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Gauge-invariant description of Higgs phenomenon and quark confinement

Kei-Ichi Kondo∗

Department of Physics, Faculty of Science, Chiba University, Chiba 263-8522, Japan

We propose a novel description for the Higgs mechanism by which a gauge boson acquires the mass.
We do not assume spontaneous breakdown of gauge symmetry signaled by a non-vanishing vacuum
expectation value of the scalar field. In fact, we give a manifestly gauge-invariant description of
the Higgs mechanism in the operator level, which does not rely on spontaneous symmetry breaking.
This enables us to discuss the confinement-Higgs complementarity from a new perspective. The
“Abelian” dominance in quark confinement of the Yang-Mills theory is understood as a consequence
of the gauge-invariant Higgs phenomenon for the relevant Yang-Mills-Higgs model.

PACS numbers: 12.38.Aw, 05.10.Cc, 11.10.Wx

I. INTRODUCTION

The Brout-Englert-Higgs mechanism or Higgs phe-
nomenon for short is one of the most well-known mecha-
nisms by which gauge bosons [1] acquire their masses [2–
4]. In the conventional wisdom, the Higgs mechanism is
understood in such a way that the spontaneous symmetry
breaking (SSB) generates mass for a gauge boson: The
original gauge group G is spontaneously broken down to
a subgroup H by choosing a specific vacuum as the phys-
ical state from all the possible degenerate ground states
(the lowest energy states). Such SSB of the original gauge
symmetry is caused by a non-vanishing vacuum expecta-
tion value (VEV) 〈φ〉 6= 0 of a scalar field φ governed
by a given potential V (φ). For a continuous group G,
there appear the massless Nambu-Goldstone bosons as-
sociated with the SSB G→ H according to the Nambu-
Goldstone theorem [5, 6]. When the scalar field couples
to a gauge field, however, the massless Nambu-Goldstone
bosons are absorbed to provide the gauge boson with the
mass. Thus, the massless Nambu-Goldstone bosons dis-
appear from the spectrum. In a semi-classical treatment,
the VEV 〈φ〉 is identified with one of the minima φ0 of
the scalar potential V (φ), namely, 〈φ〉 = φ0 6= 0 with
V ′(φ0) = 0.
Although this paper focuses on the Higgs phenomenon

in the continuum space time, it is very instructive to
learn the lattice results, because some non-perturbative
and rigorous results are available on the lattice. Espe-
cially, the lattice gauge theory à laWilson [7] gives a well-
defined gauge theory without gauge fixing. The Elitzur
theorem [8] tells us that the local continuous gauge sym-
metry cannot break spontaneously, if no gauge fixing is
introduced. In the absence of gauge fixing, all gauge non-
invariant Green functions vanish identically. Especially,
the VEV 〈φ〉 of the scalar field φ is rigorously zero,

〈φ〉 = 0, (1)

no matter what the form of the scalar potential V (φ).
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Therefore, we are forced to fix the gauge to cause the
non-zero VEV. Even after the gauge fixing, however, we
still have the problem. Whether SSB occurs or not de-
pends on the gauge choice. For instance, in non-compact
U(1) gauge-Higgs model under the covariant gauge fixing
with a gauge fixing parameter α, the SSB occurs 〈φ〉 6= 0
only in the Landau gauge α = 0, and no SSB occur
〈φ〉 = 0 in all other covariant gauges with α 6= 0, as
rigorously shown in [9, 10]. In an axial gauge, 〈φ〉 = 0
for compact models [11]. In contrast, it can happen that
〈φ〉 6= 0 in a unitary gauge regardless of the shape of the
scalar potential. It is obvious that the VEV of the scalar
field is not a gauge-independent criterion of SSB.

Even after breaking completely the local gauge sym-
metry G by imposing a suitable gauge fixing condition,
there can remain a global gauge symmetry H ′ of G. Such
a global symmetry H ′ is called the remnant global gauge
symmetry [12, 13]. Only a remnant global gauge symme-
try H ′ of the local gauge symmetry G can break sponta-
neously to cause the Higgs phenomenon [14]. However,
such a subgroup H ′ is not unique and the location of
the breaking in the phase diagram depends on H ′ in the
gauge-Higgs model. The relevant numerical evidences are
given on a lattice [13] for different H ′ allowed for various
confinement scenarios. Moreover, the transition occurs
in the regions where the Fradkin-Shenker-Osterwalder-
Seiler theorem [15, 16] assures us that there is no transi-
tion in the phase diagram. Thus, the spontaneous gauge
symmetry breaking is a rather misleading terminology.

These observations indicate that the Higgs phe-
nomenon should be characterized in a gauge-invariant
way without breaking the original gauge symmetry. In
this paper, we show that a gauge boson can acquire the
mass in a gauge-invariant way without assuming spon-
taneous breakdown of gauge symmetry which is signaled
by the non-vanishing VEV of the scalar field. We demon-
strate that the Higgs phenomenon occurs even without
such SSB. The spontaneous symmetry breaking is suffi-
cient but not necessary for the Higgs mechanism to work.
Remember that quark confinement is realized in the un-
broken gauge symmetry phase with mass gap. Thus, the
gauge-invariant description of the Higgs mechanism can
shed new light on the complementarity between confine-
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ment phase and Higgs phase [17].

II. YANG-MILLS-HIGGS MODEL AND THE
CONVENTIONAL HIGGS MECHANISM

In this paper we use the notation for the inner prod-
uct of the Lie-algebra valued quantities A = A ATA and
B = BATA; A ·B := 2tr(A B) = A ABB2tr(TATB) =
A ABA under the normalization tr(TATB) = 1

2δAB

for the generators TA of the Lie algebra su(N) (A =
1, 2, ..., dimG = N2 − 1) for a gauge group G = SU(N).
The SU(N) Yang-Mills field Aµ(x) = A A

µ (x)TA has the

field strength Fµν(x) = FA
µν(x)TA defined by Fµν :=

∂µAν − ∂νAµ − ig[Aµ,Aν ].
We consider a Yang-Mills-Higgs theory specified by a

gauge-invariant action. The Yang-Mills field Aµ(x) =
A A

µ (x)TA and the adjoint scalar field φ(x) = φA(x)TA

obey the gauge transformation:

Aµ(x)→ U(x)Aµ(x)U
−1(x) + ig−1U(x)∂µU

−1(x),

φ(x)→ U(x)φ(x)U−1(x), U(x) ∈ G = SU(N). (2)

For concreteness, consider the G = SU(N) Yang-Mills-
Higgs theory with the Lagrangian density:

LYMH =− 1

4
F

µν (x) ·Fµν(x)

+
1

2
(Dµ[A ]φ(x)) · (Dµ[A ]φ(x))

− V (φ(x) · φ(x)). (3)

where we have defined the covariant derivative Dµ[A ] :=
∂µ − ig[Aµ, ·] in the adjoint representation. We assume
that the adjoint scalar field φ(x) = φA(x)TA has the fixed
radial length, which is represented by a constraint:1

φ(x) · φ(x) ≡ φA(x)φA(x) = v2. (4)

Notice that φ(x) · φ(x) is a gauge-invariant combina-
tion. Therefore, the potential V as an arbitrary function
of φ(x) · φ(x) is invariant under the gauge transforma-
tion. The covariant derivative Dµ[A ] := ∂µ − ig[Aµ, ·]
transforms according to the adjoint representation under
the gauge transformation: Dµ[A ]→ U(x)Dµ[A ]U−1(x).
This is also the case for the field strength Fµν(x). More-
over, the constraint (4) is invariant under the gauge
transformation and does not break the gauge invariance

1 After imposing the constraint (4), the subsequent argument
should hold irrespective of the form of the potential V . The
vacuum manifold in the target space of the scalar field is deter-
mined by the minima of the potential V , which also satisfies the
constraint (4). However, there are some options as to when and
how the constraint is incorporated, see e.g., (39). The potential
is omitted in what follows when any confusion does not occur.
Moreover, this model is perturbatively non-renormalizable and
the non-perturbative treatment is required.

of the theory. Therefore, LYMH of (3) with the constraint
(4) is invariant under the local gauge transformation (2).
For N = 2, this theory is nothing but the well-known

Georgi-Glashow model which exemplifies the SSB of the
local gauge symmetry from SU(2) down to U(1) except
for the magnitude of the scalar field being fixed (4). In
this paper, we focus our discussions on the SU(2) case.
First, we recall the conventional description for the

Higgs mechanism. If the scalar field φ(x) acquires a non-
vanishing VEV 〈φ(x)〉 = 〈φ〉, then the covariant deriva-
tive reduces to

Dµ[A ]φ(x) :=∂µφ(x) − ig[Aµ(x),φ(x)]

→− ig[Aµ(x), 〈φ〉] + ..., (5)

and the Lagrangian density reads

LYMH →−
1

2
trG{Fµν(x)Fµν (x)}

− g2trG{[A µ(x), 〈φ〉][Aµ(x), 〈φ〉]} + ....

=− 1

2
trG{Fµν(x)Fµν (x)}

− g2trG{[TA, 〈φ〉][TB , 〈φ〉]}A µA(x)A B
µ (x) + ....

(6)

To break spontaneously the local continuous gauge sym-
metry G by realizing the non-vanishing VEV 〈φ〉 of the
scalar field φ, we choose the unitary gauge in which
the scalar field φ(x) is pointed to a specific direction
φ(x)→ φ∞ uniformly over the spacetime.
This procedure does not completely break the original

gauge symmetry G. Indeed, there may exist a subgroup
H of G such that φ∞ does not change under the local H
gauge transformation. This is the partial SSB G → H :
the mass is provided for the coset G/H (broken parts),
while the mass is not supplied for the H-commutative
part of Aµ:

LYMH →−
1

2
trG{Fµν(x)Fµν (x)}

− (gv)2trG/H{A µ(x)Aµ(x)}. (7)

After the partial SSB, therefore, the resulting theory is
a gauge theory with the residual gauge group H .
For G = SU(2), by taking the usual unitary gauge in

which the scalar field φ(x) = φA(x)TA (A = 1, 2, 3) is
chosen so that

〈φ∞〉 = vT3, or 〈φA
∞
〉 = vδA3, (8)

the second term of (6) generates the mass term,

− g2v2trG{[TA, T3][TB, T3]}A µA(x)A B
µ (x)

=
1

2
g2v2(A µ1(x)A 1

µ (x) + A
µ2(x)A 2

µ (x)). (9)

For SU(2), indeed, the off-diagonal gluons A a
µ (a = 1, 2)

acquire the same mass MW := gv, while the diago-
nal gluon A 3

µ remains massless. Even after taking the
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unitary gauge (8), U(1) gauge symmetry described by
A 3

µ still remains as the residual local gauge symmetry
H = U(1), which leaves φ∞ invariant (the local rotation
around the axis of the scalar field φ∞).
Thus, the SSB is sufficient for the Higgs mechanism

to take place. But, it is not clear whether the SSB is
necessary or not for the Higgs mechanism to work.
In the complete SSB G → H = {1}, all components

of the Yang-Mills field become massive with no massless
components:

LYMH →−
1

2
trG{Fµν

Fµν} − (gv)2trG{A µ
Aµ}, (10)

and the resulting theory has no residual gauge symmetry.
This case should be separately discussed, see Appendix.

III. GAUGE-INVARIANT HIGGS
MECHANISM: SU(2) CASE

Next, we give a novel description, namely, a gauge-
invariant (gauge-independent) description of mass gener-
ation for gauge bosons without relying on the SSB. We
construct a composite vector field Wµ(x) from the Yang-
Mills field Aµ(x) and the (adjoint) scalar field φ(x) by

Wµ(x) := −ig−1[φ̂(x),Dµ[A ]φ̂(x)], (11)

with the unit scalar field φ̂ defined by

φ̂(x) := φ(x)/v, (12)

and the covariant derivative in the adjoint representation
Dµ[A ]φ := ∂µφ−ig[Aµφ]. We find that the kinetic term
of the Yang-Mills-Higgs model is identical to the “mass
term” of the vector field Wµ(x):

1

2
D

µ[A ]φ(x) ·Dµ[A ]φ(x) =
1

2
M2

WW
µ(x) ·Wµ(x),

MW :=gv, (13)

as far as the constraint (4) is satisfied. Indeed, this fact
is shown explicitly for G = SU(2):

g2v2W µ ·Wµ =v−22tr([φ,Dµ[A ]φ][φ,Dµ[A ]φ])

=v−2{(φ · φ)(Dµ[A ]φ ·Dµ[A ]φ)

− (φ ·Dµ[A ]φ)(φ ·Dµ[A ]φ)}
=(Dµ[A ]φ) · (Dµ[A ]φ), (14)

where we have used the constraint (4) and φ ·Dµ[A ]φ =
φ·∂µφ+φ·(gAµ×φ) = gAµ·(φ×φ) = 0, with φ·∂µφ = 0
following from differentiating the constraint (4).
Remarkably, the above “mass term” (13) of Wµ is

gauge invariant, since Wµ obeys the adjoint gauge trans-
formation:

Wµ(x)→ U(x)Wµ(x)U
−1(x). (15)

Therefore, the vector field Wµ becomes massive with-
out breaking the original gauge symmetry. The above
description shows that the SSB of gauge symmetry is
not necessary for generating the mass of gauge bosons
Wµ, since we do not need to choose a specific vacuum
from all possible degenerate ground states distinguished
by the direction of φ. The relation (11) gives a gauge-
independent definition of the massive gluon mode in the
operator level. The relation (11) is also independent from
the parameterization of the scalar field. See Appendix in
which the statement is exemplified for a simpler model.
How is this description related to the conventional one?

The constraint φ · φ = v2 represents the vacuum mani-
fold in the target space of the scalar field φ. The scalar
field φ subject to the constraint φ ·φ = v2 is regarded as
the Nambu-Goldstone modes living in the flat direction
at the bottom of the potential V (φ), giving the degener-
ate lowest energy states. Therefore, the massive field Wµ

is formed by combining the massless (would-be) Nambu-
Goldstone modes with the original massless Yang-Mills
field Aµ. This corresponds to the conventional explana-
tion that the gauge boson acquires the mass by absorb-
ing the Nambu-Goldstone boson appeared in association
with the SSB.
Despite its appearance (11) of Wµ obeying the adjoint

gauge transformation, the independent internal degrees
of freedom of the new field Wµ = (W A

µ ) (A = 1, 2, 3)
is equal to dim(G/H) = 2, since Wµ has no components
parallel to the scalar field, that is to say, Wµ is orthogonal
to the scalar field φ:

Wµ(x) · φ(x) = 0. (16)

Notice that this is a gauge-invariant statement. Thus,
Wµ(x) represent the massive modes corresponding to the
coset space G/H as expected. In this way, we can un-
derstand the residual gauge symmetry left in the partial
SSB: G = SU(2) → H = U(1). In fact, by taking the

unitary gauge φ(x)→ φ∞ = vφ̂∞, Wµ reduces to

Wµ(x)→− ig−1[φ̂∞,Dµ[A ]φ̂∞]

=[φ̂∞, [φ̂∞,Aµ(x)]]

=Aµ(x)− (Aµ(x) · φ̂∞)φ̂∞. (17)

Then Wµ agrees with the off-diagonal components for the

specific choice φ̂A
∞

= δA3:

W
A
µ (x)→

{

A a
µ (x) (A = a = 1, 2)

0 (A = 3)
. (18)

This suggests that the original gauge field Aµ is sepa-
rated into two pieces:

Aµ(x) = Vµ(x) + Wµ(x). (19)

By definition, the field Vµ(x) transforms under the gauge
transformation just like the original gauge field Aµ(x):

Vµ(x)→ U(x)Vµ(x)U
−1(x) + ig−1U(x)∂µU

−1(x). (20)
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Then the question is how to characterize the first piece
Vµ(x) which is expected to become dominant in the low-
energy E ≪ MW region, where Wµ(x) with the mass
MW can be negligible. According to (11), it is shown
that Wµ(x) = 0 is equivalent to

Dµ[V ]φ̂(x) = 0. (21)

Using the first equation (16) and the second equation
(21), we find that a composite vector field Vµ is con-
structed from the Yang-Mills field Aµ and the scalar field
φ as [18]:

Vµ(x) =cµ(x)φ̂(x) + ig−1[φ̂(x), ∂µφ̂(x)], (22)

cµ(x) := Aµ(x) · φ̂(x). (23)

In fact, this form for Vµ(x) agrees with Vµ(x) = Aµ(x)−
Wµ(x) when eq.(11) is substituted into Wµ(x). In the

unitary gauge φ(x)→ φ∞ = vφ̂∞, Vµ reduces to

Vµ(x)→ (Aµ(x) · φ̂∞)φ̂∞. (24)

Then, Vµ agrees with the diagonal component for φ̂A
∞

=
δA3:

V
A
µ (x)→

{

0 (A = a = 1, 2)

A 3
µ (x) (A = 3)

. (25)

Thus, the above arguments go well in the topologically
trivial sector.
In the topologically non-trivial sector, the above argu-

ment must be improved, since ∂µφ̂ is not identically zero
in the presence of singularities related to the topologi-
cal configuration. Indeed, in order to realize the unitary
gauge configuration starting from the hedgehog configu-
ration of the scalar field, we need to perform the singu-
lar gauge transformation in the presence of the ’t Hooft-
Polyakov magnetic monopole [19]. This case will be re-
fined later.
Notice that the decomposition equality (19) represents

a rather non-trivial statement where Vµ(x) is identified
with (22) and Wµ(x) is identified with (11). We first in-
troduce the fields Vµ(x) and Wµ(x) as composite field

operators of Aµ(x) and φ̂(x). Then we regard a set

of field variables {cµ(x),Wµ(x), φ̂(x)} as obtained from

{Aµ(x), φ̂(x)} based on change of variables :

{cµ(x),Wµ(x), φ̂(x)} ← {Aµ(x), φ̂(x)}, (26)

where (23) and (11) give respectively the transformation

law of cµ(x) and Wµ(x) from {Aµ(x), φ̂(x)}. Indeed, we
can calculate the Jacobian associated with this change
of variables. See [20, 37, 41] for details. Finally, we

identify cµ(x), Wµ(x) and φ̂(x) with the fundamental
field variables (which are independent up to the con-
straint (4)) for describing the massive Yang-Mills the-
ory anew. (Here fundamental means that the quanti-
zation should be performed with respect to those vari-

ables {cµ(x),Wµ(x), φ̂(x)} which appear e.g., in the path-
integral measure.)

According to the decomposition (19), the field strength
Fµν(x) of the gauge field Aµ(x) is decomposed as

Fµν [A ] :=∂µAν − ∂νAµ − ig[Aµ,Aν ]

=Fµν [V ] + Dµ[V ]Wν −Dν [V ]Wµ

− ig[Wµ,Wν ]. (27)

By substituting the decomposition (27) into the SU(2)
Yang-Mills-Higgs Lagrangian, we obtain

LYMH =− 1

4
Fµν [V ] ·Fµν [V ]

− 1

4
(Dµ[V ]Wν −Dν [V ]Wµ)

2 +
1

2
M2

WW
µ ·Wµ

+
1

2
Fµν [V ] · ig[W µ,W ν ]− 1

4
(ig[Wµ,Wν ])

2,

(28)

where each term is SU(2) invariant. Then it is easy to
observe that the vector field Wµ has the ordinary kinetic
term and the mass term. Therefore, there is a massive
vector pole in the propagator of Wµ (after a certain gauge
fixing). Thus, Wµ is not an auxiliary field, but is a prop-
agating field with the mass MW (up to possible quantum
corrections).

IV. CONFINED MASSIVE PHASE: SU(2) CASE

Remarkably, the field strength Fµν [V ](x) :=
∂µVν(x) − ∂νVµ(x) − ig[Vµ(x),Vν(x)] of Vµ(x) is shown

to be proportional to φ̂(x) [20]:

Fµν [V ](x) =φ̂(x){∂µcν(x) − ∂νcµ(x) +Hµν(x)},
Hµν(x) :=ig−1φ̂(x) · [∂µφ̂(x), ∂νφ̂(x)]. (29)

We can introduce the Abelian-like SU(2) gauge-invariant
field strength fµν(x) by

fµν(x) :=φ̂(x) ·Fµν [V ](x)

=∂µcν(x) − ∂νcµ(x) +Hµν(x). (30)

In the low-energy E ≪ MW or the long-distance r ≫
M−1

W region, we can neglect the field Wµ as the first ap-
proximation. Then the dominant low-energy modes are
described by the restricted Lagrangian density:

L
rest
YM = −1

4
F

µν [V ] ·Fµν [V ] = −1

4
fµνfµν . (31)

The resulting gauge theory with the Lagrangian (31) is
called the restricted Yang-Mills theory. Consequently,
the SU(2) Yang-Mills theory looks like the Abelian gauge
theory (31). But, even at this stage the original non-
Abelian gauge symmetry SU(2) is not broken.
In the low-energy E ≪ MW or the long-distance

r ≫M−1
W region, the massive components Wµ(x) become

negligible and the restricted theory become dominant.
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This is equal to a phenomenon called the “Abelian” dom-
inance [21, 22] in quark confinement. We have shown
that the “Abelian” dominance in quark confinement of
the Yang-Mills theory is understood as a consequence of
the Higgs mechanism defined in a gauge-invariant way for
the relevant (or equivalent) Yang-Mills-Higgs model. The
Abelian dominance was confirmed for the string tension
[23] and for the propagator [24, 25] for the SU(2) Yang-
Mills theory on the lattice in the Maximal Abelian gauge
[26], and later reconfirmed based on the gauge-invariant
formulation on the lattice for the string tension [27] and
the full propagator [28].
Notice that Hµν(x) is locally closed (dH = 0) and

hence it can be locally exact (H = dh) due to the Poincaré
lemma. Then Hµν(x) has the Abelian potential hµ(x):

Hµν(x) =∂µhν(x) − ∂νhµ(x). (32)

Therefore, the SU(2) gauge-invariant Abelian-like field
strength fµν is rewritten as

fµν(x) =∂µGν(x)− ∂νGµ(x), Gµ(x) := cµ(x) + hµ(x).
(33)

We call cµ the electric potential and hµ the magnetic
potential. Indeed, hµ agrees with the Dirac magnetic
potential, see section 6.10 of [20].
We can define the magnetic–monopole current kµ(x)

in a gauge-invariant way:

kµ(x) = ∂ν
∗fµν(x), (34)

where ∗ denotes the Hodge dual, e.g., for D = 4,
the dual tensor ∗fµν of fµν is defined by ∗fµν(x) :=
1
2ǫ

µνρσfρσ(x). The magnetic current kµ(x) is not identi-
cally zero, since the Bianchi identity valid for the elec-
tric potential cµ is violated by the magnetic potential
hµ. The contribution of the gauge-invariant magnetic
monopole to the Wilson loop average can be detected us-
ing the non-Abelian Stokes theorem for the Wilson loop
operator, see [29, 30] and section 6 of [20].
The restricted Yang-Mills theory obtained from the

original SU(2) Yang-Mills theory has the magnetic part
besides the electric part which exists in the usual non-
compact U(1) gauge theory. Therefore, the restricted
Yang-Mills theory is reagarded as the continuum coun-
terpart to the compact U(1) gauge theory on the lat-
tice which involves the magnetic monopoles leading to
confinement in the strong coupling region [31, 32]. It
is known [33, 34] that the compact U(1) gauge theory
on the lattice has two phases: confinement phase due
to magnetic monopoles in the strong coupling region
[31, 32] which is separated by a critical coupling from
the Coulomb phase in the weak coupling region [35, 36].
The Yang-Mills-Higgs model includes the parameters

specifying the potential besides the gauge coupling. They
are arbitrary and hence the mass gap of the theory is
not uniquely determined. In sharp contrast to the Yang-
Mills-Higgs model, the mass gap in the Yang-Mills theory

should be generated in a dynamical way without break-
ing gauge invariance, and it is determined without free
parameters to be adjusted.
In the Yang-Mills theory, indeed, the mass MW

can be generated in a dynamical way, e.g., by a
gauge-invariant vacuum condensation 〈W µ ·Wµ〉 so that
M2

W ≃ 〈W µ · Wµ〉 due to the quartic self-interactions
− 1

4 (ig[Wµ(x),Wν(x)])
2 among Wµ(x) field, in sharp con-

trast to the ordinary Yang-Mills-Higgs model. The ana-
lytical calculation for such a condensate was done in [37].
Moreover, the mass MW has been measured by numeri-
cal simulations on the lattice in [28] (see also section 9.4
of [20]) as

MW ≃ 2.69
√
σphys ≃ 1.19GeV, (35)

where σphys is the string tension of the linear potential
in the quark-antiquark potential.
The mass MW is used to show the existence of

confinement-deconfinement phase transition at a finite
critical temperature Tc, separating confinement phase
with vanishing Polyakov loop average at low temperature
and deconfinement phase with non-vanishing Polyakov
loop average at high temperature [38]. The critical tem-
perature Tc is obtained from the calculated ratio Tc/MW

for a given MW , which provides a reasonable estimate.
Notice that we cannot introduce the ordinary mass

term for the field Vµ, since it breaks the original gauge in-
variance. But, another mechanism of generating mass for
the Abelian gauge field Gµ := cµ+hµ could be available,
e.g., magnetic mass for photon due to the Debye screen-
ing caused by magnetic monopoles, which yields con-
finement and mass gap in three-dimensional Yang-Mills-
Higgs theory as shown in [39]. Moreover, the Abelian
gauge field must be confined, which is a problem of gluon
confinement. In view of these, the full propagator of the
Abelian gauge field must have a quite complicated form,
as has been discussed in e.g., [40].
In the Yang-Mills-Higgs model, the gauge field Aµ and

the scalar field φ are independent field variables. How-
ever, the Yang-Mills theory should be described by the
gauge field Aµ alone and hence the scalar field φ must be
supplied by the gauge field Aµ due to the strong interac-
tions. In other words, the scalar field φ should be given
as a (complicated) functional of the gauge field. This is
achieved by imposing the constraint which we call the re-
duction condition [41, 42], see also section 4 of [20]. We
choose e.g.,

χ(x) := [φ̂(x),Dµ[A ]Dµ[A ]φ̂(x)] = 0, (36)

which is also written as Dµ[V ]Wµ(x) = 0. This condition
is gauge covariant,

χ(x)→ U(x)χ(x)U−1(x). (37)

This is easily shown from the gauge transformation (2)
of the scalar field and the Yang-Mills field.
The reduction condition plays the role of eliminat-

ing the extra degrees of freedom introduced by the ra-
dially fixed scalar field into the Yang-Mills theory [20].
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The reduction condition represents as many conditions as
the independent degrees of freedom of the radially fixed
scalar field φ(x), since

χ(x) · φ̂(x) = 0. (38)

Therefore, imposing the reduction condition (36) exactly
eliminates extra degrees of freedom introduced by the
radially fixed scalar field (4), see [20].
Fortunately, the reduction condition is automatically

satisfied in the level of field equations. We introduce
a Lagrange multiplier field λ(x) to incorporate the con-
straint (4) into the Lagrangian:

L
′

YMH = LYMH + λ(x)
(

φ(x) · φ(x)− v2
)

. (39)

Then the field equations are obtained as

δS′

YMH

δλ(x)
=φ(x) · φ(x)− v2 = 0, (40)

δS′

YMH

δA µ(x)
=D

ν [A ]Fνµ(x)− ig[φ(x),Dµ[A ]φ(x)] = 0,

(41)

δS′

YMH

δφ(x)
=−D

µ[A ]Dµ[A ]φ(x) − 2φ(x)V ′(φ(x) · φ(x))

+ 2λ(x)φ(x) = 0. (42)

The reduction condition (36) follows by applying the co-
variant derivative Dµ[A ] to (41) as Dµ[A ]Dν [A ]Fνµ =
igDµ[A ][φ,Dµ[A ]φ] = ig[φ,Dµ[A ]Dµ[A ]φ] (this is the
covariant version of the current conservation law), since
Dµ[A ]Dν [A ]Fνµ = 0. Taking the commutator of the
field equation (42) for the scalar field φ with φ, we find
that the reduction condition (36) is automatically satis-
fied, irrespective of the choice of the potential function
V (φ·φ): [φ,Dµ[A ]Dµ[A ]φ] = [φ,−2φV ′(φ·φ)+2λφ] =
0.
Notice that the equivalence between the Yang-Mills-

Higgs theory and the pure Yang-Mills theory is expected
to hold only when the scalar field is radially fixed. If
we include the radial degree of freedom for the scalar
field, the equivalence is lost. Indeed, the radial degree
of freedom for the scalar field corresponds to the Higgs
particle with a non-zero mass.

V. CONCLUSION AND DISCUSSION

In this paper we have given a gauge-independent de-
scription for the Higgs mechanism by which a gauge bo-
son acquires the mass in a manifestly gauge-invariant
way. We have written the resulting massive gauge modes
Wµ explicitly in the operator level. Therefore, we can
describe the Higgs mechanism without assuming sponta-
neous breakdown of gauge symmetry relying on a non-
vanishing vacuum expectation value of the scalar field.
In this way, we can understood the mass generation of

gauge bosons in the gauge-invariant way without break-
ing the original gauge symmetry. The spontaneous sym-
metry breaking is sufficient but not necessary for the
Higgs mechanism to work.
The novel description of the Higgs mechanism en-

ables us to discuss the confinement-Higgs complementar-
ity from a new perspective. Our results suggest that the
SU(2) Yang-Mills theory in the gapped or massive phase
is equivalent to the Yang-Mills-Higgs theory with a radi-
ally fixed adjoint scalar field in the Higgs phase which is
conventionally considered to be associated to the sponta-
neous symmetry breaking G = SU(2)→ H = U(1). The
gapped or massive phase is regarded as the confinement
phase, which was confirmed on a lattice by numerical
simulations for the reformulated Yang-Mills theory [20].
Moreover, we have discussed the implications of the

gauge-invariant Higgs mechanism for quark confinement.
We have shown that the “Abelian” dominance in quark
confinement of the SU(2) Yang-Mills theory is under-
stood as a consequence of the gauge-invariant Higgs phe-
nomenon for the relevant SU(2) Yang-Mills-Higgs model.
The case of larger gauge groups SU(N) (N ≥ 3) will

be treated in a subsequent paper. In particular, some
interesting cases SU(3) → U(1)× U(1), SU(3) → U(2),
and SU(2)× U(1)→ U(1) will be discussed in detail.
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Appendix A: Higgs mechanism for the complete SSB

We consider the Abelian-Higgs theory or U(1) gauge-
scalar theory with the Lagrangian density:

LAH =− 1

4
FµνF

µν + (Dµφ)
∗(Dµφ) − V (φ∗φ),

V (φ∗φ) =
λ

2

(

φ∗φ− µ2

λ

)2

, φ ∈ C, λ > 0, (A1)

where Fµν(x) = ∂µAν(x)− ∂νAµ(x) is the field strength
of the U(1) gauge field Aµ(x) and Dµ = ∂µ − ieAµ(x) is
a U(1) covariant derivative for the complex scalar field
φ(x) ∈ C with q being the electric charge of φ(x). Here
∗ denotes the complex conjugate. For µ2 > 0, the mini-
mum of the potential is attained when the magnitude of
the scalar field is equal to the value:

|φ(x)| = v√
2
, v =

√

µ2

λ/2
. (A2)

If we use a representation of polar decomposition for
the radially fixed scalar field:

φ(x) =
v√
2
eiπ(x)/v ∈ C, π(x) ∈ R, (A3)



7

the covariant derivative reads

Dµφ = (∂µ − ieAµ)φ(x) = −
v√
2
ie

(

Aµ −
1

ev
∂µπ

)

eiπ/v,

(A4)

and the kinetic term of the scalar field reads

(Dµφ)
∗(Dµφ) =

1

2
e2v2

(

Aµ −
1

ev
∂µπ

)2

. (A5)

By introducing a new (massive) vector field Wµ by

Wµ(x) := Aµ(x) −m−1∂µπ(x), m := ev, (A6)

LAH is completely rewritten in terms of Wµ:

LAH = −1

4
(∂µWν − ∂νWµ)

2 +
1

2
m2WµW

µ. (A7)

The field π is usually interpreted as the massless Nambu-
Goldstone boson associated with the complete SSB G =
U(1) → H = {1}, which is absorbed into the massive
field Wµ. For G = U(1), we find that the massive vector
field Wµ has a manifestly gauge-invariant representation

written in terms of Aµ and φ (φ̂ := φ(x)/|φ(x)|):

Wµ(x) = ie−1φ̂∗(x)Dµφ̂(x) = −ie−1φ̂(x)Dµφ̂
∗(x).

(A8)
This reduces to (A6) for the parameterization (A3). The
representation (A8) is independent from the parameteri-
zation of the scalar field. Therefore, a different represen-
tation is obtained from another parameterization:

φ(x) =
1√
2
[v + ϕ(x) + iχ(x)]. (A9)
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