

Third case – we do not know the fluctuations from one source, but we know that the fluctuations of participants
are of the order of unity, ωP = 1, as in HIJING and AMPT in Ref. [27], and then calculate ω1 from (21). This
case is called ’Transport’.

The results are shown in Figs. 1 and 2. The continuous lines in Fig. 1 and in Fig. 2 left are the fit of the
ALICE data for ωch Acc

Pb+Pb. They go through the data points by definition. The dashed and dash-dotted lines is

the decomposition of ωch Acc
Pb+Pb into two parts according to Eq. (21), right. The corresponding fluctuations of the

participants are shown in Fig. 2 right.
The acceptance slowly grows with centrality in the 2.76 TeV Pb+Pb collisions at the LHC. Therefore, the

’Maximal’ fluctuations from one source, ωAcc
1 , also grow, while the fluctuations of participants must decrease

fast, because the total fluctuations decrease, see Eq. (21). The ’Maximal’ fluctuations from one source are above
the experimental measurements for large 〈NP〉, therefore, the fluctuations of participants, ωP, become negative,
which is forbidden by the definition of ω. The absolute value of participant fluctuations is small, so that the
measures are done in the ’good’ limit (16). However, ωP is too small for the LHC, and even smaller than at
RHIC, compare the dash-dotted line in Fig. 2 with Fig. 1 from [8].

For ’Poisson’ fluctuations from one source the acceptance dependence is cancelled, ωAcc
1 = ω1 = 1 according

to Eq. (20), and the fluctuations of participants are similar to that at RHIC. However, one expects a strong
growth of the participant fluctuations with energy from transport models [21]. Moreover, the measurements at
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FIG. 1: The decomposition of experimentally measured fluctuations of charged particles ωch Acc
Pb+Pb as the function of the

number of participants 〈NP〉 [27] on the fluctuations due to the fluctuations of participants 〈nch Acc
Pb+Pb〉 ωP and due to the

fluctuations from one participant ωAcc
1 in the measured acceptance, assuming some value of the fluctuations from one

participant ω1 in the full acceptance.

FIG. 2: Left: The same as Fig. 1 for the fluctuations of participants ωP = 1. Right: The extracted fluctuations of
participants, assuming some value of the fluctuations from one source ω1 in the full acceptance.

ALICE are done in the ’bad’ limit, when all the measures are determined by the fluctuations of the participants,
see Eq. (17).

The ’Transport’ case is in between the ’Maximal’ and the ’Poisson’, closer to the ’Poisson’. The measurement
are done in the ’bad’ limit (17), when the fluctuations of participants determine the results.

One may conclude that the independent participant model can describe fluctuations of charged particles in
Pb+Pb at the LHC only if the fluctuations from one participant, ω1, are much smaller than the fluctuations of
charged particles in p+p reactions. Therefore, the participants are not nucleons.

If the fluctuations of participants are larger then Poisson, ωP ≥ 1, moreover, if they are as large as predicted
by transport models, then the 5% centrality bins selected for the analysis at the LHC by ALICE are too large. In
this case the fluctuations measures are dominated by the fluctuations of participants and by the corresponding
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experimental limitations, like the uncertainty in the centrality determination.
There are many ways to look for a possible solution. The participants can be quarks, then the number of

particles from one source, 〈nch Acc
Pb+Pb〉, reduces three times, since there are three quarks in each nucleon. It leads

to the increase of the ωP three times, in order to keep the same value of the product 〈nch Acc
Pb+Pb〉ωP in (21).

Another possibility is that the sources are not identical and/or strongly correlated. The examination of these
possibilities requires further theoretical studies and more data.

One should check experimentally whether participant model works for fluctuation, eliminate the fluctuations
of participants, and obtain the fluctuations from one source. In order to do that, one should consider the
most central collisions, reduce the centrality window, and check how the fluctuations change, taking, let say,
c = 0−20%, c = 0−15%, c = 0−10%, c = 0−5%, c = 0−2.5%, c = 0−1%, etc.. If the participant model works,
then one would expect a fast decrease of the fluctuations due to the decrease of the participant fluctuations.
The decrease should slow down at some centrality, which is narrow enough, so that the participant fluctuations
do not contribute. If the remaining fluctuations are not already Poisson-like due to very small acceptance, then
these are the fluctuations from one source.

It seems that the amount of participant fluctuations should be determined before measurements of the higher
moments, because participants fluctuations may be strong enough to mimic or hide any other effect.
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