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Abstract. Generation of the cosmological baryon asymmetry in frammksvof sponta-
neous baryogenesis is studied in detail. It is shown thatetation between baryonic
chemical potential and the time derivative of the (pseudij&one field essentially de-
pends upon the representation chosen for the fermionicsfigith non-zero baryonic
number (quarks). Kinetic equation is modified and numesicalved in equilibrium for
the case of time dependent external background or finitgriation time to be applicable
to the case when energy conservation law is formally vidlate

1 Introduction

One of the popular scenarios of baryogenesis is the sparian®aryogenesis (SBG) proposed in
papers|[1=3], for reviews see e.g. Refs.[4, 5]. It is assuthatdin the unbroken phase the theory is
invariant with respect to the globll(1)-symmetry, which ensures conservation of baryonic nemmb
This symmetry is spontaneously broken and in the brokeneptigsLagrangian density acquires the
term

Lsg = (9,0)33, 1)
whered is the Goldstone field and; is the baryonic current. Due to the spontaneous symmetry
breaking (SSB) this current is not conserved. The next $ahd statement that the Hamiltonian
density corresponding tdsg is simply the Lagrangian density taken with the opposita:sig

Hsp = —Lsg = —(9,6)Ig - 2)

For the spatially homogeneous figdd= 6(t) this Hamiltonian is reduced té{sg = —6ng, where
ng = Jg is the baryonic number density, so it is tempting to identifyith the chemical potentials,
of the corresponding system. If this is the case, then imthéequilibrium the baryon asymmetry

would evolve to: B 5 B -
_ 9sBaq 2 M gsBo (., 6
Ng = 5 (,uT + ;) =5 (9T + F) , 3
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whereT is the cosmological plasma temperature and B are respectively the number of the spin
states and the baryonic number of quarks, which are supposkd the bearers of the baryonic
number.

It is interesting that for successful SBG two of the threeltBakv’s conditions for the generation
of the cosmological baryon asymmetry, namely, breakingpefrhal equilibrium and a violation of C
and CP symmetries are unnecessary. This scenario is angltdgpbaryogenesis in absence of CPT
invariance, if the masses of particles and antiparticlesléiierent. In the latter case the generation of
the cosmological baryon asymmetry can also proceed in tdexquilibrium [6, 7].

In this work the classical version of spontaneous baryogjeiiestudied. The talk is organized as
follows. In Sectio P the general features of the spontasboeaking of baryonit) (1)-symmetry are
described, and the (pseudo)Goldstone mode, its equatimtidén, and baryonic chemical potential
are introduced. Next, in Sdd. 3 the standard kinetic equatistationary background is presented. In
Sec[4 we derive kinetic equation in time dependent extdigldlandor for the case when energy is
not conserved because of finite limits of integration overeti Several examples, when such kinetic
equation is relevant, are presented in §&c. 5. Lastly inee. conclude.

2 Spontaneous symmetry breaking and goldstone mode

Let us consider the theory of complex scalar fi®ldnteracting with "quarks"Q, and "leptons"L,
with the Lagrangian:

L(D) = ¢"8,0°9,® - V(& D) + Q(iy"8, — Mq) Q + L(iy*d, - m)L + Lim(®,Q L),  (4)

where L describes the interaction betwe@rand fermionic fields. In the toy model studied below
we take it in the form:

V20
m

= (@ Q +he., (5)

Line =
whereQ° is charged conjugated quark spino¥ is a parameter with dimension of mass, anis
related to the vacuum expectation valuabodefined below in Eq[{7). Such an interaction can appear
e.g. inSU(5) Grand Unified Theory. For simplicity, in our toy model we dot take into account the
quark colors.

B-non conserving interaction may have manffetient forms. The one presented above describes
transition of three quark-type fermions into (anti)lept@here may be transformation of two or three
quarks into equal number of antiquarks. Such interacti@erilzes neutron-antineutron oscillations.
There even can be a "quark" transition into three "leptom3pending on the interaction type the
relation betweed and the &ective chemical potential would havef@irent forms.

Note thatQ andL can be any fermions, not necessarily quarks and leptoneaitémdard model.
For example, they can be new heavy fermions. They may possadlar or the same quantum
numbers as the quarks and leptons of the standard model andaugle to the ordinary quarks and
leptons. In sectiofnl4 we consider another model to studytikmef the baryon asymmetry generation
which allows for the transformationL3< Q or 2Q < 2Q. They are surely not permitted for the
standard quarks. However, the procegs-3 3qis permitted and kinetics of this process is essentially
the same. We denote logythe fermionic field with the same quantum number as the usiakq

The theory[(#) considered in this section is invariant uriderfollowingU (1)-transformations:

-0, Qoe'®Q, LoL. (6)



In the unbroken symmetry phase this invariance leads todhgarvation of the total baryonic number
which includes the baryonic number & taken to be unity, and that of quarks, equal {8.1In
realistic model the interaction of left- and right-handedhfiions may be dierent but we neglect this
possible diference in what follows.

We assume that the globdl(1)-symmetry is spontaneously broken at the energy statethe
usual way, e.g. via the potential of the form

V() = 2(0°® - £2/2)° . (7)

The resulting scalar field vacuum expectation valu@is= f&%/f/ V2 with a constant phas®.

Below the scalef we can neglect the heavy radial mode®fwith the massnaga = AY?f,
since being very massive it is frozen out, but this simplifarais not necessary and is not essential
for the baryogenesis. The remaining light degree of free@tothe variable fields, which is the
Goldstone boson of the spontaneously brokm). Up to a constant factor the fiellis the angle
around the bottom of the Mexican hat potential describeddpy(B). Correspondingly we introduce
the dimensionless angular figdds ¢/ f:

o= fd? V2= 1d/ V2. (8)

As a result the following #ective Lagrangian fof is obtained:
f2 = . — .
L1(6) = 76,196”9 + Qu(iv*0y — mo)Qq + L(iv*0, — m )L +

jo
(% (D, Q0@ Q) + h.c.) U@, ©
Here we introduced "by hand" potentia(6), which may appear due to an explicit symmetry breaking
and can lead, in particular, to a nonzero mass.ofWe use the notatio; for the quark field to
distinguish it from the phase rotated figQ¥ introduced below in Eg.[(11). In a realistic model the
quark fields should be (anti)symmetrized with respect torcoldices, omitted here for simplicity.

If U(®) = 0, the theory still remains invariant under the global tfarmsations (i.e. withe =
const):

Q—>e_i"/3Q, L-L 68-60+c. (10)

If we only rotate the quark field as above but with coordinapehdentr = 6(t, x), introducing the
new fieldQ; = e7%/3Q;,, then the Lagrangiafl(9) is transformed into:

f2 = . =
L7(6) = 7(9,16’6”9 + Qa(iv"0y — M) Q2 + L(iy#0, — m )L +

1 — —
(@ (QyuL)(Q2y, Q) + h.C.) +(0,0)F - U(0), (11)
where the quark baryonic currentls = (1/3)Q_yﬂQ. Note that the current has the same form in terms

of Q; andQs.
The equation of motion for the quark fie@, obtained from Lagrangiafl(9) has the form:

—i6

(i3, - mQ)Qu + % [7,L(Qu7, QD) + 27, Q(Quy, )] = 0. (12)



Analogously the equation of motion for the phase rotated fggl derived from Lagrangiaf(11) is:

(701 =m0 + 5779,0) Q2 + 5 L@ 8 + 26y = 0. (13

Equations for¢-field derived from these two Lagrangians in flat space-tirmeehrespectively the
forms:

i —i0

g

2(02 — A)9 + U’(6) +

(QuyuL)( Q1 §>+h.c.] =0 (14)

and
f2(02 — A)9 + U’(0) + 8,35 = 0, (15)

whereU’(6) = dU/dé.

Using either the equation of motion {12) or{13) we can chéeclt the baryonic current is not
conserved. Indeed, its divergence is:

M e = C\ (.
Oulg = E(Ql)’u 1(Quy L) + h.c. (16)

(and similarly forQ, but without the factor exp(i6)). So the equations of motion férin both cases
(@4) and[(Ib) coincide, as expected.

In the spatially homogeneous case, wided; = hg andd = 6(t), and if U(6) = 0, equation[{T5)
can be easily integrated giving:

£2[6t) - 0(tin)| = —na(t) + na(tin) (17)

It is usually assumed that the initial baryon asymmetry sta@s ng(tin) = O.

The evolution ofng(t) is governed by the kinetic equation discussed in Skc. 3¢hwhllows
to expressg throughé(t) and thus to obtain the closed systems of, generally spgakitegro-
differential equations. In thermal equilibrium the relationizeng andng may become an algebraic
one, but this is true only in the case when the integrationr tuee is suficiently long and if is
constant or slowly varying function of time.

In cosmological Friedmann-Robertson-Walker (FRW) baokgd and space-independéei(t)
equation[(1b) is transformed to:

2(8; + 3H)8 + U’(6) = —(8; + 3H)ng. (18)

We do not include the curvaturéects into the Dirac equations because this is not necessanhat
follows. Still we are using expression for the current diearce in the fornD, J* = ng + 3Hng, but
not justng.

If particles (fermions) are in thermal equilibrium with pest to baryo-conserving interactions,
then their phase space distribution has the form:

foq = [1+ expE/T - &p)] ", (19)

where dimensionless chemical potentiglhas equal magnitude but opposite signs for particles and
antiparticles. The baryonic number density, for srédgllis usually given by the expression

Ng = gsBqéaT?/6 (20)



(compare to Eq[{3)). However, the relationl(20) betweerbdmyonic number density and chemical
potential is true only for the normal relation between thergg and three-momentug,= /p? + mé.
This is not the case if the dispersion relation has the form

E=.p?+m+6/3 (21)

derived from the equation of motiop_{13), where the signefer to particles or antiparticles respec-
tively, as we see a little below. We should note that the alabispersion relation is derived under
assumption of constant or slow varyifigOtherwise the Fourier transformed Dirac equation cannot
be reduced to the algebraic one.

If the baryon number is conservedg remains constant in comoving volume and it means in
turn thatég = const for massless particles. If and when non-conservation ofdyer is switched
on, &g evolves according to kinetic equation. Complete thermaildxjium in the standard theory
demandsig — 0, but a deviation from thermal equilibrium of B-nonconsegvinteraction leads to
generation of non-zergs and correspondingly to non-zeng. As we will see in Se¢.]4, SBG allows
for generation of nonzero baryonic number in complete tlaequilibrium.

In terms of¢g and the new function = /T3 equation[(IB) takes the same form as Eql (17):

2 [1(t) — n(ti)] = ~ 22> < [¢8() - Zatn)] (22)
and thus
o) 6ltin) g9sBo
T3(t) - Ti3n ]_ [£8(1) — &a(tin)] - (23)

As we have already mentioneus(tjn) = 0, so according to Eq[_{20) we should also takéi,) = 0
However this initial condition for chemical potential istrtoue in the theory with the Lagrangidn{11)
and the Dirac equatiof (IL3) for the quark field, though thedittom ng(ti,) = O is supposed to be
always valid. Indeed, the B-nonconserving interaction mowserves energy and thus this process
does not split the energies of quarks and antiquarks. Hawthese energies are split from the very
beginning due to relatiof (21). Correspondingly using €f@) and[(21L) we find in the massless case:

o= [ Bt 19= 22 e ) (24)

Ifinitially ng = 0, thengg(tin) = 6in/(3Tin). In the case of conserved baryonic numbgremains zero
and thus in equilibrium the relatiafs = 6/(3T) must be true at any time. When the B-nonconserving
interaction is on, the chemical potential would evolve andghhevolve even down to zero, leading to
generation of non-zero baryonic density, as is discuss&eah 4.

In the pseudogoldstone case, wh#f®) # 0, equations of motioh (15) dr_(IL8) cannot be so easily
integrated, but in thermal equilibrium the system of equradicontaining(t) andég(t) can be reduced
to ordinary diferential equations which are easily solved numericallyt @wequilibrium one has to
solve much more complicated system of the ordinaffedéntial equation of motion fai(t) and the
integro-diferential kinetic equation. It is discussed below in $éc. 3.

3 Kinetic equation for time independent amplitude

The temporal evolution of the distribution function of itlpe particle fi(t, p), in an arbitrary process
i +Y e Zinthe FRW background, is governed by the kinetic equation:

dfl |coll
i

= (0t — H pidp)fi = (25)



with the collision integral equal to:

o 4
Iicoll _ % Z f dvz dvyd*(pi + py - p2)
I zy

[|A(z Si+Y)R ]_[ ]_[(1+ )= 1Al + Y = 2)12f, ]_[ ]_[(1+ ], (26)

i+Y

whereA(a — b) is the amplitude of the transition from stageto stateb, Y andZ are arbitrary,
generally multi-particle state] |y f) is the product of the phase space densities of particlesiigrm
the statey, and

dvy = ]_[dp ]_[ o= (2]7)3 27)

The signs +" or =" in [](1 « f) are chosen for bosons and fermions respectively. We netjjiec
effects of the space-time curvature in the collision integtgillv is generally a good approximation.

In the lowest order of perturbation theory the amplituderahsition from an initial statgén) to
a final statgfin)y is given by the integral of the matrix element of Lagrangianslty between these
states, integrated over 4-dimensional spdfbe The quantum field operators are expanded in terms
of creation-annihilation operators with a plane wavefiioents: ~ exp(-iEt + ipx).

When the amplitude of the process is time-independent,ttieemtegration of the product of the
exponents in infinite integration limits leads to the enengymentum conservation factors:

fdtd3x @ 1(Ein—Erin)t+i(Pin—Prin)x _ (271')46(Ein — Efin) ((Pin = Pfin), (28)

whereE;,, Ein, Pin, andPj, are the total energies and 3-momenta of the initial and fiaéés respec-
tively. The amplitude squared contains delta-functionarozwhich is interpreted as the total time
duration,tyax, Of the process and as the total space voluvheThe probability of the process given
by the collision integral is normalized per unit time andurok, so it must be divided By andtyx.

We are interested in the evolution of the baryon number dgmnghich is the time component of
the baryonic currend*: ng = J* Due to the quark-lepton transitions the current is nonseoved
and its divergence is given by E@. {16). The similar expmrsss evidently true in terms dP, but
without the factor exp{if). Let us first consider the latter case, when the interadgsiaiescribed by
the LagrangiarL(11), which contains the product of thre@atktiand one "lepton" operators, and take
as an example the procegs+ gz « q+ 1.

Since the interaction in this representation does not dipartime, the energy is conserved and
the collision integral has the usual form with conserved{fmomentum. Quarks are supposed to be
in kinetic equilibrium but probably not in equilibrium wittespect to B-nonconserving interactions,
so their distribution function has the form:

fo = exp(—$ + §B) and fg = exp(—$ - gB). (29)

Here and in what follows the Boltzmann statistics is usedc&ithe dispersion relation for quarks

and antiquarks[{21) depends upgrthe baryon asymmetry in this case is given by Edl (24) and the

kinetic equation takes the form:

gsBg d 0
Q (5

6 qiléB~ ﬁ) = —C I, (30)




wherec; is a numerical factor of order unity atds the rate of baryo-nonconserving reactions. If the
amplitude of these reactions has the form presented il B, tlienl” ~ T°/n.

For constant or slow varying temperature the equilibriuotson to this equation igg = 0 and
the baryon number density is proportionaktg ~ 6T?2, with 6 evolving according Eq[{17) withg
expressed through

Let us check now what happens if the dependenegE®moved from the quark dispersion relation
to the B-nonconserving interaction term114). The expoesfor the collision integral[{26) is valid
only in absence of external field depending on coordinatesuf case, when quarks "live" in tiag)-
field, the collision integral should be modified in the follioy way. Now we have an additional factor
under the integral(28), namely, exf(t)]. In general case this integral cannot be taken analyyical
but if we can approximaté(t) asé(t) ~ 6t with a constant or slowly varying, the integral is simply
taken giving e.g. for the process of two quark transfornmeitito antiquark and leptouwj, + g < g-+l,
the energy balance condition imposedd{fq, + Eq, — Eg— Ei - 6). In other words the energy is
non-conserved due to the action of the external @l The approximation of linear evolution 6f
with time can be valid if the reactions are fast in comparistth the rate of th&-evolution.

Returning to our case we can see that the collision integtagjrated over the three-momentum
of the particle under scrutiny (i.e. partidlen eq. [26) ) e.g. for process tlg + g, — | + qturns into:

ng + 3HNg ~

f dr1qUtq,c, AP6(Eq, + Eq, — Ei = Eq— 0)3(Pin — Prin)er&/T (€f760T _ ge) - (31)

wheredr g = d®pid®pg/[4E E4(27)°]. We assumed here that all participating particles areetic
equilibrium, i.e. their distribution functions have theio

f=1/[exp(E/T - ¢) + 1], (32)

with & = u/T being dimensionless chemical potential. In express$ioh§3handé& denote baryonic
and leptonic chemical potentials respectively and ffieces of quantum statistics are neglected but
only for brevity of notations. Theirféects are not essential in the sense that they do not change
the conclusion. The assumption of kinetic equilibrium idl\estified because it is enforced by the
very dficient elastic scattering. Another implicit assumptiorhis tisual equilibrium relation between
chemical potentials of particles and antiparticless —u, imposed e.g. by the fast annihilation of
quark-antiquark or lepton-antilepton pairs into two angeéhphotons. Anyhow the assumption of
chemical equilibrium is one of the cornerstones of the spregbus baryogenesis.

The conservation off + L) implies the following relationg, = —£g/3. Keeping this in mind, we
find

hB+3HnBz—(1—eé/T‘3‘cB+‘fL)| "3(?_1?058)'» (33)

where we assumed that andd/T are small. In relativistic plasma with temperatdrehe factorl,
coming from the collision integral, can be estimated asT8/m*, wheremis a numerical constant
with dimension of mass. It ffiers frommy, introduced in eq[{9), by a numerical dheient.

The asymmetry between quarks and antiquarks having thibdison (32) with equal by magni-
tude but opposite by sign chemical potentials and identiisgiersion relations is equal to

Ng = CBfBTS, (34)

whereCg is a constant, see EqJ(3) in the limit pf«< T, because in the realistic case the baryon
asymmetry is quite small.



For a large factot we expect the equilibrium solutiofy = (3/10¥/T, s0b up to the diferent
numerical factor seems to be the baryonic chemical poleati@xpected in the usually assumed SBG
scenario. An emergence of the factgd® instead of 13 in the equilibrium expression is due to the
conservation lavB + L = const. However, as we have seen above, the baryonic chemicaltzdien
not aways proportional tét).

4 Kinetic equation for time-varying amplitude

In the case the interaction proceeds in a time dependengfieldr the time duration of the process is
finite, then the energy conservation delta-functioh id @igs not emerge and the described in Bec. 3
approach becomes invalid, so one has to make the time ititagrgith an account of time-varying
background and integrate over the phase space withoutyeoengervation.

In what follows we consider two-body inelastic process vhigttyonic number non-conservation
with the amplitude obtained from the last term in Lagrand@n At the moment we will not specify
the concrete form of the reaction but only will say that itie two-body reaction

a+boc+d, (35)

wherea, b, ¢, andd are some quarks and leptons or their antiparticles. Theeegjum for the evolution
of the baryonic number densityg, follows from eq. [(2b) after integration of its both sideseov
d3pi/(2r)3. Thus we obtain:

(2)°

hB+3HnB = - N
max

deindein 8(Pin = Ptin) IAZ (fafp — fcfa) | (36)

where e.gdvi, = d®pad®py/[4E4En(27)®] and the amplitude of the process is defined as

trmax .
A = (f dt el[(EC+Ed_Ea_Eb)t+9(t)]) F(pas pb» pC» pd) B (37)
0

andF is a function of 4-momenta of the participating particlestedmined by the concrete form of
the interaction Lagrangian. In what follows we consider pessibilities:F = const andF = y* m;(z,
where in the last casg' symbolically denotes the product of the Dirac spinors ofipesa, b, ¢, and
d.

In the case of equilibrium with respect to baryon conservaagtions the distribution functions
have the canonical formfy = exp(Ea/T + &), whereé&, = /T is the dimensionless chemical
potential. So for constari the productA?(faf, — f.fq) depends upon the particle 4-momenta only
throughE;, andE;in, where

Ein = Ea + Ep, and Etin = Ec + Eg. (38)

To integrate Eq.[(36) over the phase space it is conveniechange the integration variables,
according to:

d®pa d*pp

2E, 2E;,

= d*Pin d*Rin 6(P, + R2) 6(PinRin) (39)

wherePj, = pa + pp andRiy = pa — pp and masses of the particles are taken to be zero. Analogous
expressions are valid for the final state particles. Evigie¢hé time components of the 4-vectdtare

the sum of energies of the incoming and outgoing partié¥$,= Ei, andP{’ = Efin. Now we can



perform almost all (but one) integrations and finally we abthe kinetic equation in the following
form:

5

fig + 3HNg = — f " dy e (JA2 + A Pe?) - &5 (AP + A Pe )], (40)

257T6 tmax 0
wherey = E_/T is the dimensionless energy wilh being the diference between initial and final
energies of the systerk, = Ej, — Efin, A, andA_ are amplitudes taken at positive and negafive
respectively. Note, that with the substitutien — |E_| the only diference betweeA, andA_ is that
A_(9) = Ai(-0).

The equilibrium is achieved when the integral in Eq.l(40)ishes. Clearly it takes place at

(A LPe + AP
(AR +IAPey)y

where the angular brackets mean integration dyeas indicated in Eq[(40).

This results above are obtained for the amplitude which doeédepend upon participating parti-
cle momenta. The calculations would be be somewhat more lazatgd if this restriction is not true.
For example if the baryon non-conservation takes placeunfiermion interactions, then the ampli-
tude squared can contain the terms of the fopapg)?/m; or (papc)?/m, etc. The ect of such
terms results in a change of the numericalfiomnt in Eq. [3B) but the latter is unknown anyhow,
and what is more important the temperatureftoient in front of the integral in this equation would
change fromT> to T%/n,.

fatép—Ec— &= (41)

5 Examples of time-varying 6
5.1 Constant 6

This is the case usually considered in the literature andgithplest one. The integrd[(37) is taken
analytically resulting in:

2 —2c0S[0 — E_)tma]
(6-E-)?

whereE_ is running over the positive semi-axis.
_ For largetmax this expression tends ®E- — 6), S0|A[? = 276(E- — 6)tmax and|A_|? = 276(E- +
O)tmax = 0O, if 6 > 0 and vice versa otherwise. Hence the equilibrium soluson i

batéo—bc—Ea—0=0, (43)

coinciding with the standard result.

The limit of & = const corresponds to the energy non-conservation by the riser¢q) af the
energy of the final state in reactidn{35) exactlythyHowever iftyay is not suficiently large, the non-
conservation of energy is not equalitdut somewhat spread out and the equilibrium solution would
be diferent. There is no simple analytical expression in this casaeve have to take the integral
(1) overy numerically to find at what values of chemical potentigls,it vanishes and this point
determines the equilibrium values of the chemical poténiiaexternab field.

The results of the calculations are presented in[Hig. 1. énleft panel the values of the r.h.s.
of Eq. (41) are compared withy T (thick line) for two values of the cutfbin time integrationr =
tmaxT = 10 (dashed line) and = 3 (dotted line). In the right panel relativeftiirences between the
r.h.s. of Eq.[[4l) and/T, normalized tog/T, as functions of for different maximum time of the

|A? ~

: (42)



035

L L L L L L
0.05 0.10 0.15 0.20 0.25 0.30

<
—0.05[ S 0.30 -
-0.10 - ~o 0.25 -
-0.15[ ~o

-0.20 [ ~

-0.25 |-

030 0.65 0.%0 o.‘15 0.‘20 0.‘25 o.éo
Figure 1. Left: 6/T for infinite time integration (thick line). Cutbin time integrationr = tyuxT = 10 (dashed);
3 (dotted).Right: relative diterences between the equilibrium solutions éitl, normalized t@/T, as functions
of 6 for differenttax: 7 = traxT = 30 (thick); 10 (dashed); 3 (dotted).

integration are depicted. We see that#fef 30 (thick line) the deviations are less than 10%, while for
7 = 3 (dotted line) the deviations are about 30%. If we takdose to unity, the deviations are about
100%. The value of/T is bounded from above by 0.3 because at lat(e the linear expansion,
used in our estimates, is invalid.

5.2 Second order Taylor expansion of 6(t)
Here we assume thaft) can be approximated as
o(t) = Ot + 61?/2, (44)

whered andé are supposed to be constant or slowly varying. In this caséntiegral over time(37)
can also be taken analytically but the result is rather caraf@d. We need to take the integral

f ™ dtexpla)]. (45)
0

Its real and imaginary parts are easily expressed througlitbsnel functions. So the amplitude
squared is given by the functions tabulated in Mathematicbthe position of the equilibrium point
can be calculated, as in the previous case, by numericallatitm of one dimensional integral.

The r.h.s. of Eq[{41) as functions &for different values of are presented in Fifl 2, left panel.
It is interesting that the dependenceis not monotonic. This can be explained by that at small
the dfects offt? are not essential.

To check the dependence éme calculated again the r.h.s. of E[G.J(41) but now as funstfid
presented in the right panel in FIg. 2. We see that the equitibpoint oscillates as a function 6f

6 Conclusion

We argue that in the standard descriptiois not formally the chemical potential, though in thermal
equilibriumug tends tog with numerical, model dependent, ¢hieient. Moreover, this is not always
true but depends upon the chosen representation for thek'diiedds. In the theory described by the
Lagrangian[(B) which appears "immediately" after the spoebus symmetry breaking(t) directly
enters the interaction term in this Lagrangian and in elguilim ug ~ 6 indeed. On the other hand,
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if we transform the quark field, so that the dependencé mnshifted to the bilinear product of the
quark fields[(I11), then chemical potential in equilibriunedmot tend t@, but to zero. On the other
hand, the magnitude of the baryon asymmetry in equilibrisralivays proportional té. It can be
seen, according to the equation of motion of the Goldstona, fieatd/ T drops down in the course
of the cosmological cooling a&?, so the baryon number density in the comoving volume deeseas
in the same way. So to avoid complete vanishinggthe baryo-violating interaction should switch-
off at some non-zerd. This is always the case but the dependence on the intamesttiength is
non-monotonic.

The assumption of constant or slowly changihwhich is usually done in the SBG scenario, may
be not fulfilled and to include theffiects of an arbitrary variation @ft) as well as the féects of the
finite time integration we transform the kinetic equatiosirch a way that it becomes operative in the
case of non-conserved energy. A shift of the equilibriunugaif the baryonic chemical potential due
to this dfect is numerically calculated.
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