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Abstract. Generation of the cosmological baryon asymmetry in frameworks of sponta-
neous baryogenesis is studied in detail. It is shown that therelation between baryonic
chemical potential and the time derivative of the (pseudo)Goldstone field essentially de-
pends upon the representation chosen for the fermionic fields with non-zero baryonic
number (quarks). Kinetic equation is modified and numerically solved in equilibrium for
the case of time dependent external background or finite integration time to be applicable
to the case when energy conservation law is formally violated.

1 Introduction

One of the popular scenarios of baryogenesis is the spontaneous baryogenesis (SBG) proposed in
papers [1–3], for reviews see e.g. Refs. [4, 5]. It is assumedthat in the unbroken phase the theory is
invariant with respect to the globalU(1)-symmetry, which ensures conservation of baryonic number.
This symmetry is spontaneously broken and in the broken phase the Lagrangian density acquires the
term

LS B = (∂µθ)JµB , (1)

whereθ is the Goldstone field andJµB is the baryonic current. Due to the spontaneous symmetry
breaking (SSB) this current is not conserved. The next step is the statement that the Hamiltonian
density corresponding toLS B is simply the Lagrangian density taken with the opposite sign:

HS B = −LS B = −(∂µθ)JµB . (2)

For the spatially homogeneous fieldθ = θ(t) this Hamiltonian is reduced toHS B = −θ̇ nB, where
nB ≡ J4

B is the baryonic number density, so it is tempting to identifyθ̇ with the chemical potential,µ,
of the corresponding system. If this is the case, then in thermal equilibrium the baryon asymmetry
would evolve to:

nB =
gS BQ

6

(

µT 2 +
µ3

π2

)

→
gS BQ

6

(

θ̇ T 2 +
θ̇3

π2

)

, (3)
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whereT is the cosmological plasma temperature,gS andBQ are respectively the number of the spin
states and the baryonic number of quarks, which are supposedto be the bearers of the baryonic
number.

It is interesting that for successful SBG two of the three Sakharov’s conditions for the generation
of the cosmological baryon asymmetry, namely, breaking of thermal equilibrium and a violation of C
and CP symmetries are unnecessary. This scenario is analogous the baryogenesis in absence of CPT
invariance, if the masses of particles and antiparticles are different. In the latter case the generation of
the cosmological baryon asymmetry can also proceed in thermal equilibrium [6, 7].

In this work the classical version of spontaneous baryogenesis is studied. The talk is organized as
follows. In Section 2 the general features of the spontaneous breaking of baryonicU(1)-symmetry are
described, and the (pseudo)Goldstone mode, its equation ofmotion, and baryonic chemical potential
are introduced. Next, in Sec. 3 the standard kinetic equation in stationary background is presented. In
Sec. 4 we derive kinetic equation in time dependent externalfield and/or for the case when energy is
not conserved because of finite limits of integration over time. Several examples, when such kinetic
equation is relevant, are presented in Sec. 5. Lastly in Sec.6 we conclude.

2 Spontaneous symmetry breaking and goldstone mode

Let us consider the theory of complex scalar fieldΦ interacting with "quarks",Q, and "leptons",L,
with the Lagrangian:

L(Φ) = gµν∂µΦ∗∂νΦ − V(Φ∗Φ) + Q̄(iγµ∂µ − mQ) Q + L̄(iγµ∂µ − mL)L +Lint(Φ,Q, L) , (4)

whereLint describes the interaction betweenΦ and fermionic fields. In the toy model studied below
we take it in the form:

Lint =

√
2

m2
X

Φ

f
(L̄γµQ)(Q̄cγµQ) + h.c. , (5)

whereQc is charged conjugated quark spinor,mX is a parameter with dimension of mass, andf is
related to the vacuum expectation value ofΦ defined below in Eq. (7). Such an interaction can appear
e.g. inS U(5) Grand Unified Theory. For simplicity, in our toy model we do not take into account the
quark colors.

B-non conserving interaction may have many different forms. The one presented above describes
transition of three quark-type fermions into (anti)lepton. There may be transformation of two or three
quarks into equal number of antiquarks. Such interaction describes neutron-antineutron oscillations.
There even can be a "quark" transition into three "leptons".Depending on the interaction type the
relation betweeṅθ and the effective chemical potential would have different forms.

Note thatQ andL can be any fermions, not necessarily quarks and leptons of the standard model.
For example, they can be new heavy fermions. They may possesssimilar or the same quantum
numbers as the quarks and leptons of the standard model and may couple to the ordinary quarks and
leptons. In section 4 we consider another model to study kinetics of the baryon asymmetry generation
which allows for the transformation 3L ↔ Q or 2Q ↔ 2Q̄. They are surely not permitted for the
standard quarks. However, the process 3q↔ 3q̄ is permitted and kinetics of this process is essentially
the same. We denote byq the fermionic field with the same quantum number as the usual quark.

The theory (4) considered in this section is invariant underthe followingU(1)-transformations:

Φ→ eiαΦ, Q→ e−iα/3Q, L→ L . (6)



In the unbroken symmetry phase this invariance leads to the conservation of the total baryonic number
which includes the baryonic number ofΦ, taken to be unity, and that of quarks, equal to 1/3. In
realistic model the interaction of left- and right-handed fermions may be different but we neglect this
possible difference in what follows.

We assume that the globalU(1)-symmetry is spontaneously broken at the energy scalef in the
usual way, e.g. via the potential of the form

V(|Φ|) = λ
(

Φ∗Φ − f 2/2
)2
. (7)

The resulting scalar field vacuum expectation value is〈Φ〉 = f eiφ0/ f /
√

2 with a constant phaseφ0.
Below the scalef we can neglect the heavy radial mode ofΦ with the massmradial = λ1/2 f ,

since being very massive it is frozen out, but this simplification is not necessary and is not essential
for the baryogenesis. The remaining light degree of freedomis the variable fieldφ, which is the
Goldstone boson of the spontaneously brokenU(1). Up to a constant factor the fieldφ is the angle
around the bottom of the Mexican hat potential described by Eq. (7). Correspondingly we introduce
the dimensionless angular fieldθ ≡ φ/ f :

Φ = f eiφ/ f
√

2 = f eiθ/
√

2 . (8)

As a result the following effective Lagrangian forθ is obtained:

L1(θ) =
f 2

2
∂µθ ∂

µθ + Q̄1(iγµ∂µ − mQ)Q1 + L̄(iγµ∂µ − mL)L +












eiθ

m2
X

(L̄γµQ1)(Q̄c
1γµQ1) + h.c.













− U(θ) . (9)

Here we introduced "by hand" potentialU(θ), which may appear due to an explicit symmetry breaking
and can lead, in particular, to a nonzero mass ofθ. We use the notationQ1 for the quark field to
distinguish it from the phase rotated fieldQ2 introduced below in Eq. (11). In a realistic model the
quark fields should be (anti)symmetrized with respect to color indices, omitted here for simplicity.

If U(θ) = 0, the theory still remains invariant under the global transformations (i.e. withα =
const):

Q→ e−iα/3Q, L→ L, θ → θ + α . (10)

If we only rotate the quark field as above but with coordinate dependentα = θ(t, x), introducing the
new fieldQ1 = e−iθ/3Q2, then the Lagrangian (9) is transformed into:

L2(θ) =
f 2

2
∂µθ∂

µθ + Q̄2(iγµ∂µ − mQ)Q2 + L̄(iγµ∂µ − mL)L +












1

m2
X

(Q̄2γµL)(Q̄2γµQc
2) + h.c.













+ (∂µθ)Jµ − U(θ) , (11)

where the quark baryonic current isJµ = (1/3)Q̄γµQ. Note that the current has the same form in terms
of Q1 andQ2.

The equation of motion for the quark fieldQ1 obtained from Lagrangian (9) has the form:

(iγµ∂µ − mQ)Q1 +
e−iθ

m2
X

[

γµL(Q̄1γµQc
1) + 2γµQc

1(Q̄1γµL)
]

= 0 . (12)



Analogously the equation of motion for the phase rotated field Q2 derived from Lagrangian (11) is:
(

iγµ∂µ − mQ +
1
3
γµ∂µθ

)

Q2 +
1

m2
X

[

γµL(Q̄2γµQc
2) + 2γµQc

2(Q̄2γµL)
]

= 0 . (13)

Equations forθ-field derived from these two Lagrangians in flat space-time have respectively the
forms:

f 2(∂2
t − ∆)θ + U ′(θ) +













i e−iθ

m2
X

(Q̄1γµL)(Q̄1γµQc
1) + h.c.













= 0 (14)

and

f 2(∂2
t − ∆)θ + U ′(θ) + ∂µJµB = 0 , (15)

whereU ′(θ) = dU/dθ.
Using either the equation of motion (12) or (13) we can check that the baryonic current is not

conserved. Indeed, its divergence is:

∂µJµB =
i e−iθ

m2
X

(Q̄1γµQc
1)(Q̄1γ

µL) + h.c. (16)

(and similarly forQ2 but without the factor exp(−iθ)). So the equations of motion forθ in both cases
(14) and (15) coincide, as expected.

In the spatially homogeneous case, when∂µJµB = ṅB andθ = θ(t), and if U(θ) = 0, equation (15)
can be easily integrated giving:

f 2
[

θ̇(t) − θ̇(tin)
]

= −nB(t) + nB(tin) . (17)

It is usually assumed that the initial baryon asymmetry vanishes,nB(tin) = 0.
The evolution ofnB(t) is governed by the kinetic equation discussed in Sec. 3, which allows

to expressnB throughθ(t) and thus to obtain the closed systems of, generally speaking, integro-
differential equations. In thermal equilibrium the relation betweenθ̇ andnB may become an algebraic
one, but this is true only in the case when the integration over time is sufficiently long and ifθ̇ is
constant or slowly varying function of time.

In cosmological Friedmann-Robertson-Walker (FRW) background and space-independentθ(t)
equation (15) is transformed to:

f 2(∂t + 3H)θ̇ + U ′(θ) = −(∂t + 3H)nB. (18)

We do not include the curvature effects into the Dirac equations because this is not necessary for what
follows. Still we are using expression for the current divergence in the formDµJµ = ṅB + 3HnB, but
not justṅB.

If particles (fermions) are in thermal equilibrium with respect to baryo-conserving interactions,
then their phase space distribution has the form:

feq =
[

1+ exp(E/T − ξB)
]−1

, (19)

where dimensionless chemical potentialξB has equal magnitude but opposite signs for particles and
antiparticles. The baryonic number density, for smallξB, is usually given by the expression

nB = gS BQξBT 3/6 (20)



(compare to Eq. (3)). However, the relation (20) between thebaryonic number density and chemical
potential is true only for the normal relation between the energy and three-momentum,E =

√

p2 + m2.
This is not the case if the dispersion relation has the form

E =
√

p2 + m2 ± θ̇/3, (21)

derived from the equation of motion (13), where the signs± refer to particles or antiparticles respec-
tively, as we see a little below. We should note that the abovedispersion relation is derived under
assumption of constant or slow varyingθ̇. Otherwise the Fourier transformed Dirac equation cannot
be reduced to the algebraic one.

If the baryon number is conserved,nB remains constant in comoving volume and it means in
turn thatξB = const for massless particles. If and when non-conservation of baryons is switched
on, ξB evolves according to kinetic equation. Complete thermal equilibrium in the standard theory
demandsnB → 0, but a deviation from thermal equilibrium of B-nonconserving interaction leads to
generation of non-zeroξB and correspondingly to non-zeronB. As we will see in Sec. 4, SBG allows
for generation of nonzero baryonic number in complete thermal equilibrium.

In terms ofξB and the new functionη = θ̇/T 3 equation (18) takes the same form as eq. (17):

f 2 [

η(t) − η(tin)
]

= −
gS BQ

6
[

ξB(t) − ξB(tin)
]

(22)

and thus

f 2













θ̇(t)
T 3(t)

− θ̇(tin)

T 3
in













= −
gS BQ

6
[

ξB(t) − ξB(tin)
]

. (23)

As we have already mentioned,nB(tin) = 0, so according to Eq. (20) we should also takeξB(tin) = 0.
However this initial condition for chemical potential is not true in the theory with the Lagrangian (11)
and the Dirac equation (13) for the quark field, though the condition nB(tin) = 0 is supposed to be
always valid. Indeed, the B-nonconserving interaction nowconserves energy and thus this process
does not split the energies of quarks and antiquarks. However, these energies are split from the very
beginning due to relation (21). Correspondingly using eqs.(19) and (21) we find in the massless case:

nB =

∫

d3p
(2π)3

( fB − fB̄) =
gS BQ

6

(

ξB −
θ̇

3T

)

T 3. (24)

If initially nB = 0, thenξB(tin) = θ̇in/(3Tin). In the case of conserved baryonic number,nB remains zero
and thus in equilibrium the relationξB = θ̇/(3T ) must be true at any time. When the B-nonconserving
interaction is on, the chemical potential would evolve and might evolve even down to zero, leading to
generation of non-zero baryonic density, as is discussed inSec. 4.

In the pseudogoldstone case, whenU(θ) , 0, equations of motion (15) or (18) cannot be so easily
integrated, but in thermal equilibrium the system of equations containingθ(t) andξB(t) can be reduced
to ordinary differential equations which are easily solved numerically. Out of equilibrium one has to
solve much more complicated system of the ordinary differential equation of motion forθ(t) and the
integro-differential kinetic equation. It is discussed below in Sec. 3.

3 Kinetic equation for time independent amplitude

The temporal evolution of the distribution function of i-thtype particle,fi(t, p), in an arbitrary process
i + Y ↔ Z in the FRW background, is governed by the kinetic equation:

d fi
dt
= (∂t − H pi∂pi) fi = Icoll

i , (25)



with the collision integral equal to:

Icoll
i =

(2π)4

2Ei

∑

Z,Y

∫

dνZ dνYδ
4(pi + pY − pZ)















|A(Z → i + Y)|2
∏

Z

f
∏

i+Y

(1± f ) − |A(i + Y → Z)|2 fi
∏

Y

f
∏

Z

(1± f )















, (26)

whereA(a → b) is the amplitude of the transition from statea to stateb, Y and Z are arbitrary,
generally multi-particle states,(

∏

Y f ) is the product of the phase space densities of particles forming
the stateY, and

dνY =
∏

Y

dp ≡
∏

Y

d3p
2E (2π)3

. (27)

The signs ’+’ or ’−’ in
∏

(1± f ) are chosen for bosons and fermions respectively. We neglect the
effects of the space-time curvature in the collision integral which is generally a good approximation.

In the lowest order of perturbation theory the amplitude of transition from an initial state|in〉 to
a final state| f in〉 is given by the integral of the matrix element of Lagrangian density between these
states, integrated over 4-dimensional spaced4x. The quantum field operators are expanded in terms
of creation-annihilation operators with a plane wave coefficients:∼ exp(−iEt + ipx).

When the amplitude of the process is time-independent, thenthe integration of the product of the
exponents in infinite integration limits leads to the energy-momentum conservation factors:

∫

dtd3x e−i(Ein−E f in)t+i(Pin−Pfin)x = (2π)4δ(Ein − E f in) δ((Pin − Pfin), (28)

whereEin, E f in, Pin , andPin are the total energies and 3-momenta of the initial and final states respec-
tively. The amplitude squared contains delta-function of zero which is interpreted as the total time
duration,tmax, of the process and as the total space volume,V. The probability of the process given
by the collision integral is normalized per unit time and volume, so it must be divided byV andtmax.

We are interested in the evolution of the baryon number density, which is the time component of
the baryonic currentJµ: nB ≡ J4. Due to the quark-lepton transitions the current is non-conserved
and its divergence is given by Eq. (16). The similar expression is evidently true in terms ofQ2 but
without the factor exp(−iθ). Let us first consider the latter case, when the interactionis described by
the Lagrangian (11), which contains the product of three "quark" and one "lepton" operators, and take
as an example the processq1 + q2↔ q̄ + l.

Since the interaction in this representation does not depend on time, the energy is conserved and
the collision integral has the usual form with conserved four-momentum. Quarks are supposed to be
in kinetic equilibrium but probably not in equilibrium withrespect to B-nonconserving interactions,
so their distribution function has the form:

fQ = exp
(

−E
T
+ ξB

)

and fQ̄ = exp
(

−E
T
− ξB

)

. (29)

Here and in what follows the Boltzmann statistics is used. Since the dispersion relation for quarks
and antiquarks (21) depends uponθ̇, the baryon asymmetry in this case is given by eq. (24) and the
kinetic equation takes the form:

gS BQ

6
d
dt

(

ξB −
θ̇

3T

)

= −c1ΓξB, (30)



wherec1 is a numerical factor of order unity andΓ is the rate of baryo-nonconserving reactions. If the
amplitude of these reactions has the form presented in Eq. (13), thenΓ ∼ T 5/m4

X.
For constant or slow varying temperature the equilibrium solution to this equation isξB = 0 and

the baryon number density is proportional tonB ∼ θ̇T 2, with θ̇ evolving according Eq. (17) withnB

expressed througḣθ.
Let us check now what happens if the dependence onθ is moved from the quark dispersion relation

to the B-nonconserving interaction term (14). The expression for the collision integral (26) is valid
only in absence of external field depending on coordinates. In our case, when quarks "live" in theθ(t)-
field, the collision integral should be modified in the following way. Now we have an additional factor
under the integral (28), namely, exp[±iθ(t)]. In general case this integral cannot be taken analytically,
but if we can approximateθ(t) asθ(t) ≈ θ̇t with a constant or slowly varyinġθ, the integral is simply
taken giving e.g. for the process of two quark transformation into antiquark and lepton,q1+q2↔ q̄+l,
the energy balance condition imposed byδ(Eq1 + Eq2 − Eq̄ − El − θ̇). In other words the energy is
non-conserved due to the action of the external fieldθ(t). The approximation of linear evolution ofθ
with time can be valid if the reactions are fast in comparisonwith the rate of theθ-evolution.

Returning to our case we can see that the collision integral integrated over the three-momentum
of the particle under scrutiny (i.e. particlei in eq. (26) ) e.g. for process theq1+ q2→ l+ q̄ turns into:

ṅB + 3HnB ∼
∫

dτlq̄dτq1q2 |A|2δ(Eq1 + Eq2 − El − Eq̄ − θ̇)δ(Pin − Pf in)e−Ein/T
(

eξL−ξB+θ̇/T − e2ξB
)

, (31)

wheredτl,q̄ = d3pld3pq̄/[4ElEq̄(2π)6]. We assumed here that all participating particles are in kinetic
equilibrium, i.e. their distribution functions have the form

f = 1/[exp (E/T − ξ) + 1], (32)

with ξ = µ/T being dimensionless chemical potential. In expression (31) ξB andξL denote baryonic
and leptonic chemical potentials respectively and the effects of quantum statistics are neglected but
only for brevity of notations. Their effects are not essential in the sense that they do not change
the conclusion. The assumption of kinetic equilibrium is well justified because it is enforced by the
very efficient elastic scattering. Another implicit assumption is the usual equilibrium relation between
chemical potentials of particles and antiparticles, ¯µ = −µ, imposed e.g. by the fast annihilation of
quark-antiquark or lepton-antilepton pairs into two and three photons. Anyhow the assumption of
chemical equilibrium is one of the cornerstones of the spontaneous baryogenesis.

The conservation of (B+ L) implies the following relation:ξL = −ξB/3. Keeping this in mind, we
find

ṅB + 3HnB ≈ −
(

1− eθ̇/T−3ξB+ξL
)

I ≈
(

θ̇

T
− 10

3
ξB

)

I, (33)

where we assumed thatξB andθ̇/T are small. In relativistic plasma with temperatureT the factorI,
coming from the collision integral, can be estimated asI = T 8/m4, wherem is a numerical constant
with dimension of mass. It differs frommX, introduced in eq. (9), by a numerical coefficient.

The asymmetry between quarks and antiquarks having the distribution (32) with equal by magni-
tude but opposite by sign chemical potentials and identicaldispersion relations is equal to

nB = CBξBT 3, (34)

whereCB is a constant, see Eq. (3) in the limit ofµ ≪ T , because in the realistic case the baryon
asymmetry is quite small.



For a large factorI we expect the equilibrium solutionξB = (3/10)θ̇/T , so θ̇ up to the different
numerical factor seems to be the baryonic chemical potential, as expected in the usually assumed SBG
scenario. An emergence of the factor 3/10 instead of 1/3 in the equilibrium expression is due to the
conservation lawB + L = const. However, as we have seen above, the baryonic chemical potential is
not aways proportional tȯθ(t).

4 Kinetic equation for time-varying amplitude

In the case the interaction proceeds in a time dependent fieldand/or the time duration of the process is
finite, then the energy conservation delta-function in (31)does not emerge and the described in Sec. 3
approach becomes invalid, so one has to make the time integration with an account of time-varying
background and integrate over the phase space without energy conservation.

In what follows we consider two-body inelastic process withbaryonic number non-conservation
with the amplitude obtained from the last term in Lagrangian(9). At the moment we will not specify
the concrete form of the reaction but only will say that it is the two-body reaction

a + b↔ c + d, (35)

wherea, b, c, andd are some quarks and leptons or their antiparticles. The expression for the evolution
of the baryonic number density,nB, follows from eq. (25) after integration of its both sides over
d3pi/(2π)3. Thus we obtain:

ṅB + 3HnB = −
(2π)3

tmax

∫

dνindν f in δ(Pin − Pf in) |A|2 ( fa fb − fc fd) , (36)

where e.g.dνin = d3pad3pb/[4EaEb(2π)6] and the amplitude of the process is defined as

A =

(∫ tmax

0
dt ei[(Ec+Ed−Ea−Eb)t+θ(t)]

)

F(pa, pb, pc, pd) , (37)

andF is a function of 4-momenta of the participating particles, determined by the concrete form of
the interaction Lagrangian. In what follows we consider twopossibilities:F = const andF = ψ4 m−2

X ,
where in the last caseψ4 symbolically denotes the product of the Dirac spinors of particlesa, b, c, and
d.

In the case of equilibrium with respect to baryon conservingreactions the distribution functions
have the canonical form,fa = exp(−Ea/T + ξa), whereξa ≡ µa/T is the dimensionless chemical
potential. So for constantF the product|A|2( fa fb − fc fd) depends upon the particle 4-momenta only
throughEin andE f in, where

Ein = Ea + Eb, and E f in = Ec + Ed. (38)

To integrate Eq. (36) over the phase space it is convenient tochange the integration variables,
according to:

d3pa

2Ea

d3pb

2Eb
= d4Pin d4Rin δ(P2

in + R2
in) δ(PinRin) , (39)

wherePin = pa + pb andRin = pa − pb and masses of the particles are taken to be zero. Analogous
expressions are valid for the final state particles. Evidently the time components of the 4-vectorsP are
the sum of energies of the incoming and outgoing particles,P(4)

in = Ein andP(4)
f in = E f in. Now we can



perform almost all (but one) integrations and finally we obtain the kinetic equation in the following
form:

ṅB + 3HnB = −
T 5

25π6 tmax

∫ ∞

0
dy

[

eξa+ξb
(

|A+|2 + |A−|2e−y
)

− eξc+ξd
(

|A−|2 + |A+|2e−y
)]

, (40)

wherey = E−/T is the dimensionless energy withE− being the difference between initial and final
energies of the system,E− = Ein − E f in, A+ andA− are amplitudes taken at positive and negativeE−,
respectively. Note, that with the substitutionE− → |E−| the only difference betweenA+ andA− is that
A−(θ) = A+(−θ).

The equilibrium is achieved when the integral in Eq. (40) vanishes. Clearly it takes place at

ξa + ξb − ξc − ξd =
〈|A+|2e−y + |A−|2〉
〈|A+|2 + |A−|2e−y〉 − 1, (41)

where the angular brackets mean integration overdy as indicated in Eq. (40).
This results above are obtained for the amplitude which doesnot depend upon participating parti-

cle momenta. The calculations would be be somewhat more complicated if this restriction is not true.
For example if the baryon non-conservation takes place in four-fermion interactions, then the ampli-
tude squared can contain the terms of the form (pa pb)2/m4

X or (pa pc)2/m4
X , etc. The effect of such

terms results in a change of the numerical coefficient in Eq. (33) but the latter is unknown anyhow,
and what is more important the temperature coefficient in front of the integral in this equation would
change fromT 5 to T 9/m4

X.

5 Examples of time-varying θ

5.1 Constant θ̇

This is the case usually considered in the literature and thesimplest one. The integral (37) is taken
analytically resulting in:

|A|2 ∼ 2− 2 cos[(̇θ − E−)tmax]

(θ̇ − E−)2
, (42)

whereE− is running over the positive semi-axis.
For largetmax this expression tends toδ(E− − θ̇), so|A+|2 = 2πδ(E− − θ̇)tmax and|A−|2 = 2πδ(E− +

θ̇)tmax = 0, if θ̇ > 0 and vice versa otherwise. Hence the equilibrium solution is

ξa + ξb − ξc − ξd − θ̇ = 0, (43)

coinciding with the standard result.
The limit of θ̇ = const corresponds to the energy non-conservation by the rise (or drop) of the

energy of the final state in reaction (35) exactly byθ̇. However iftmax is not sufficiently large, the non-
conservation of energy is not equal toθ̇ but somewhat spread out and the equilibrium solution would
be different. There is no simple analytical expression in this case, so we have to take the integral
(41) overy numerically to find at what values of chemical potentials,ξk, it vanishes and this point
determines the equilibrium values of the chemical potentials in external̇θ field.

The results of the calculations are presented in Fig. 1. In the left panel the values of the r.h.s.
of Eq. (41) are compared witḣθ/T (thick line) for two values of the cut-off in time integrationτ ≡
tmaxT = 10 (dashed line) andτ = 3 (dotted line). In the right panel relative differences between the
r.h.s. of Eq. (41) anḋθ/T , normalized toθ̇/T , as functions oḟθ for different maximum time of the



Figure 1. Left: θ̇/T for infinite time integration (thick line). Cut-off in time integrationτ ≡ tmaxT = 10 (dashed);
3 (dotted).Right: relative differences between the equilibrium solutions andθ̇/T , normalized tȯθ/T , as functions
of θ̇ for differenttmax: τ ≡ tmaxT = 30 (thick); 10 (dashed); 3 (dotted).

integration are depicted. We see that forτ = 30 (thick line) the deviations are less than 10%, while for
τ = 3 (dotted line) the deviations are about 30%. If we takeτ close to unity, the deviations are about
100%. The value oḟθ/T is bounded from above by 0.3 because at largeθ̇/T the linear expansion,
used in our estimates, is invalid.

5.2 Second order Taylor expansion of θ(t)

Here we assume thatθ(t) can be approximated as

θ(t) = θ̇ t + θ̈ t2/2, (44)

whereθ̇ andθ̈ are supposed to be constant or slowly varying. In this case the integral over time (37)
can also be taken analytically but the result is rather complicated. We need to take the integral

∫ tmax

0
dt exp[iθ(t)]. (45)

Its real and imaginary parts are easily expressed through the Fresnel functions. So the amplitude
squared is given by the functions tabulated in Mathematica and the position of the equilibrium point
can be calculated, as in the previous case, by numerical calculation of one dimensional integral.

The r.h.s. of Eq. (41) as functions ofθ̇ for different values ofτ are presented in Fig. 2, left panel.
It is interesting that the dependence onτ is not monotonic. This can be explained by that at smallτ

the effects ofθ̈t2 are not essential.
To check the dependence onθ̈ we calculated again the r.h.s. of Eq. (41) but now as functions of θ̈

presented in the right panel in Fig. 2. We see that the equilibrium point oscillates as a function ofθ̈.

6 Conclusion

We argue that in the standard descriptionθ̇ is not formally the chemical potential, though in thermal
equilibriumµB tends toθ̇ with numerical, model dependent, coefficient. Moreover, this is not always
true but depends upon the chosen representation for the "quark" fields. In the theory described by the
Lagrangian (9) which appears "immediately" after the spontaneous symmetry breaking,θ(t) directly
enters the interaction term in this Lagrangian and in equilibriumµB ∼ θ̇ indeed. On the other hand,



Figure 2. Relative differences between equilibrium solutions andθ̇/T , normalized tȯθ/T . Left: as functions of
θ̇ for differenttmax: τ ≡ tmaxT = 30 (thick); 10 (dashed); 3 (dotted);θ̈ = 0.1. Right: as functions of̈θ for different
θ̇: θ̇ = 0.1 (thick); 0.2 (dashed); 0.3 (dotted);τ ≡ tmaxT = 10.

if we transform the quark field, so that the dependence onθ is shifted to the bilinear product of the
quark fields (11), then chemical potential in equilibrium does not tend tȯθ, but to zero. On the other
hand, the magnitude of the baryon asymmetry in equilibrium is always proportional tȯθ. It can be
seen, according to the equation of motion of the Goldstone field, that θ̇/T drops down in the course
of the cosmological cooling asT 2, so the baryon number density in the comoving volume decreases
in the same way. So to avoid complete vanishing ofnB the baryo-violating interaction should switch-
off at some non-zeroT . This is always the case but the dependence on the interaction strength is
non-monotonic.

The assumption of constant or slowly changingθ̇, which is usually done in the SBG scenario, may
be not fulfilled and to include the effects of an arbitrary variation ofθ(t) as well as the effects of the
finite time integration we transform the kinetic equation insuch a way that it becomes operative in the
case of non-conserved energy. A shift of the equilibrium value of the baryonic chemical potential due
to this effect is numerically calculated.

Acknowledgement.EA and AD thank the support of the Grant of President of Russian Federation
for the leading scietific schools of the Russian Federation,NSh-9022.2016.2. VN thanks the support
of the Grant RFBR 16-02-00342.

References

[1] A. Cohen, D. Kaplan, Phys. Lett.B 199, 251 (1987).
[2] A. Cohen, D. Kaplan, Nucl.Phys.B308, 913 (1988).
[3] A. G. Cohen, D.B., A.E. Nelson, Phys.Lett.B263, 86-92 (1991).
[4] A.D.Dolgov, Phys. Repts222(1992) No. 6;

V.A. Rubakov, M.E. Shaposhnikov, Usp. Fiz. Nauk166, 493 (1996);
A. Riotto, M. Trodden, Ann. Rev. Nucl. Part. Sci.49, 35 (1999);
M. Dine, A. Kusenko, Rev. Mod. Phys.76, 1 (2004).

[5] A.D. Dolgov, Surveys in High Energy Physics13, 83 (1998).
[6] A.D. Dolgov, Ya.B. Zeldovich, Uspekhi Fizicheskih Nauk130, 559 (1980); Rev. Mod. Phys.53,

1-41 (1981).
[7] A.D. Dolgov, Phys. Atom. Nucl.73, 588-592 (2010).


	1 Introduction
	2 Spontaneous symmetry breaking and goldstone mode 
	3 Kinetic equation for time independent amplitude 
	4 Kinetic equation for time-varying amplitude 
	5 Examples of time-varying  
	5.1 Constant  
	5.2 Second order Taylor expansion of (t) 

	6 Conclusion 

