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Abstract

By investigating the SU(2) Yang-Mills matrix model coupled to fundamental fermions in the adia-

batic limit, we demonstrate quantum critical behaviour at special corners of the gauge field configuration

space. The quantum scalar potential for the gauge field induced by the fermions diverges at the corners,

and is intimately related to points of enhanced degeneracy of the fermionic Hamiltonian. This in turn

leads to superselection sectors in the Hilbert space of the gauge field, the ground states in different

sectors being orthogonal to each other. As a consequence of our analysis, we show that 2-color QCD

coupled to two Weyl fermions has three quantum phases. When coupled to a massless Dirac fermion,

the number of quantum phases is four. One of these phases is the color-spin locked phase.

1 Introduction

The nature of the ground state of quantum chromodynamics (QCD) is still in the process of being under-

stood, and is a subject of intense theoretical and numerical activity. QCD, or more generally, non-Abelian

Yang-Mills theory coupled to fundamental fermions (or quarks) displays a diverse variety of phases, even at

zero temperature. That many of these phases occur at zero temperature strongly suggests that transitions

between these phases are driven by quantum rather than statistical fluctuations. Many of these phases

are spatially homogeneous, characterised by fermion condensates of uniform density, as well as uniform

chromo-electric and/or chromo-magnetic fields (see for instance [1]).

This suggests that approximating the full theory by degrees of freedom that are spatially homogeneous

can provide better insight into this phase structure. A more precise formulation of such an approximation

is in terms of a gauge matrix model, that say, corresponds to reducing the full Yang-Mills theory on S3×R.

Such matrix models are also interesting approximations of the full quantum field theory in their own right,

capable of capturing many topological features and low-energy dynamics of the gauge fields. One such

matrix model for SU(N) Yang-Mills theory has been developed in [2,3], where the focus of investigation has

been to study the nature of impure states in Yang-Mills theories. The gauge field is a rectangular matrix

Mia with i = 1, 2, 3 and a = 1, · · ·N2 − 1. In particular, the authors explicitly demonstrate the mixed

nature of coloured QCD states as a consequence of the twisted nature of the QCD gauge bundle [4, 5].

In this paper, we couple the SU(2) matrix model of [2,3] to fermions in the fundamental representation,

and after a suitable rescaling of the gauge and fermionic variables, quantize the theory in the background-
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field approximation. As we shall see, such an approximation is appropriate for small values of Yang-

Mills coupling g, which makes the contribution of the kinetic term of the Yang-Mills Hamiltonian much

smaller than the potential as well as the fermionic terms. This situation is reminiscent of the Born-

Oppenheimer (B-O) approximation in quantum molecular dynamics, where the atomic nuclei are slow

degrees of freedom (precisely because the contribution of their kinetic energy to the total Hamiltonian is

small), and the surrounding cloud of electrons the fast degrees of freedom. The dynamics of the nuclei

is treated adiabatically, and a careful treatment of the B-O approximation leads to an adiabatic scalar

potential induced in the space of slow variables [6, 7], in addition to the well-known adiabatic Berry

connection.

Our strategy is to quantize the fermions in the background of the gauge fields in the adiabatic approxi-

mation, and solve for the exact fermionic spectrum in terms of invariants of the matrix Mia. The fermions

in turn induce an effective scalar potential for the gauge fields, whose singularities we examine in some

detail. We show that the scalar potential diverges at certain edges and corners of the gauge field configu-

ration space. This divergence is rather easy to understand: it corresponds to places where the degeneracy

of the fermion spectrum changes, or loosely speaking, at points of fermionic level crossing. The induced

scalar potential can also be computed directly at the degenerate point(s) of the fermionic spectrum, and

is perfectly well-defined. This leads to a remarkable situation for the Hilbert space of the gauge variables:

it gets divided into different superselection sectors, which may be interpreted as different quantum phases.

The singularity structure of the effective potential allows us to identify several quantum phases in

SU(2) Yang-Mills theory coupled to fermions with one flavor. An immediate corollary of our work is our

identification of a color-spin locked phase analogous to the one predicted in 3-color QCD [8].

The article is organized as follows. In Section 2, we introduce our model, describe the Hamiltonian and

its physical and gauge symmetries. In Section 3 we quantize the model in the B-O approximation, and

show how the effective scalar potential emerges naturally as a consequence of the adiabatic approximation.

We also discuss the issue of implementing Gauss’ law in the B-O scheme, and its implications for possible

breaking of gauge invariance. In Section 4, we compute the fermion spectrum and study its degeneracy

structure. The fermion spectrum, through its dependence of the gauge field, allows us to identify certain

classical gauge configurations as edges and corners of the gauge configuration space. For the case of SU(2),

we discover, in passing, some unexpected inequalities obeyed by all 3× 3 real matrices. We also show that

at these edges/corners, there is an enhancement of symmetry of the fermion Hamiltonian. In Section 5

we discuss the properties of the adiabatic connection at the edges and corners of the gauge configuration

space. In Section 6, we investigate the scalar potential induced by the two-fermion state, and show that it

diverges as one approaches points of enhanced fermion degeneracy. We also compute the scalar potential

directly at the edges and corners, and see that it is perfectly well-behaved. The emergence of superselection

sectors for gauge field dynamics is discussed in Section 7. Section 8 presents an analogous discussion for

massless Dirac fermions, with similar conclusions. Our conclusions are presented in Section 9.

Finally, a word about the use of the phrase “quantum phases”. Many of the models studied to date

that display quantum phase transitions have tunable couplings in the Hamiltonian. The adiabatic scalar

potential has singularities which carry information about putative locations of quantum phase transitions

[9–11] in the space of couplings. These are also characterized by a non-analytic behaviour of the spectrum

as one approaches the critical point(s) (or critical regions) in the coupling constant space, and the ground

states on either sides of the critical point are orthogonal to each other. All these features, namely, divergence

of the scalar potential, non-analyticity of the spectrum, and orthogonality of the ground state across critical
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points (or regions) are present in our situation. The main difference, as we see it, is the absence of tunable

couplings in our model: more precisely, the couplings, rather than being externally tunable, have their own

quantum dynamics. This leads to the emergence of superselection sectors in the Hilbert space for gauge

variables. We interpret these superselection sectors as different quantum phases of the theory.

2 The Matrix Model for Weyl Fermions

The SU(2) matrix model of [2, 3] is obtained by starting with the Yang-Mills theory on S3 × R and

isomorphically mapping the spatial S3 to SU(2), with the three left-invariant vector fields Xi on S3

identified with τa
2 of SU(2). Consider an arbitrary left invariant form Ω on SU(2):

Ω = Tr
(τa

2
u−1du

)
Mab

τb
2
, u ∈ SU(2). (2.1)

The Hermitian gauge field is simply the pullback of Ω under the isomorphic mapping of the spatial S3

to SU(2):

Ai = iΩ(Xi) = Mia
τa
2
, (2.2)

and

A0 = M0a
τa
2
. (2.3)

The curvature Fij corresponding to this Ai is obtained by the pull-back of the Maurer-Cartan form dΩ +

Ω ∧ Ω to the spatial S3:

Fij = (dΩ + Ω ∧ Ω)(Xi, Xj), (2.4)

F aij = −εijkMka + fabcMibMjc. (2.5)

The chromoelectric field Eai = F a0i = Ṁia + fabcM0bMic and the chromomagnetic field Ba
i = 1

2εijkF
a
jk

give us the Lagrangian for the matrix model

LYM = − 1

4g2
F aµνF

aµν =
1

2g2
(Eai E

a
i −Ba

i B
a
i ) (2.6)

Fermions can be introduced by minimal coupling [12]:

L = − 1

4g2
F aµνF

aµν +
(
iλ†Aσ̄

µ(Dµλ)A + λ†αAλαA

)
, where σµ = (1, σi), σ̄µ = (1,−σi) (2.7)

and

(D0λ)A = ∂0λA +
i

2
M0c(τc)ABλB, (Diλ)a =

i

2
Mic(τc)ABλB. (2.8)

The term λ†λ in (2.7) comes from the curvature of S3.

For our discussion, it is useful to rescale the fermionic variables as λ → gλ. The Lagrangian then

becomes

L = − 1

4g2
F aµνF

aµν +
1

g2

(
iλ†Aσ̄

µ(Dµλ)A + λ†αAλαA

)
, (2.9)

For the SU(2) model, the gauge variables are 3× 3 real matrices depending only on time:

Mi(t) = Mia(t)
τa

2
a = 1, 2, 3, (2.10)
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and τa are the usual Pauli matrices. The fermion field λ ≡ λαA also depend only on time.

Under gauge transformations, the gauge variables transform in the adjoint, and the fermions in the

fundamental representation of the gauge group:

Mia → S(g)abMib, λαA → sAB(g)λαB; A,B = 1, 2 and g ∈ SU(2). (2.11)

Under rotations,

Mia → RijMjb, λαA → rαβ(R)λαB; α, β = 1, 2 and R ∈ SO(3). (2.12)

The conjugate momenta are

Πia =
∂L

∂Ṁia

=
1

g2
F a0i, ΠαA =

∂L

∂λ̇αA
=

i

g2
λ†αA. (2.13)

Then, the Hamiltonian works out to be

H ′ = ΠiaṀia + ΠαAλ̇αA − L, (2.14)

= H +M0aG
a, where (2.15)

H =
g2

2
ΠiaΠia +

1

4g2
F aijF

a
ij −

1

g2
λ†AλA −

1

2g2
(τb)AC λ̄

Aσ̄iλCMib, and (2.16)

Ga = εabcΠibMic −
1

2g2
(τa)ABλ

†
BλC . (2.17)

This is a constrained system since the momentum conjugate to M0a is zero. M0a acts as a Lagrange

multiplier in H ′, with its coefficient being the Gauss’ law constraint.

To quantize the system, we impose the canonical commutation (and anti-commutation) relations

[Mia,Πjb] = iδijδab, {λαA, λ†βB} = g2δαβδAB (2.18)

and demand that all physical states |Ψ〉phys be annihilated by the Gauss law:

Ga|Ψ〉phys = 0. (2.19)

Wavefunctions are sections of appropriate vector bundles built on the gauge configuration space C =

M/SO(3), where M is the space of all 3× 3 real matrices. C is generically a 6-dimensional manifold, 3 of

which correspond to physical rotations.

Quantization of this space is subtle, because the action of SO(3) on M is not free: C is a stratified

space. As we shall see, coupling fermions to the gauge field provides us with a refined tool to deal with the

strata. In particular we shall see that a change in the fermion degeneracy is accompanied by a change in

the stratum.

We end this section by making a brief comparison to the usual perturbative description of Yang-Mills

coupled to fermions. It suffices to make this argument in flat space R3×R, it carries over easily to S3×R.

The Lagrangian has the familiar form

L = −1

4
TrFµνF

µν + Tr ψ̄γµ(∂µ − igAµ)ψ, F aµν = ∂µA
a
µ − ∂νAaµ − ig[Aµ, Aν ]a. (2.20)

Perturbation theory in the coupling constant g is then performed, the dynamical variables being Aµ and

ψ. To obtain our Lagrangian (2.9), we rescale the dynamical variables as Mia = gAai and λ = gψ. This
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also explains intuitively why the Born-Oppenheimer quantization of the next section, although performed

at small g, is different from the usual perturbative quantization. For small g, when Mia and λ are O(1),

the corresponding perturbative variables take large values of O(1/g). Thus the B-O treatment focusses on

that sector of the theory which has large values for the chromo-electric and chromo-magnetic fields. This

sector is usually difficult to access in standard perturbation theory.

3 Quantization in the Born-Oppenheimer approximation

The Hamiltonian (2.16) can be written as

H = HYM +Hf (3.1)

where

HYM =
g2

2
ΠiaΠia +

1

4g2
F aijF

a
ij , (3.2)

Hf ≡ 1

g2

(
−λ†αAλαA −

1

2
(τb)ACλ

†
αA(σ̄i)αγλγCMib

)
(3.3)

For small g, the gauge kinetic term g2

2 ΠiaΠia is small compared to the other terms on H. In this regime of

g, it is appropriate to quantize the theory in the B-O approximation: we first solve for the spectrum of the

fermionic Hamiltonian, treating the Yang-Mills field as a background field, and then quantize the gauge

field dynamics. A modern treatment of the B-O scheme has been discussed in [7], and we will adapt it to

our matrix model below.

The space of physical states is the direct product of the Hilbert spaces for the fast and the slow motion:

H = Hslow ⊗Hfast.

The Hamiltonian is

H =
g2

2
ΠiaΠia +

1

g2
(V (M)) + h(M), (3.4)

h(M) = −λ†αA(Hf (M))αA,βBλβB (3.5)

where

V (M) =
1

4
(F aijF

a
ij) (3.6)

and

(Hf (M))αA,βB =
1

g2

(
−1− 1

2
σi ⊗ τaMia

)
αA,βB

. (3.7)

The eigenvalue problem

H|ψE〉 = E|ψE〉, |ψE〉 ∈ Hslow ⊗Hfast (3.8)

is solved in the B-O approximation, by first solving for the spectrum of h(M).

To proceed, one needs to define a complete set of basis vectors in the full Hilbert space. One choice is

the standard ”position” eigenvectors, which is a direct product of the Yang-Mills configuration space and

the Fock space of the fermions.

|M ;λα1A1 , ..., λαrAr〉 = |M〉 ⊗ |λα1A1 , ..., λαrAr〉, (3.9)

|λα1A1 , ..., λαrAr〉 = λ†α1A1
...λ†αrAr

|0〉. (3.10)
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Here, r denotes the fermion number. Since there is no observable that can change the fermion number,

the complete basis (3.9) can be further decomposed into sets of states corresponding to one fermion

(|M ;λαA〉), two fermions (|M ;λαAλβB〉) and so on.

However, the basis vectors better suited for the B-O treatment are the generalized eigenvectors |M ;n〉
of M and h(M):

h(M)|M ;n〉 = εn(M)|M ;n〉, n = 1, . . . , N. (3.11)

This new basis allows us to represent the basis (3.9) as a ”twisted” direct product

|M ;n〉 = |M〉⊗̃|n(M)〉, where (3.12)

h(M)|n(M)〉 = εn(M)|n(M)〉 n = 1, . . . , N. (3.13)

This is not an ordinary tensor product, since |n(M)〉 depends on M .

If we now expand the energy eigenfunctions in this basis, we obtain

|ψE〉 =
∑
n

∫
dM ′|M ′;n〉ψEn (M ′), ψEn (M ′) ≡ 〈M ′;n|ψE〉. (3.14)

The full wave-function is

|ψE〉 =
∑
r

∫
dM |M ;λα1A1 ...λαrAr〉ψEα1A1,...αrAr

, ψEα1A1,...αrAr
(M) = 〈M ;λα1A1...αrAr |ψE〉. (3.15)

Then it is easy to see that

ψEα1A1...αrAr
(M) =

∑
n

Cnα1A1...αrAr
(M)ψEn (M), Cnα1A1,...,αrAr

≡ 〈λα1A1 ...λαrAr |n(M)〉 (3.16)

Eq. (3.16) suggests that Cn are the energy eigenfunctions expressed in the ”position” basis. As it turns

out, they are the eigenvectors of the fermion Hamiltonian Hf with eigenvalue εn. We will make this more

precise in the next section where we compute the fermion spectrum.

Once the spectrum εn has been determined, we find that the Schrödinger’s equation for the ”slow”

motion takes the form∑
m

[
g2

2

∑
l

(−iδnl∂ia −Anlia)(−iδlm∂ia −Almia ) + δnm
(

1

g2
V (M) + εn(M)

)]
ψEm(M) = EψEn (M), (3.17)

where

Amnia ≡ i〈n(M)|∂ia|m(M)〉. (3.18)

This is in general a set of N equations and is exactly equivalent to the original N -body problem. We are

however, interested in the effect of the fermion(s) occupying only their ground state; i.e. n restricted to

the ground state of h(M), labelled as n = 0. The sum over m is also restricted to m = 0. Labelling the

degeneracy of the ground state by α, β, . . ., we get the effective Hamiltonian governing gauge dynamics:

Hαβ
eff = −g

2

2
Dαγia D

γβ
ia + δαβ

(
1

g2
V (M) + ε0(M) +

g2

2
Φ(M)

)
(3.19)

where D is the covariant derivative

Dαβia = δαβ∂ia − iAαβia (3.20)
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and

Aαβia ≡ i〈0(M), α|∂ia|0(M), β〉 (3.21)

is the well-known Berry (or adiabatic) connection for the degenerate ground states |0(M), α〉. The corre-

sponding curvature is

Fαβia,jb ≡ ∂iaA
αβ
jb − ∂jbA

αβ
ia − i[Aia,Ajb]

αβ. (3.22)

Thus with the fermion in the ground state, gauge variables Mia feel an induced adiabatic connection.

When the ground state is degenerate, this potential is non-Abelian.

The Hamiltonian (3.19) has an additional effective scalar potential

Φ =
∑
l 6=0

A0l
iaA

l0
ia. (3.23)

Note that the scalar potential has appeared simply because we have restricted to the ground state; if

instead we had taken into account all the states in the spectrum of Hf (equivalently, filled all available

Fermi states), then we would have to work with the set of equations (3.16), and no scalar potential would

arise.

The scalar potential (3.23) can be can be written in terms of the projector P0 to the ground state [10,13]:

Φ =
1

g0
Tr

(
P0∂iaHf

Q0

(H − ε0)2
∂iaHfP0

)
(3.24)

where g0 is the degeneracy and Q0 = 1− P0.

Berry, in his article [6] on quantum adiabatic transport, relates the scalar potential to the quantum

geometric tensor GIJ . Given a quantum state |n(xI)〉, where xI are the parameters (analogous to our

gauge variables Mia), one can define a gauge-invariant Hermitian tensor

GIJ = 〈∂In|Qn|∂Jn〉, Qn = 1− |n(xI)〉〈n(xI)|. (3.25)

Separating it into its real and imaginary parts

GIJ = gIJ + i
FIJ
2

(3.26)

gives us gIJ , the quantum metric tensor, which is positive-definite and symmetric. It provides a measure

of distance between two quantum states separated in the parameter space. The imaginary part FIJ is

just the adiabatic curvature corresponding to the parallel transport of state |n(xI)〉. The scalar potential

corresponding to |n〉 is the trace of the metric gIJ .

The quantum geometric tensor has also been discussed in [10] in relation to quantum fidelity.

It is useful to write the expression for Φ in terms of the eigenstates explicitly:

Φ =
1

g0

∑
n 6=0

∑
α,β

∑
i,a

|〈0, α|∂iaHf |n, β〉|2

(εn − ε0)2
(3.27)

7



3.1 Effective Gauss’ law

What happens to the Gauss’ law in the effective theory? After all, if the state |ψE〉 is physical, then it

must be annihilated by the Gauss’ law generators:

Ga|ψE〉 = 0.

Following a procedure analogous to the one described in section 3, we obtain the effective Gauss’ law

action on ψmE
Gnma ψmE = 0 (3.28)

where

Gnma = iεabcMibDnmic −
1

2g2
〈n(M)|λ†(1⊗ τa)λ|m(M)〉 (3.29)

The first term in the RHS of (3.29) is the ”covariantized” generator of gauge rotations in the gauge

configuration space, while the second term is the generator of gauge rotations for the fermions.

Restricting to the fermion ground state and taking into account degeneracies, we have the effective

Gauss’ law generators

Gαβa = iεabcMibDαβic −
1

2g2
〈0(M), α|λ†(1⊗ τa)λ|0(M), β〉. (3.30)

The two terms of (3.30) can be combined to give

Gαβa = iδαβεabcMib∂ic + iεabcMib〈0(M), α|∂ic|0(M), β〉 − 1

2g2
〈0(M), α|λ†αA(τa)ABλαB|0(M), β〉

= iδαβεabcMib∂ic + 〈0(M), α|Ga|0(M), β〉

Since h(M) is gauge-invariant, we can arrange for its eigenvectors to be annihilated by Gauss’ law

generators: Ga|n(M)〉 = 0 for any eigenstate |n(M)〉. Then the effective Gauss’ law generator Gαβa is

simply

Gαβa = iδαβεabcMib∂ic. (3.31)

A straightforward computation yields

[Ga,Gb]αβ = −iεabcGαβ. (3.32)

4 Fermionic Spectrum

Since h(M) commutes with
∑

α,A λ
†
αAλαA, its eigenstates can be organized according to fixed fermion

number. The most general ansatz for an r-fermion eigenstate is a linear combination of states with

different spin and colour:

|n(r)(M), r〉 = f(M)
n(r)

α1A1...αrAr
λ†α1A1

...λ†αrAr
|0〉 (4.1)

Because any two λ†’s anticommute, the f(M)n(r) is antisymmetric under the exchange of any two pairs of

indices αiAi and αjAj .

Taking the scalar product of (4.1) with 〈λα1A1 ...λαr′Ar′ | on both sides, we find that

C
n(r)

α1A1...αr′Ar′
=

{
(g2)rf(M)

n(r)

α1A1...αrAr
, r = r′

0, r 6= r′
(4.2)

8



Substituting (4.1) in (3.13), we get

r∑
i=1

g2(Hf )αiAi,βBC
n(r)

α1A1...α̂iÂiβB...αrAr
= εn(r)

C
n(r)

α1A1...αrAr
(4.3)

where the hat over an index denotes that index being excluded from the sum.

Let us consider the single-particle sector first. The normalized eigenstates are of the form

|n〉 =
1

g
CnαAλ

†
αA|0〉 (4.4)

where Cn satisfies the eigenvalue equation

g2(Hf )αA,βBC
n
βB = εnC

n
αA. (4.5)

Thus the Cn’s are the normalized eigenvectors of the 4× 4 matrix

g2Hf (M) = −1− 1

2
σi ⊗ τaMia (4.6)

Now since h(M) commutes with the Gauss’ law (2.17), its eigenstates must be gauge invariant, implying

that

Ga|n(M)〉 = 0 (4.7)

or equivalently,

[Ga, C
n
αAλ

†
αA] = 0. (4.8)

This gives us the (gauge) transformation properties of the Cn’s:

εacd[Πic, CαA(M)]Midλ
†
αA − (τa)CDCαA(M)λ†γC{λγD, λ

†
αA} (4.9)

= −iεacd
dCαA(M)

dMic
Midλ

†
αA − (τa)CDCαD(M)λ†αC (4.10)

= i[−εacdMidδFG
dCαG(M)

dMic
+ i(τa)FGCαG(M)]λ†αF = 0 (4.11)

implying that

εabcMic
dCαA(M)

dMib
= i(τa)ABCαB(M). (4.12)

This can be explicitly seen by noting that under a gauge transformation, M →MhT ,h ∈ SO(3),

g2Hf (MhT ) = −1− 1

2
σi ⊗ τaMibhab

= −1− 1

2
σi ⊗ (gabτa)Mibhab

= −1− 1

2
σi ⊗ (u(h)τbu(h)†)Mibhab

= (1⊗ u(h))(g2Hf (M))(1⊗ u(h))†.

So the eigenvectors of Hf must transform as

C(MhT ) = (1⊗ u(h))C(M)

9



i.e.,

C(MhT )αA = u(h)ABC(M)αB. (4.13)

Taking infinitesimal h ' I − iTaθa and noting that M transforms in the adjoint while the Hf transforms

in the fundamental representation, we obtain (4.13) explicitly as the infinitesimal version of (4.12).

Thus under a gauge transformation, C(M)αA must transform in the fundamental (i.e. spin-1/2) repre-

sentation of the gauge group. So the C(M) defines a spinor field on the configuration space C.
States with higher fermion numbers can be easily constructed out of the single fermion state. For

example consider the 2-fermion state

|n(2)〉 = C
n(2)

α1A1α2A2
λ†α1A1

λ†α2A2
|0〉, C

n(2)

α1A1α2A2
= −Cn(2)

α2A2α1A1
. (4.14)

Then (4.3) reduces to

g2(Hf )α1A1,βBC
n(2)

βBα2A2
+ g2(Hf )α2A2,βBC

n(2)

α1A1βB
= εn(2)

C
n(2)

α1A1α2A2

or equivalently

g2(Hf ⊗ 1 + 1⊗Hf )α1A1α2A2,β1B1β2B2C
n(2)

β1B1β2B2
= εn(2)

C
n(2)

α1A1α2A2
(4.15)

where (Hf ⊗ 1)α1A1α2A2,β1B1β2B2 = (Hf )α1A1,β1B1(1)α2A2,β2B2 .

To make the notation simpler, let us represent the single-particle Cn as a 6-dimensional vector, and

write

g2Hf |Cn〉 = εn|Cn〉.

With correct normalization, the two-fermion eigenstate can be written as

|n(2)〉 ≡ |n1, n2〉 =
1

2g2
(Cn1

α1A1
Cn2
α2A2

−Cn2
α1A1

Cn1
α2A2

)λ†α1A1
λ†α2A2

|0〉 =
1√
2g2

C
n(2)

α1A1α2A2
λ†α1A1

λ†α2A2
|0〉 (4.16)

with eigenvalue εn1 + εn2 .

Similarly, the r-fermion eigenstate is

|n1, n2, ...nr〉 =
1

gr
Cn1

[α1A1
Cn2
α2A2

...Cnr

αrAr]
λ†α1A1

λ†α2A2
...λ†αrAr

|0〉 =
1

gr
√
r!
C
n(r)

α1A1...αrAr
λ†α1A1

...λ†αrAr
|0〉 (4.17)

with energy

h(M)|n1, n2...nr〉 =

(
r∑
i=1

εni

)
|n1, n2...nr〉. (4.18)

Let us do a counting of the energy levels. Since Hf is a 4× 4 matrix, there are 4 single-particle energy

levels. Higher fermion-number states can be obtained by putting fermions in each of these levels. So there

are 4Cr energy levels for an r-fermion state.

As it turns out, the matrix model for SU(2) gauge theory coupled to a single Weyl fermion has a

gauge anomaly [14], the very same as discovered by Witten [15]. In our quantum mechanical problem, the

anomaly can be avoided by considering states with even number of fermions, or alternately, considering

fermionic states with equal number of fermions of positive and negative chirality. It may seem that the

one-fermion spectrum is of no physical importance, since one needs to work with even number of fermions

for an anomaly-free theory. However, as we shall see in Section 7, it is essential to examine the one-fermion

spectrum, not only because multi-particle spectra are constructed out of such states, but also because

the one-fermion sector can capture topological features and functional analytic information about the

”corners” of the gauge configuration space. These aspects become visible when we solve for the spectrum

of the fermion Hamiltonian Hf (M) in the background of Mia.
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4.1 Characteristic Polynomial of Hf

The −1 in g2Hf only adds the same overall constant to all the energy levels, and can be ignored by a

simple redefinition of the zero of the energy. We define

(H ′f ) ≡ g2Hf + 1

and henceforth drop the prime, thus working with

(Hf )αA,βB = −1

2
(τc)AB(σi)αβMic. (4.19)

The characteristic equation of Hf is

λ̂4 − λ̂2

2
Tr(MTM) + λ̂detM +

1

16

[
2Tr(MTM)2 − (Tr(MTM))2

]
= 0. (4.20)

Rescaling

x =
λ̂(

1
3Tr(MTM)

)1/2 ≡ λ̂

g2
, (4.21)

we obtain the characteristic equation in terms of scale-invariant dimensionless quantities g3 and g4

x4 − 3

2
x2 − g3x+ g4 = 0, (4.22)

with

g3 ≡
detM(

1
3Tr(MTM)

)3/2 , g4 ≡
1

16

[
2Tr(MTM)2(
1
3Tr(MTM)

)2 − 9

]
. (4.23)

The variables g2,g3 and g4 are gauge- and rotationally invariant independent quantities. They may be

thought of as 3 of the coordinates on the gauge configuration space C, the other 3 being physical rotations.

Since Hf is Hermitian, its eigenvalues, and hence roots of (4.22) must be real. The nature of the roots

can be determined by studying the discriminant ∆ of the quartic polynomial, given by

∆ =
1

2
(27g2

3 − 54g4
3 + 162g4 − 432g2

3g4 − 576g2
4 + 512g3

4), (4.24)

and four other quantities [16]

P = −12, Q = −8g3, ∆0 =
9

4
+ 12g4, D = 4(16g4 − 9). (4.25)

For all the roots to be real, we must have P < 0 and

∆ ≥ 0 and D ≤ 0. (4.26)

This is a simple reformulation of Sylvester’s theorem on the real roots of a real polynomial (see for eg [17]).

As a by-product, we have thus found two inequalities that g3 and g4, and hence all real 3 × 3 matrices

must obey.

The region ∆ ≥ 0 in the g3-g4 space is shown in Fig. 1.
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Figure 1: Allowed region in g3-g4 space

The matrix M permits a singular value decomposition (SVD) as M = RAST where R,S ∈ SO(3) and

A = diag(a1, a2, a3) with a1 ≥ a2 ≥ |a3| ≥ 0. Using the explicit expressions of g3 and g4, we find that

∆ =
(a21 − a22)2(a21 − a23)2(a22 − a23)2

[13(a21 + a22 + a23)]
6

. (4.27)

and

D = −144
a21a

2
2 + a21a

2
3 + a22a

2
3

(a21 + a22 + a23)
2

. (4.28)

That is, ∆ ≥ 0 and D ≤ 0 identically.

The edges and corners of Fig. 1 correspond to ∆ = 0 = D, and are places where two or more of the

singular values coincide. At the edge AB we have a2 = a3, at AC we have a2 = −a3 and at BC we have

a1 = a2. The point A corresponds to a2 = a3 = 0, the point B to a1 = a2 = a3 and C to a1 = a2 = −a3.
We can also express the curves for the edges in terms of variables g3 and g4:

36g2
3 = −144g4 −

√
3(16g4 + 3)3 + 9 for BC, (4.29)

6g3 = +

√
−144g4 +

√
3(16g4 + 3)3 + 9 for AB, (4.30)

6g3 = −
√
−144g4 +

√
3(16g4 + 3)3 + 9 for AC. (4.31)

Since the spectrum of Hf is gauge invariant, the energy eigenvalues can be expressed in terms of

gauge-invariant functions of M . In fact

εn(M) = εn(g2,g3,g4) = g2xn(g3,g4) (4.32)

We therefore expect the spectrum to carry information about the edges and corners of Fig. 1. It turns out

that these are places where the degeneracies of fermionic energy levels change.
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4.2 Eigenfunctions of Hf

For the SU(2) theory, we can obtain the spectrum and eigenfunctions of Hf in a very simple form in terms

of the singular values of Mia. Writing M = RAST , we see that M is related to A by a rotation R and a

gauge transformation S.

Under a combined rotation and gauge transformation, Hf transforms as

Hf (RMST ) = (r(R)⊗ s(S))Hf (M)(r(R)⊗ s(S))†. (4.33)

Here r(R) and s(S) are spin-1/2 representations of R and S respectively. Thus Hf (M) and H(A) are

unitarily related, their spectra are the same, and the eigenfunction

C(M) = (r(R)⊗ s(S))C(A) (4.34)

So we can work with the SVD of M and take the Hamiltonian to be

H(A) = −1

2

3∑
i=1

aiσi ⊗ τi. (4.35)

The one-fermion eigenfunctions and eigenvalues are

|C1〉 =
1√
2

( ∣∣1
2

〉 ∣∣−1
2

〉
+
∣∣−1

2

〉 ∣∣1
2

〉 )
(4.36a)

|C2〉 =
1√
2

( ∣∣1
2

〉 ∣∣1
2

〉
+
∣∣−1

2

〉 ∣∣−1
2

〉 )
(4.36b)

|C3〉 =
1√
2

( ∣∣1
2

〉 ∣∣1
2

〉
−
∣∣−1

2

〉 ∣∣−1
2

〉 )
(4.36c)

|C4〉 =
1√
2

( ∣∣1
2

〉 ∣∣−1
2

〉
−
∣∣−1

2

〉 ∣∣1
2

〉 )
(4.36d)

ε1 =
1

2
(−a1 − a2 + a3) (4.37a)

ε2 =
1

2
(−a1 + a2 − a3) (4.37b)

ε3 =
1

2
(a1 − a2 − a3) (4.37c)

ε4 =
1

2
(a1 + a2 + a3). (4.37d)

Here our conventions are

σ3
∣∣±1

2

〉
= ±

∣∣±1
2

〉
; τ3

∣∣±1
2

〉
= ±

∣∣±1
2

〉
.

The energies can be written in terms of matrix invariants g2,g3 and g4 since εi = g2xi(g3,g4), and

xi are the roots of the quartic polynomial (4.22). This form is useful because it is written in terms of

manifestly gauge (and rotation) invariant quantities.

13



Figure 2: Plot of xi against g3,g4

Figure 3: Plot of 2-fermion energies against g3,g4
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The rescaled energy levels xi are plotted against the invariants g3 and g4 in Fig. 2. The xi’s can also

be determined explicitly in terms of g3 and g4, but we will not present these expressions here. As functions

of g3 and g4, they are non-analytic at the edges and corners of Fig. 1.

Note that since Tr Hf = 0, we have
∑4

i=1 εi = 0. So filling all the energy levels gives back total energy

zero, just like the vacuum; filling only 3 levels gives negative of the energy of the unfilled level, and so on.

This gives rise to fermion-hole correspondence: the 3-fermion spectrum is analogous to the 1-hole picture,

and the energy levels are just the negatives of the one-fermion energy levels; the 4-fermion spectrum is like

the hole vacuum. The two-fermion spectrum is the dual of itself and hence it is symmetric about the zero

of the energy. The two-fermion energies are

ε
(2)
1 = −a1 (4.38a)

ε
(2)
2 = −a2 (4.38b)

ε
(2)
3 = −a3 (4.38c)

ε
(2)
4 = a3 (4.38d)

ε
(2)
5 = a2 (4.38e)

ε
(2)
6 = a1 (4.38f)

Knowing the energies explicitly allows us to write down the characteristic polynomial for the 2-fermion

Hamiltonian

H
(2)
f = Hf ⊗ 1 + 1⊗Hf (4.39)

quite easily. Rather than write it as a function fo the ai’s we will present it here in terms of g2,g3 and g4,

which will turn out more useful form:

g6
2(y6 − 3y4 + 4y2(9/16− g4)− g2

3) = 0. (4.40)

4.3 Enhanced Symmetry at the Corners

From (4.33), Hf transforms under the group SU(2)spin × SU(2)color. What are the symmetries of Hf?

The form of Hf (M = A) suggests that there is a coupling between the spin and colour, and as we will see

below, the eigenstates of the Hamiltonian arrange themselves in multiplets that transform under a total

angular momentum of a spin-colour coupling.

Let us define a ”total angular momentum” operator1 as

Ji =
1

2
(σi ⊗ 1 + 1⊗ τi). (4.41)

It can be seen that

[J2, Hf ] = 0 (4.42)

but, in general, [Ji, H] 6= 0. In fact:

[Ji, Hf ] =
i

2

∑
j,k

εijk(aj − ak)σj ⊗ τk. (4.43)

1In [8], this is called ”grand angular momentum”.
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So in general when the ai’s are all different, there is no Lie algebra element of SU(2)spin× SU(2)color that

commutes with Hf . At the corners where two or more singular values coincide, there are new symmetries

of Hf .

Eq. (4.41) suggests that the energy eigenstates transform under irreps of SU(2) obtained by adding

two spin-1/2 representations. Labelling eigenstates of J2 and J3 as (l,m), we can easily see that

|1〉 = |1, 0〉 (4.44a)

|2〉 =
1√
2

(
|1, 1〉+ |1,−1〉

)
(4.44b)

|3〉 =
1√
2

(
|1, 1〉 − |1,−1〉

)
(4.44c)

|4〉 = |0, 0〉 (4.44d)

So |1〉, |2〉, |3〉 form the triplet (spin-1) and |4〉 the singlet (spin-0).

At the different edges and corners, there are enhanced symmetries of Hf :

1. a1 = a2 = a > a3 ≥ 0

From (4.43), one can see that [J3, Hf ] = 0, so a combined rotation and gauge transformation around

the third axis leaves Hf invariant. Here, ε2 = ε3 = −a3
2 , so any linear combination of |2〉 and |3〉 are

eigenstates of Hf with same eigenvalue, and in particular |1, 1〉 and |1,−1〉. Thus energy eigenstates

are of the form |j,m〉.

2. a1 > a2 = a3 = a ≥ 0

Here, [J1, Hf ] = 0, so a combined rotation and gauge transformation around the first axis leaves the

Hamiltonian invariant. The lowest energy level is degenerate: ε1 = ε2 = −a1
2 . The states |1〉 and |2〉

can be combined to form eigenstates of J1. So energy eigenstates are of the form |j,mx〉, where the

subscript x denotes that the spin projection is in the first direction.

3. a1 = a2 = a3 = a 6= 0

In this corner, [Ji, Hf ] = 0 ∀i, so combined rotation and gauge transformation about any axis leaves

Hf invariant. This is the maximally symmetric case. Here ε1 = ε2 = ε3 = −a
2 , and ε4 = 3a

2 . The

three degenerate ground states form a triplet under grand angular momentum ~J , and the highest

energy state a singlet.

5 Adiabatic Connection at different corners

If the ground state is degenerate (the degeneracy labels being α, β, . . .), the adiabatic connection, in general

non-Abelian is

Aαβ = Aαβia dMia = i〈0(M), α|d|0(M), β〉. (5.1)

For the single-fermion states this gives

Aαβ = iC̄0,α(M)dC0,α(M) ≡ i〈C(M)0,α|d|C(M)0,β〉. (5.2)

Here, we have omitted the spin and colour index.
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In SVD, this becomes

Aαβ = i〈C(A)0,α|∂ai |C(A)0,β〉dai + i〈C(A)0,α|(r(R)†dr(R))⊗ 1 + 1⊗ (s(S)†ds(S))|C(A)0,β〉. (5.3)

Let us define Ωr ≡ r†dr and Ωs ≡ s†ds, left-invariant Maurer-Cartan forms on SU(2)spin and SU(2)colour
respectively, in the fundamental representation. They are Lie algebra elements,and can be expanded as

Ωr = −iωri
σi
2

; Ωs = −iωsa
τa
2

(5.4)

where ωri and ωsa are real-valued one-forms (since the left-invariant form is anti-Hermitian, the factor of −i
ensures that the ω are real), whose exact form depends on the parametrizations of r and s. They satisfy

the equations

dΩr,s + Ωr,s ∧ Ωr,s = 0 (5.5)

implying

dωi +
1

2
εijkωj ∧ ωk = 0. (5.6)

From (4.36), it is clear that the C(A)’s are independent of the ai’s. So the adiabatic connection is

Aαβ =
1

2

(
〈C(A)0,α|(ωri σi)⊗ 1 + 1⊗ (ωsaτa)|C(A)0,β〉

)
(5.7)

and associated adiabatic curvature is

Fαβ = (dA+A ∧A)αβ. (5.8)

In the bulk (i.e. in the region ∆ > 0), the ground state is non-degenerate:

|C(A)0〉 =
1√
2

( ∣∣1
2

〉 ∣∣−1
2

〉
+
∣∣−1

2

〉 ∣∣1
2

〉 )
.

The adiabatic connection for this state works out to be

A =
1

2
· 1

2

( 〈
1
2

∣∣ 〈−1
2

∣∣+
〈
−1

2

∣∣ 〈1
2

∣∣ )(ωri σi ⊗ 1 + 1⊗ ωsaτa
)( ∣∣1

2

〉 ∣∣−1
2

〉
+
∣∣−1

2

〉 ∣∣1
2

〉 )
=

1

4

[
ωri

( 〈
1
2

∣∣σi ∣∣12〉+
〈
−1

2

∣∣σi ∣∣−1
2

〉 )
+ ωsa

( 〈
1
2

∣∣ τa ∣∣12〉+
〈
−1

2

∣∣ τa ∣∣−1
2

〉 )]
=

1

4

(
ωriTrσi + ωsaTr τa

)
= 0

Thus in the bulk, the adiabatic connection vanishes, and so does the curvature:

Fbulk = 0.

At the corner A, and also along the edge AB, we have a1 ≥ a2 = a3 ≥ 0. The two degenerate ground

states are |C1〉 and |C2〉 of (4.36) and hence A is a non-abelian U(2) matrix. By a similar calculation as

above, we find that the diagonal elements A11 and A22 are again 0, since they are proportional to traces

of Pauli matrices. The off-diagonal element is, however, non-zero:

A12 =
1

2
· 1

2

[ 〈
1
2

∣∣ 〈−1
2

∣∣+
〈
−1

2

∣∣ 〈1
2

∣∣ )(ωri σi ⊗ 1 + 1⊗ ωsaτa
)( ∣∣1

2

〉 ∣∣1
2

〉
+
∣∣−1

2

〉 ∣∣−1
2

〉 ]
=

1

4

[
ωri

( 〈
1
2

∣∣σi ∣∣−1
2

〉
+
〈
−1

2

∣∣σi ∣∣12〉 )+ ωsa

( 〈
−1

2

∣∣ τa ∣∣12〉+
〈
1
2

∣∣ τa ∣∣−1
2

〉 )]
=

1

2
(ωr1 + ωs1) = A∗12
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The corresponding curvature is

F21 =
1

2
(dωr1 + dωs1) = F∗12, F11 = F22 = 0.

So F 6= 0 in the corner A and the edge AB.

At the corner B, where all singular values coincide, M is of the form M = a(RST ) = aG,G ∈ SO(3).

We can work with only one matrix, say R (equivalently set S = 1; then G = R). Then A becomes

1

2

(
〈C(A)0,α|(ωri σi)⊗ 1|C(A)0,β〉

)
. (5.9)

Here the ground state is triply degenerate, the states being |C1〉, |C2〉, |C3〉 of (4.36). A short calculation

yields A as a 3× 3 matrix

Acorner = ωri Ti (5.10)

where

T1 =

 0 1 0

1 0 0

0 0 0

 , T2 =

 0 0 i

0 0 0

−i 0 0

 , T3 =

 0 0 0

0 0 1

0 1 0

 . (5.11)

Since

[Ti, Tj ] = iεijkTk,

the Ti form the 3-dimensional UIR of SU(2). The A looks like the Maurer-Cartan form Ωr, but actually

A = iΩ, which does not satisfy the structure equation

d(iΩ) + (iΩ) ∧ (iΩ) 6= 0 (5.12)

So in this corner too, we obtain a non-zero F .

Thus in the bulk, the adiabatic curvature is zero. It is also straightforward to see that:

1

2g2
〈C(A)0|(1⊗ τa)|C(A)0〉 =

1

2g2
1

2

(
〈12 |τa|

1
2〉+ 〈−1

2 |τa| −
1
2〉
)

=
1

4g2
(Tr τa) = 0

The above discussion was for the one-fermion case. For the two-fermion case, it can be verified that

〈n1, n2|d|n3, n4〉 = 〈Cn1,n2 |(d⊗ 1 + 1⊗ d)|Cn3,n4〉 (5.13)

where the 2-fermion eigenstate |n3, n4〉 is given in (4.16). Because of the 1, the above matrix element is

zero unless there is an overlap of at least one 1-fermion state between the two 2-fermion states. This allows

us to compute the adiabatic connection for the 2-fermion states rather easily.

In the bulk, the ground state is non-degenerate, and is obtained by putting fermions in the first and

the second energy levels. So

|C0
(2)〉 =

1√
2

(
|C1〉|C2〉 − |C2〉|C1〉

)
. (5.14)
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The adiabatic connection is

A(2−fermion)
bulk = i〈C0

(2)|(d⊗ 1 + 1⊗ d)|C0
(2)〉

=
i

2

(
2〈C1|d|C1〉+ 2〈C2|d|C2〉

)
= A1

bulk +A2
bulk

= 0

As expected, Abulk = 0 in the 2-fermion sector as well.

The ground state degeneracy changes along the edge BC, where the singular values are a1 = a2 > a3 ≥
0. The two degenerate ground states are now

|C0,1
(2) 〉 =

1√
2

(
|C1〉|C2〉 − |C2〉|C1〉

)
and

|C0,2
(2) 〉 =

1√
2

(
|C1〉|C3〉 − |C3〉|C1〉

)
.

The adiabatic connection is again a U(2) matrix. Its diagonal elements turn out to be 0:

A2−fermion
11 = A1 +A2 = 0,

A2−fermion
22 = A1 +A3 = 0.

The off-diagonal elements survive, giving

A2−fermion
12 = i〈C0,1

(2) |(d⊗ 1 + 1⊗ d)|C0,2
(2) 〉

=
1

2
(ωr3 + ωs3)

and A21 = A∗12 = A12. Thus, A2−fermion
edge is non-zero, as is the adiabatic curvature.

Finally, at the corner B, where all singular values coincide, and degeneracy becomes 3, we find that

A2−fermion
corner = ωri T

′
i (5.15)

where

T ′1 =

 0 0 0

0 0 1

0 1 0

 ; T ′2 =

 0 0 −i
0 0 0

i 0 0

 ; T ′3 =

 0 1 0

1 0 0

0 0 0

 (5.16)

Again, the T ′i ’s obey [T ′i , T
′
j ] = iεijkT

′
k.

6 Effective Scalar Potential

The scalar potential (3.24) depends on the eigenstate of the fermion(s) via its dependence on the projector

P . We are interested in the situation when the fermions are in the ground state of Hf . The projector P0

to the ground state, however, changes rank depending on whether the external gauge variables correspond

to a point in the bulk (of Fig. 1), an edge, or a corner. For each of these cases, (3.24) can be computed

separately, and we will call them Φbulk,Φedge and Φcorner. We will show that whenever the degeneracy

19



of the ground state changes, the scalar potential shows a discontinuous behaviour. More precisely, Φbulk

diverges as we approach the edge AB, but Φedge is well-defined along almost the entire edge AB. Both Φbulk

and Φedge diverge as we approach the point B, but Φcorner is well-defined at B. This peculiar behaviour

of Φ is the key reason for the emergence of superselection sectors in the Hilbert space for gauge dynamics,

as we shall show in Section 7.

Although a 1-fermion state in the SU(2) matrix model is anomalous, the computation of the scalar

potential for this sector is both instructive and useful. For one, we can get an intuitive understanding of the

relationship between the singularity structure of Φ and the change in the degeneracies of the ground state.

Secondly, many of the formulas we derive for this case are useful when computing the scalar potential for

the 2-fermion state.

For a 1-fermion state with M = RAST , the effective scalar potential in the bulk is

Φbulk =
2

(a2 − a3)2
+

2

(a1 − a3)2
+

2

(a1 + a2)2
. (6.1)

The calculation is fairly straightforward if one uses (3.27) and the explicit expressions (4.37) and (4.36).

Φ can be written in terms of the dimensionless quantities g2,g3 and g4 and the lowest root x1 =

x1(g3,g4) of (4.22) as

Φbulk =
1

g2
2

8g3x1 + 4(x21 + 3/4)2

(−g3 + 4x1(x21 − 3/4))2
. (6.2)

To understand the singularity structure of Φbulk, let us look at Fig. 4, which is a schematic diagram

for the (rescaled) 1-fermion energy levels at different regions of the configuration space (g3-g4 space). The

distribution of the four roots xi is shown (the numbers give the energy eigenvalue at that point), and we

see that at the edges/corners some eigenvalues become degenerate. From (4.30), Φbulk diverges at the edge

0.8

-0.8

1.22

-1.22

1.5

-0.5

Inside ABC A AB

BC

AC

-1.5

0.5

B C(0,0)

Figure 4: Degeneracy structure of Weyl 1-fermion states at different points in the gauge

configuration space

AB where ground state degeneracy becomes 2, and also at the corner B, where degeneracy becomes 3.
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At the edge AB, we find that (3.24) gives us

Φedge =
2

9g2
2

x21 + 3/4

(x21 − 1/4)2
. (6.3)

Approaching the corner B from the bulk, the degeneracy changes from 1 to 3, whereas approaching it

along AB, the degeneracy changes from 2 to 3. For the scalar potentials Φbulk and Φcorner, this implies

Φbulk →
1

3a2
1

(x1 + 1/2)2
; Φedge →

2

3a2
1

(x1 + 1/2)2
.

At this corner, we have x1 = −1/2, so both Φbulk and Φedge diverge.

However, we can also compute Φcorner directly from (3.24). We find that

Φcorner =
1

2a2
. (6.4)

We can also show that Φbulk diverges at the corner A of Fig. 1 because the ground state degeneracy changes

from 1 to 2, but Φedge does not, because the ground state degeneracy is unchanged.

Similarly, Φbulk is non-singular at the edges AC and BC (except at the point C where it diverges, and

the fermion degeneracy changes from 1 to 3).

For the 2-fermion ground state, the scalar potential can be obtained by using the 2-fermion Hamiltonian

H
(2)
f and taking the eigenstates (4.16). This is when the results of the 1-fermion calculation become

particularly useful. It is clear that matrix elements of H
(2)
f between two 2-fermion states are 0, unless

these two states have atleast one 1-fermion state in common; the matrix element is then the matrix

element of Hf between the non-overlapping 1-fermion states.

Inside ABC A AB

BC

AC

B C(0,0)

Figure 5: Degeneracy structure of Weyl 2-fermion states at different points in the gauge

configuration space
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The scalar potential for the 2-fermion ground state can now be easily calculated, and turns out to be

Φ
(2)
bulk =

1

(a1 − a2)2
+

1

(a1 + a2)2
+

1

(a1 − a3)2
+

1

(a1 + a3)2
(6.5)

or, in terms of dimensionless quantities gi,

Φ
(2)
bulk =

6

g2
2

−y61 + 5y41 + 4(9/16− g4)(1− 7y21/3)

(3y41 − 6y21 + 4(9/16− g4))2
(6.6)

where y1 = y1(g3,g4) is the smallest root of (4.40), the characteristic polynomial of the 2-fermion Hamil-

tonian.

Looking at Fig. 5, the ground state degeneracy changes from 1 in the bulk to 2 at the edge BC, and

to 3 at the corners B and C. Using (4.29), we see that Φ
(2)
bulk diverges as it approaches BC. At the corners

B and C, y1 = −1, so Φ
(2)
bulk diverges here as well.

At the edge AB,

Φ
(2)
edge =

2

9g2
2

9− 6y21 + 5y41
y21(1− y21)2

. (6.7)

As one approaches the corner B,

Φ
(2)
edge →

2

9a2
1

(1 + y1)2
.

Again because y1 = −1 at B, Φ
(2)
edge diverges here.

At the corner B,

Φ(2)
corner =

1

a2
. (6.8)

The scalar potential adds to the potential energy term in the effective Hamiltonian for the gauge fields:

Heff = −g2

2 DiaDia + Veff , (6.9)

Veff = 1
g2

(V (M) + ε0) + g2

2 Φ(M) (6.10)

In Veff , the V (M) + ε0 term is well-behaved everywhere. However, the scalar potential term Φ
(2)
bulk

becomes singular along the edge BC, as seen in Fig. 6. For small g, V (M) + ε0 term dominates over

Φ
(2)
bulk almost everywhere in the gauge configuration space, except at the places where the latter becomes

singular.

7 Quantum Dynamics of Gauge Fields

We are now equipped to study the dynamics of the gauge fields, as dictated by the effective Hamiltonian

(3.19). It would be an interesting problem in itself to study the complete effective Hamiltonian and in

particular questions about possible self-adjoint extensions, corresponding spectrum and so on. Rather than

embark on this difficult functional analytic problem, we will argue that a study of the singularity structure

of the effective scalar potential provides us with information on the quantum phase structure of this theory.

Different strata of C are characterized by properties of the singular values ai. Changing the ai’s can take

us from one stratum to another, while gauge and physical rotations leave us on the same stratum. Similarly,

the fermion spectrum depends only on ai or equivalently gi. It thus suffices to ignore physical rotations,
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Figure 6: Φ versus g3, g4

quotient by gauge transformations, and study the dynamics of the gauge field only in the g2-g3-g4 space

or equivalently, the space of ai’s.

This gives us an important simplification: the adiabatic connection does not contribute to the effective

Hamiltonian, since there is no component of A purely in the directions of the singular values. Then

Heff =
g2

2
(−∆ + Φ) +

1

g2
V (M) + ε0(M) (7.1)

where ∆ denotes the Laplacian operator. It can be explicitly evaluated by noting that we have a natural

metric on the space of Mia:

ds2 = Tr(dMTdM) (7.2)

Iwai [18] has studied the metric and the Laplacian in SVD variables, and we will draw extensively from

his results. In SVD, the metric becomes

ds2 =
∑
i

da2i +
∑
i

∑
j 6=i

a2i (ω
2
jR + ω2

jS)− 2
∑
i

∑
j 6=i

∑
k 6=i,k 6=j

ωiRωiSajak (7.3)

where RTdR = −iωiRTi and STdS = −iωSa TS denote the left-invariant one-forms on the SO(3)R and

SO(3)S respectively. Thus the metric is

gIJ =

 gaa 0 0

0 gRR gRS
0 gSR gSS

 (7.4)

where

gaa = I3; gRR = gSS =

 a22 + a23 0 0

0 a21 + a23 0

0 0 a21 + a22

 ; gRS = gSR =

 −2a2a3 0 0

0 −2a1a3 0

0 0 −2a1a2

 .
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The Laplacian can be calculated by using

∆f =
1√
|det g|

∂I

(√
| det g|gIJ∂Jf

)
. (7.5)

In the bulk, when the singular values are all different, the Laplacian takes the form

∆ =
∂2

∂a21
+

∂2

∂a22
+

∂2

∂a23

+ 2a1

(
1

a21 − a22
+

1

a21 − a23

)
∂

∂a1
+ 2a2

(
1

a22 − a23
+

1

a22 − a21

)
∂

∂a2
+ 2a3

(
1

a23 − a21
+

1

a23 − a22

)
∂

∂a3

− a22 + a23
(a22 − a23)2

(L2
1r + L2

1S)− a23 + a21
(a23 − a21)2

(L2
2r + L2

2S)− a21 + a22
(a21 − a22)2

(L2
3r + L2

3S)

− 4a2a3
(a22 − a23)2

L1RL1S −
4a1a3

(a21 − a23)2
L2RL2S −

4a1a2
(a21 − a22)2

L3RL3S (7.6)

where LiR, and LiS are the left invariant vector fields on SO(3)R and SO(3)S respectively, and(
LiR
LiS

)
=

(
gRR gRS
gSR gSS

)(
ωiR
ωiS

)
. (7.7)

Restricting only to variations in ai, the Laplacian in the bulk is given by

∆bulk =
∂2

∂a21
+

∂2

∂a22
+

∂2

∂a23

+ 2a1

(
1

a21 − a22
+

1

a21 − a23

)
∂

∂a1
+ 2a2

(
1

a22 − a23
+

1

a22 − a21

)
∂

∂a2
+ 2a3

(
1

a23 − a21
+

1

a23 − a22

)
∂

∂a3
(7.8)

Then

Hbulk =
g2

2
(−∆bulk + Φbulk) +

1

g2
V (M) + ε0(M). (7.9)

The apparent divergence of the Laplacian at coincident singular values may seem cause for concern, but

as Iwai argues, the volume factor
√

det g = (a21 − a22)(a21 − a23)(a22 − a23) in SVD coordinates makes the

contribution of the kinetic term to the energy integral 〈Ψ,−∆Ψ〉 finite. This is also borne out by the fact

that in standard cartesian coordinates Mia, the Laplacian of the metric Tr dMTdM has no singularities

and is essentially self-adjoint.

Recall that V (M) and ε(M) are well-behaved everywhere but Φbulk becomes singular along the edge

BC, and corners B and C. Finiteness of energy requires that the domain of Hbulk contain only functions

that vanish as one approaches BC, and B and C.

What is the dynamics of the gauge fields restricted to the edge BC, where a1 = a2 = a? On this edge,

the metric (7.3) takes the form:

ds2 = 2da2 + da23 + (ω2
1R +ω2

1S +ω2
2R +ω2

2S)(a2 + a23)− 4aa3(ω1Rω1S +ω2Rω2S) + 2a2(ω3R−ω3S)2. (7.10)

Now the six ω’s are not all independent, as is evident from the fact that the volume factor (a21−a22)(a21−
a23)(a

2
2−a23) vanishes at this edge. We can understand this better by noting that a rotation about the third

axis commutes with the matrix of singular values A = diag(a, a, a3). So if we separate R as R = R1R2R3,
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a product of different rotations about the three axes, and similarly S = S1S2S3, then the matrices R3 and

S3 combine to give a single rotation matrix:

M = (R1R2R3)A(ST3 S
T
2 S

T
1 ) = (R1R2)A((R3S

T
3 )ST2 S

T
1 ).

So there are only 5 angular coordinates that parametrize M , as opposed to 6, since the left and right

rotations about the third axis can be combined. As expected, the angular momenta about the third axis

are equal and opposite:

L3R = −L3S = 2a2(ω3R − ω3S)2. (7.11)

In this case, we can take our independent coordinates as a, a3, ω1R, ω2R, ω1S , ω2S and ω3R−ω3S , and obtain

the metric

gIJ =

(
gaa 0

0 gωω

)
(7.12)

where

gaa =

(
2 0

0 1

)
and

gωω =


a2 + a23 0 −2aa3 0 0

0 a2 + a23 0 −2aa3 0

−2aa3 0 a2 + a23 0 0

0 −2aa3 0 a2 + a23 0

0 0 0 0 2a2

 .

So the volume factor becomes
√

det g =
√

2a(a2 − a23)2. Using (7.5) and restricting to the dynamics along

the directions of the singular values, we find that the Laplacian along the edge BC is

∆edge =
∂2

∂a2
+

∂2

∂a23
+

1

2a

∂

∂a
+

1

(a2 − a23)

(
a
∂

∂a
− a3

∂

∂a3

)
, (7.13)

and the corresponding Heff is

Hedge =
g2

2

(
−∆edge + Φ

(2)
edge

)
+

1

g2
V (a, a3) + ε0(a, a3). (7.14)

Again, there is an apparent divergence of the Laplacian as a3 → a, but the volume factor
√

2a(a2 − a23)2

ensures that contribution of the kinetic energy term to the energy integral is finite. The potential Φ
(2)
edge

however becomes singular when a = a3, i.e., as one approaches the corner B. So finiteness of energy

requires that wavefunctions corresponding to Hedge vanish as one approaches the corner.

Wavefunctions in the domain of Hedge cannot be constructed from the wavefunctions in the domain of

Hbulk as the latter vanish at the edge. Thus we find that the full Hilbert space the describes the dynamics

of the gauge field has superselection sectors, one sector describing the dynamics in the bulk, another

describing dynamics at the edge. These sectors cannot mix.

Our discussion in Section 4.3 tells us that when two singular values coincide, the fermion Hamiltonian

possesses an extra physical symmetry corresponding to rotations about one of the axes. We may therefore

think of this phase as one in which gauge- and physical rotations along this particular axis are locked.
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Now let us study the dynamics of the gauge field configuration restricted to the corner B, where

a1 = a2 = a3 = a. The corner C is related to the corner B via a parity transformation, and is equivalent

to B. At B, the matrix M = aG,G ∈ SO(3), so the metric Tr dMTdM takes the form

ds2 = 3da2 − a2Tr(GTdG)2 (7.15)

Restricting to the dynamics purely along the a-direction, we find that Laplacian is

∆corner =
1

3

(
∂2

∂a2
+

3

a

∂

∂a

)
. (7.16)

Thus the effective Hamiltonian is

Hcorner =
g2

2
(−∆corner + Φcorner) +

1

g2
V (aI) + ε0(I) (7.17)

where Φcorner = 1
2a2

.

It is not difficult to show that Hcorner is essentially self-adjoint. For any ψ in the domain of Hcorner, we

perform the transformation ψ → Uψ = a−3/2ψ. The Hamiltonian transforms as Hcorner → UHcornerU
†,

giving

Hcorner =
g2

2

1

3

(
− ∂2

∂a2
+

3

4a2

)
+
g2

2
Φcorner +

1

g2
V (aI) + ε0(I), (7.18)

=
g2

2

1

3

(
− ∂2

∂a2
+

9

4a2

)
+

1

g2
V (aI) + ε0(I). (7.19)

The operator

− ∂2

∂a2
+
α

a2
(7.20)

has been extensively studied [19], [20], and is known to be essentially self-adjoint for α > 3/4, which is our

situation. This means that no boundary conditions are necessary at a = 0.

Wavefunctions belonging to the domain of Hcorner cannot be constructed out of those belonging to both

the domains of Hedge and Hbulk, since they vanish at the corners. This characterizes another superselection

sector. As we saw in Section 4.3, this situation corresponds to having an enhanced SO(3) symmetry for

the fermion Hamiltonian. The color- and physical rotations are locked into a single SO(3). This particular

phase is thus the analog of the color-spin locked phase that has been discussed in the context of 3-color

QCD [8].

Thus there are different effective Hamiltonians governing the dynamics of the Yang-Mills in the three

different sectors, namely the bulk, the edgeBC, and the cornerB (and equivalently C). These Hamiltonians

have different domains, and there is no observable connecting one sector to another. These superselection

sectors can be interpreted as three different quantum phases.

8 The Matrix Model coupled to Dirac Fermions

A Dirac fermion is made up of a left Weyl fermion and a right Weyl fermion. The Lagrangian for the

Yang-Mills Matrix Model coupled to Dirac fermions is simply

L = − 1

4g2
F aµνF

aµν +
1

g2
(
iψ̄Aγ

µ(Dµψ)A −mψ̄ψ + ψ̄γ0ψ
)

(8.1)
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where ψ̄ = ψ†γ0 and the gamma matrices in the Weyl representation are

γµ =

(
0 σµ

σ̄µ 0

)
. (8.2)

Again, we have rescaled ψ → gψ to write the Lagrangian in the form (8.1).

Quantizing the theory in the Born-Oppenheimer approximation as before, we would obtain the Hamil-

tonian

H = HYM +Hf (8.3)

where

Hf = ψ†αA(Hf )αA,βBψβB (8.4)

(Hf )αA,βB = −δABδαβ +
1

2
(τc)AB(γ0γi)αβMic +mδAB(γ0)αβ. (8.5)

Taking the 1-fermion states to be of the form

|ψ(1)
n 〉 = Dn

αAψ
†
αA|0〉 (8.6)

we find that the DαA’s obey

(Hf )αA,βBD
n
βB = εnD

n
αA. (8.7)

Since ψ is a 4-component Dirac fermion, α takes 4 values. In the 2-component notation,

ψ =

(
ψL
ψR

)
(8.8)

and

Hf =

(
H1 m

m −H1

)
(8.9)

where H1 denotes the Hamiltonian (3.7) for the single chirality fermion.

In this article, we shall discuss only the m = 0 case.

8.1 Spectrum of the Dirac Hamiltonian

If mass m = 0, then

Hf =

(
H1 0

0 −H1

)
. (8.10)

Then the spectrum is of the form:

Dn
+ =

(
cn

0

)
; eigenvalue + εn (8.11)

Dn
− =

(
0

cn

)
; eigenvalue − εn (8.12)

where cn are the single chirality eigenstates and εn are the eigenvalues for the single chirality.
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In terms of the left and right Weyl components, the Hamiltonian can be written as:

Hf = ψ†LH1ψL − ψ†RH1ψR (8.13)

where ψ†L creates a left-handed fermion and ψ†R creates a right-handed fermion.

The eigenstates are:-

|n;L〉 = cnαA(ψL)†αA|0〉; Hf |n;L〉 = εn|n;L〉 (8.14)

|n;R〉 = cnαA(ψR)†αA|0〉; Hf |n;R〉 = −εn|n;R〉 (8.15)

Multiparticle states can be formed by taking tensor products of one-particle states. A state with m

left-handed fermions and n right-handed fermions is represented by

|l1, ...lm; r1...rn〉 =

m∏
i=1

n∏
j=1

(cliψ†L)(crjψ†R)|0〉 (8.16)

with energy eigenvalue

ε =
m∑
l=1

εl −
n∑
r=1

εr. (8.17)

In particular we want to examine the 2-fermion states. We can put two L−type, two R−type, or 1 of each

type of fermions. The spectrum can be easily obtained via (5.16), and is tabulated below.

Type LL RR LR

±(a1 + a2)

±a1 ±a1 ±(a1 − a2)
Energy ±a2 ±a2 ±(a1 + a3)

±a3 ±a3 ±(a1 − a3)
±(a2 + a3)

±(a2 − a3)
0, 0, 0, 0

The LL and the RR energy levels are exactly the energy levels of the 2-fermion states for the Weyl

fermions. Each of them is doubly degenerate. But there is an extra set of energy levels coming from putting

two fermions of opposite chirality.

Note that the ground state, with energy −(a1 +a2) is of the type LR, so the ground state of the theory

does not have well-defined chiral symmetry.

8.2 Scalar Potential for massless Dirac Fermions

Since all the computations for the Dirac case are exactly analogous to our earlier discussion, we will be

brief here.

The Dirac Hamiltonian is diagonal in the L-R basis, so matrix elements of ∂iaH are zero between an

L- and an R- state. In the calculation of the scalar potential for a particular state, the only contribution

comes from other states of the same handedness. This is equivalent to working with a single Weyl fermion

with fixed handedness. The expression for the scalar potential of one-particle massless Dirac fermions is

the same as that for the single Weyl fermion:

ΦD;1−fermion = ΦW ;1−fermion. (8.18)
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The case of interest is the 2-fermion sector, which is anomaly-free. Again the scalar potential can be

calculated by taking H
(2)
f = Hf ⊗ 1 + 1⊗Hf . Now the 2-fermion ground state is LR-type; so only other

LR-states will contribute to the scalar potential. Since, the ground state wave-function is

|gs〉 = c1αAc
4
βB(ψL)†αA(ψR)†βB|0〉, (8.19)

the scalar potential for the 2-fermion ground state works out to be

ΦD;2−fermion(gs) = ΦW ;1−fermion(x1) + ΦW ;1−fermion(x4) (8.20)

where x4 and x1 are the highest and lowest roots of the polynomial (4.22). This formula correctly takes

into account the change in degeneracy of the 1-fermion Weyl states. Indeed by looking at Fig. 7, one can

see that degeneracy changes from 1 to 2 in going from the bulk to the edge AB (or AC, ), to 3 at the

corner B (or C), and becomes 4 at the corner A. Under parity transformation, the edge AC is related to

AB, and the corner C to B.

Inside ABC A AB (same for AC)

BC B (same for C)(0,0)

16 levels,
12 distinct+
4 at x=0 4+4

4

4

2
1

1
2

2
6
2

1
2

2
1

2

2
4+2

1
4

4
1

4+2

4

3

3

4+3+3

Figure 7: Degeneracy structure for LR states (the numbers denote degeneracy)

Eq. (8.20) can be applied to find the scalar potential in the bulk, as well as at these edges and corners,

making sure one uses the correct expression for the scalar potential for each Weyl component. For example,

on the edge AB, the state corresponding to x1 is doubly degenerate and so the corresponding projector

is rank 2, while the state corresponding to x4 is non-degenerate and the projector is rank one. So in the

expression for the scalar potential on AB, we must use (6.3) for x1, and for x4 we must use (6.2) evaluated

at the edge AB.

By an analysis similar to section 7, it can be argued that the effective theory for LR ground state of

the Dirac fermion has four different superselection sectors: the bulk, the edge AB (or AC), the corner B

(or C), and the corner A. The scalar potential evaluated for each sector shows singular behaviour as we

approach the other sectors, requiring that the wavefunctions vanish there, and resulting in distinct domains

for the effective Hamiltonian in the different sectors. Thus this theory has four different quantum phases.
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Figure 8: Plot of Φ for the LR levels

Fig. 8 shows that Φ is singular along the edges AB and AC.

The LL and RR states are equivalent to the 2-fermion Weyl fermion states, so the scalar potential

calculations for them are the same as in Section 6. For SU(2) gauge theory these are baryons, while the

LR states are mesons.

We can add more fermions, making sure that the fermion number is even, and the scalar potentials

will add up appropriately. One can look at this as an introduction of a chemical potential µ to shift the

Fermi surface, so we can fill all states below the zero of the chemical potential. This provides an interesting

interpretation of our phases. For example for the case of a single Weyl fermion, if we look at the theory

in the bulk and choose the chemical potential such that it is just above the lowest energy level, then the

theory is anomalous; however the places where the ground state becomes degenerate are free from the

anomaly, since there are two levels that need be filled. This happens when µ is greater than some critical

value µc. So for a given value of µ, only certain phases exist in the theory.

Similar considerations apply for the Dirac theory as well. Now the L and R levels are degenerate. If

we choose µ such that it is just above the lowest energy level, the only possibility in the bulk is to have

an LR state, i.e. a meson. But when the ground state becomes degenerate, we have more choices to fill

the energy levels. In this phase, LL, RR and LR type states can all exist, i.e. we have both baryons and

mesons. This is reminiscent of the discussion in [21], where diquark condensates appear when µ is larger

than some critical value.
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9 Conclusions

Yang-Mills theory coupled to fermions has a rich phase structure, and by studying the matrix model limit

of the theory, we have been able to deduce several of its aspects. Much of this information comes from

quantizing the theory in the adiabatic approximation, by treating the fermionic variables as fast degrees,

and the gauge field as the slow variable. This Born-Oppenheimer quantization induces both an adiabatic

connection as well as an effective scalar potential for the gauge Hamiltonian. The adiabatic connection

has simple but interesting implications for SU(2) gauge invariance (or its breaking), as we see from the

existence of the color-spin locked phase. The effective scalar potential has a sophisticated singularity

structure, coinciding with locations where the fermion degeneracy changes. The effective potential is

responsible for creating superselection sectors in the gauge field Hilbert space. We suggest that these

different superselection sectors be interpreted as different quantum phases of the theory.

For the case of SU(2) gauge field coupled to two left- (or right-) handed fermions, we find that there

are four different quantum phases, while for the case of a massless Dirac fermion, we find that there are

six. Of these we are able to identify one phase, the color-spin locked phase, as one known in literature.

The other phases, to our knowledge, seem to be new.

Substantial progress for the case of SU(2) has been possible because of the availability of SVD for 3×3

matrices Mia. The physically more interesting and relevant case is the SU(3) matrix model coupled to

(almost) massless quarks. The matrix model is now based on a 3× 8 rectangular matrix Mia, and SVD is

not appropriate since it does not correctly capture the gauge symmetry of the model. For unambiguous

identification of phases, we expect that new theoretical techniques will be needed.
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