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Mass dependence and isospin dependence of short-range correlated pairs
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The target-mass number dependence of nucleon-nucleon pairs with short-range correlations is
explored in a physically transparent geometrical model within a zero-range approximation. The
observed A dependence of 2-nucleon ejection cross sections in (e, e′) reactions is found to reflect the
mass dependence of nuclear density distributions. A parametrization of this A dependence is given.
The A dependence of proton-proton vs. proton-neutron pairs relative to 12C is also analyzed in this
model. It can be understood using simple combinatorics without any additional isospin dependence.

I. INTRODUCTION

Recently the mass (A) dependence and quantum num-
bers of short-range correlated (src) pairs were extracted
from A(e, e′pp) and A(e, e′pn) reactions [1, 2]. There the
observed number of proton-proton and proton-neutron
pairs was used to constrain the number of initial-state
pairs, their quantum numbers and their target mass-
dependence. In a series of publications the Ghent group
had explored these properties theoretically [3–5]. Their
theoretical method was based on applying a NN correla-
tion operator, that contains essential features of the NN
interaction, to a many-body wave function obtained from
a harmonic oscillator potential. All the src effects are
then contained in that correlation operator. The authors
of Ref. [1] showed that the mass-dependence of the data
on pp and pn production could indeed be understood in
this theoretical framework by assuming a zero-range ap-
proximation (ZRA) for the two interacting nucleons. By
comparing theoretical results for a nucleus with a large
neutron excess, such as 208Pb, with data one could hope
to gain information also on the isospin content of the src
pairs.
It is the purpose of this short paper to point out that

the observed A-dependence is a consequence of nuclear
density distributions. We will also apply simple combi-
natorics to explore the A-dependence of proton-proton to
proton-neutron ratios.

II. GEOMETRICAL MODEL

In general any interaction between nucleons depends
on the probability to find a nucleon at position r and
simultaneously another one at r′ and is ∝ ρ(r) ρ(r′)g(r−
r
′). For a zero-range interaction g(r − r

′) → δ(r − r
′)

the average probability density for finding a pair is then
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given by

PNN =

∫
d3r ρ2(r) = A 〈ρ〉 , (1)

where ρ(r) is the single-particle density for a nucleus with
mass number A and 〈ρ〉 is the average nucleon density.
In the following we take PNN as a measure for the overall
strength of the src. Assuming some generic (e.g. Woods-
Saxon) density distribution one sees that PNN → ρ20V =
ρ0A for A → ∞; here ρ0 is the nuclear matter saturation
density and V the nuclear volume. Thus, for large mass
numbers A, PNN approaches a linear dependence on A.
For smaller values one expects a correction due to the
nuclear surface that is governed by the width parameter
in the density distribution.
This is indeed borne out by computing the average den-

sity in (1) using the experimental density distributions
given in Ref. [6]. Figure 1 shows a fit to this computed
probability per nucleon. In a very good approximation
the A-dependence of the average density for nuclei be-
tween 12C and 208Pb is described by

〈ρ〉(A) = 0.145− 0.147A−1/3(fm−3) . (2)

The first constant term just gives the nuclear matter den-
sity ρ0 and the second term represents a surface correc-
tion.
Also shown in Fig. 1 are the values of the normalization

of the correlated many-body wave function calculated in
Ref. [5] which are a measure for the effect of the src op-
erators acting on the harmonic oscillator ground state
wave function. For a shape comparison these values were
scaled down to the values of 〈ρ〉(A). They follow quali-
tatively the behavior exhibited by the curve representing
Eq. (2) with an A-dependence N = 0.127−0.0651A−1/3 .
Because of the arbitrary normalization the main differ-
ence to the dependence given in Eq. (2) is in the sur-
face term; we speculate that this difference could be con-
nected with the unrealistic surface properties of harmonic
oscillator wave functions used in Ref. [5]1.

1 We have found that the shape of the points can be very well
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FIG. 1. Average density per nucleon 〈ρ〉 of Eq. (2) as a func-
tion of mass number A (solid curve). The points are taken
from Table 1 in [5]. For a shape comparison they were ap-
proximately scaled to the values of 〈ρ〉.

III. NUMBER OF PAIRS

The calculated A-dependence of 〈ρ〉(A) (Fig. 1) is
rather flat for heavier A; the different behavior for the
lightest nuclei is due to the increasing relative impor-
tance of surface vs. volume effects with decreasing A. If
we insert Eq. (2) into Eq. (1), the geometrically predicted
A-dependence of the pair-probability density is given by

PNN (A) = 0.145A− 0.147A2/3 (fm−3) . (3)

In Figs. 2 and 3 we show the number of NN pairs
relative to 12C both for the A-dependence derived from
the average density (Eq. (3)) and for that fitted to the
explicitly counted number of zero range pairs obtained in
Ref. [5]; the latter curve is very close to the curve labeled
’ZRA’ in Fig. 3 of Ref. [1].
Also shown in these figures are i) the data points ex-

tracted from (e, e′pp) and (e, e′pn) cross sections [1] and
ii) the ZRA points given in [1]. Also shown are iii) the
points obtained by multiplying the values of the solid
curve (3) with the double ratios Z(Z−1)/(A(A−1))/Cpp

and 2Z N/(A(A − 1))/Cpn for pp and pn, respectively,
i.e. by the simple combinatorial ratio for the presence of
pp or pn pairs. Here Cpp = 6 × 5/(12 × 11) = 5/22 and
Cpn = 2× 6× 6/(12× 11) = 6/11 are the corresponding
ratios for 12C; about 55% of all pairs are pn whereas 23
% are pp by combinatorics alone. Essentially the same
combinatorial factor also appears if one starts from Eq.
(1) with ρp = Z/Aρ and ρn = N/Aρ for the proton and
neutron densities.
Obviously, the overall A-dependence is reproduced

quite well for the pn pairs; for pp pairs the measured A-
dependence seems to be weaker than the calculated one.

described by using a Woods-Saxon density distribution with an

unrealistically small surface parameter of a = 0.2 fm.
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FIG. 2. Number of pp src pairs relative to 12C. Solid line: A
times average density A 〈ρ〉 of Eq. (3) as a function of mass
number A. Dashed line: mass-dependence fitted to results
from Ref. [5]. Both curves are normalized to 1 for 12C. ZRA
points (triangles) and data from Ref. [1]. Open circles: simple
pair count (see text).

For the two light nuclei there is good agreement with the
experimental data for both nucleon flavors, both for the
ZRA points and the combinatorial points.
However, for the heavy nucleus 208Pb with its large

neutron excess the experimental value for pp is lower than
both of these points (Fig. 2). A different behavior shows
up for the pn pairs in Fig. 3. Now for 208Pb both the
ZRA number and the combinatorial number are closer to
the experimental point, with the combinatorial point at
the lower end of the error bar.
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FIG. 3. Same as Fig. 2 for pn pairs.

IV. CONCLUSIONS

In the preceding section we have shown that the mass
dependence of data on the relative number of pp and pn
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pairs in (e, e′) reactions can be understood with a set
of minimal assumptions. The fact that the A depen-
dence is close to linear just reflects the mass-dependence
of the average density. This shows that the underlying
mechanism is connected with very short range or zero
range interactions. The soft mass-dependence was one
of the main conclusions of Ref. [1] and we verify it here.
While a rather sophisticated theory and impressive appa-
ratus of many-body theory were used in Refs. [1, 5] one
could gain the impression of an inherent complexity of the
physics of short range correlations [7]. We have shown
here that the observed A-dependence is a simple conse-
quence of nuclear geometry; this picture also explains the
observed deviation from a strictly linear dependence on
A in terms of surface effects. Equation (3) gives a simple
parametrization of this A-dependence.

We have also shown that the experimentally observed
A-dependence of the numbers of pp vs. pn pairs is mostly
determined by geometry and combinatorics combined.
Any effects of a predominance of pn processes over those
of pp, which shows up in the reference nucleus 12C [2],
do not appear in the target mass-dependence. For both
nucleon flavors the A-dependence of the experimental val-
ues is nearly compatible with a simple statistical counting

rule. If one really wanted to take the observed discrep-
ancies for 208Pb seriously one would have to conclude
that the experimental pp process seems to be somewhat
suppressed compared to simple counting whereas pn is
roughly described without any significant enhancement
over the combinatorial result.
The arguments given here are independent of any par-

ticular interaction (electromagnetic or weak) and should
thus be applicable also for neutrino-nucleus interactions.
With the advent of LAr detectors a larger mass (40Ar)
is being explored than in most other experiments (12C).
Based on Eq. (3) we thus predict a ratio of about 4.2
for the presence of short-range pairs in Ar vs. C. Con-
versely, the experimental determination of this ratio for
the so-called 2p2h processes could give information on
their effective range.
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