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Abstract

We provide a concise review on multi-field inflation and cosmological perturbations.
We discuss convenient and physically meaningful bases in terms of which perturbations
can be systematically studied. We give formal accounts on the gauge fixing conditions
and present the perturbation action in two gauges. We also briefly review non-linear
perturbations.
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1 Introduction

Cosmology, a comprehensive study on the origin and evolution of the universe, has become a
branch of physical sciences only in twentieth century. With its theoretical foundation being
provided by general relativity [1], the hot big bang cosmology emerged in 1920s in which the
universe has ever been expanding from an extremely hot and dense initial state in very far
past [2]. Supported by a series of observational discoveries including the expansion of the
universe from the relation between distance and redshift of galaxies [3], and especially the
cosmic microwave background (CMB) in 1965 [4], now the hot big bang cosmology is regarded
as the standard model of cosmology.

CMB was generated when the universe has become cooled down due to the expansion
so that the coupling between electrons and photons by Thompson scattering could not be
maintained any longer [5]. This happened about 380,000 years after the big bang, thus the
CMB may be regarded as a snapshot of the universe at this very early moment. On the whole
observable range, the CMB exhibits an almost perfect black body spectrum corresponding
to a homogeneous temperature of 2.725 K with an accuracy of O(10−5). This observation
suggests that when the CMB was generated, the observable patch of the universe was in thermal
equilibrium in a single causally connected patch. However, as we will see, naively the universe
at that time was composed of a huge number of causally disconnected regions and thus there
is no reason for them to have the same temperature with O(10−5) accuracy. That is, the hot
big bang cosmology is plagued by an extremely finely tuned initial condition to reproduce the
universe as we observe now [6], and this is the so-called horizon problem. There are similar
problems of initial conditions with fine tuning such as flatness problem.

In early 1980s1, it was realized that all the necessary initial conditions for successful hot big
bang cosmology can be naturally provided by a period of rapid expansion of the universe at very
early times, called “inflation” [7]. Furthermore, inflation not only solves the otherwise finely
tuned initial conditions like the horizon problem, but also provides the seed of subsequent
structure formation in the universe [11]: during inflation, quantum mechanical fluctuations
are stretched due to the rapid expansion to become classical perturbations. After inflation,
these perturbations become the seed for the temperature anisotropies in the CMB and the
inhomogeneous distribution of galaxies on large scales. Thus, by observing them closely we
can study the primordial cosmic inflation and the underlying physics. Indeed, an important
prediction of inflation is that the primordial perturbations produced during inflation have more
or less the same amplitude on different length scales, i.e. scale-invariant, since the expansion is
so fast that no appreciable change in inflationary dynamics happened on the whole observable
scales relevant for, say, the CMB observations. And this prediction has been verified with very
high confidence by most recent CMB observations including the Planck missions [12].

An immediate question that follows would be how to realize inflation concretely. Since the
energy scale of the very early universe when cosmic inflation occurred is likely to be extremely
high, as large as 1015 GeV. This is far exceeding the energy scale we can probe with terrestrial
particle accelerators such as the Large Hadron Collider at CERN, with which we have confirmed
the standard model of particle physics up to TeV scale. We regard, however, the standard
model of particle physics as a low-energy effective field theory of a parent theory relevant for

1The idea of exponential expansion was known even in 1960s [8], and just before the term “inflation” appeared
it was discussed in different contexts, e.g. phase transition [9] or singularity problem [10].
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higher energy scales due to a number of reasons: small but non-zero neutrino masses are not
explained, gravity is not included, and so on. Thus, inflation is likely to be described in the
context of theories beyond the standard model of particle physics [13] such as supersymmetric
theories and string theory. One common feature of those theories is that there are a multiple
number of degrees of freedom [14] that could be relevant for inflation. Usually inflation is
supposed to be driven by a single scalar field dominating the energy density of the universe
during inflation, called inflaton. There are many scalar, possibly light, fields as the so-called
superpartners in supersymmetric theories and as moduli fields in string theory, which all can
in principle participate in inflationary dynamics and thus can be identified as the inflatons.
Therefore we do have good theoretical motivations to consider more than single degree of
freedom during inflation. Furthermore, the existence of other degrees of freedom can give rise
to a phenomenology full of rich and interesting observational consequences that can be further
constrained or even detected in near future.

The aim of this article is to provide a concise and easily accessible review for inflation
driven by a multiple number of fields, complementing many excellent review articles [13, 15]
and textbooks [16] on related topics. The outline of this article is as follows. In Section 2,
we briefly recall the basic of inflationary cosmology. In Section 3 we move to our main topic
of multi-field inflation by starting with the background dynamics. Section 4 is devoted to the
conventional approach to the cosmological perturbations produced during multi-field inflation.
In Section 5 we present more careful considerations on the formulation of perturbations with
alternative choices of gauge. We devote Section 7 to discuss concisely non-linear perturbations.
Then we conclude in Section 8.

2 Inflation

Before we begin our main topic of multi-field inflation, we quickly recall inflation: what it is,
why it is attractive and how it occurs.

2.1 Background equations

We begin with the so-called Friedmann-Robertson-Walker (FRW) metric of a flat universe

ds2 = −dt2 + a2(t)δijdx
idxj . (2.1)

This metric describes a flat, homogeneous, isotropic and expanding universe parametrized by
the scale factor a(t). The spatial distance with the scale factor being singled out is described by
δijdx

idxj, which is called comoving distance. On the contrary, the physical distance is multiplied
by the scale factor.

We first want the key equations. These are given by the Einstein equation

Gµν =
Tµν
m2

Pl

. (2.2)

We first consider the left hand side of (2.2), namely, the Einstein tensor

Gµν = Rµν −
1

2
gµνR . (2.3)
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We can immediately write each component of the metric tensor gµν and its inverse gµν as

g00 = −1 , gij = a2δij ,

g00 = −1 , gij = a−2δij .
(2.4)

To compute the Einstein tensor Gµν , we need to calculate the Christoffel symbol, the Ricci
tensor and the Ricci scalar:

Γρµν =
1

2
gρσ (gµσ,ν + gσν,µ − gµν,σ) ,

Rµν = Γαµν,α − Γαµα,ν + ΓασαΓσµν − ΓασνΓ
σ
µα ,

R = gµνRµν .

(2.5)

The non-zero components of the Christoffel symbols are, after some calculations,

Γ0
ij = a2Hδij , (2.6)

Γi0j = Γij0 = Hδij , (2.7)

with H = ȧ/a being the Hubble parameter, otherwise zero. Then, easily we have

R00 = −3
(
H2 + Ḣ

)
, (2.8)

Rij = a2
(

3H2 + Ḣ
)
δij , (2.9)

R = 6
(
Ḣ + 2H2

)
. (2.10)

Thus, the non-zero components of the Einstein tensor (2.3), or more frequently Gµ
ν = gµρGρν ,

are

G00 = 3H2 , (2.11)

Gij = −a2
(

2Ḣ + 3H2
)
δij , (2.12)

G0
0 = −3H2 , (2.13)

Gi
j = −

(
2Ḣ + 3H2

)
δij . (2.14)

As can be read from (2.2), the Einstein tensor which describes the structure of the space-
time should be matched with the energy-momentum tensor which describes the matter residing
in the space-time. On the assumption of the homogeneous and isotropic background, we may
regard at the background level that the energy-momentum tensor is that of perfect fluid2, i.e.

T µν = diag(−ρ, p, p, p) . (2.15)

2In terms of the general hydrodynamical matter fluid, the energy-momentum tensor is written as

Tµν = (ρ+ p)uµuν + pgµν ,

where uµ is the fluid 4-velocity which satisfies

uµuµ = gµνu
µuν = −1 ,

so that uµ is a time-like, unit 4-vector. Thus we can set uµ = (1, 0, 0, 0). Using these we can trivially find (2.15).
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Now we can write each component of (2.2):

00 component: H2 =
ρ

3m2
Pl

, (2.16)

ij component: − 3H2 − 2Ḣ =
p

m2
Pl

. (2.17)

(2.16) is called the Friedmann equation, which relates the Hubble parameter to the energy
density. Using (2.16) for (2.17) to replace H2 with ρ, we can find the time variation of H as

Ḣ = −ρ+ p

2m2
Pl

. (2.18)

Or, explicitly in terms of the time derivatives of the scale factor,

ä

a
= −ρ+ 3p

6m2
Pl

. (2.19)

We will refer to this equation soon. Note that by taking a time derivative of (2.16) and using
(2.17) to eliminate Ḣ, we can derive energy conservation equation

ρ̇+ 3H(ρ+ p) = 0 . (2.20)

This is what we can find from the conservation of energy-momentum tensor: from

T µν;µ = T µν,µ − ΓρµνT
µ
ρ + ΓµρµT

ρ
ν = 0 , (2.21)

we can trivially check that ν = 0 component gives (2.20). ν = i component vanishes identically.

2.2 Cosmic microwave background

2.2.1 Generation of the CMB

With the necessary background equations, now let us see what happened in the past when
the temperature was high. First, we note that from the conservation equation (2.20) that
different species scale differently: ordinary particles (electron, proton, neutron...) have very
large rest energy compared to the kinetic energy, so they are called pressureless matter and
p = 0. Meanwhile, photons, or more generally relativistic particles, have p = ρ/3 and are called
radiation. Plugging these relations into (2.20), we find

ρmatter ∝ a−3 , (2.22)

ρradiation ∝ a−4 . (2.23)

We may understand that the energy density of pressureless matter is inversely proportional
to the volume ∼ a3 which contains the matter particles, and for radiation the energy density
is also proportional to the frequency, or the inverse of the wavelength, so we have one more
power of the scale factor. What this tells us is that, in the past, the universe was dominated
by radiation.
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More radiation in the past means, of course, the universe was hotter. It was too hot to
maintain neutral molecules, like hydrogen: because of the very hot temperature, electrons were
energetic enough to overcome the binding energy to protons, so that the universe was filled
by radiation (mostly photons), free electrons and nuclei (and dark matter). During this stage,
the mean free path of photons was very short because of the Thomson scattering between free
electrons and photons, maintaining thermal equilibrium. Thus, the universe was very “foggy”
for photons: exactly like we cannot see very far away when the weather is very foggy. This
stage continued until the universe was cooled to a critical temperature Tc ∼ 3000 K. Below
this temperature, the binding energy between electrons and protons could overcome thermal
background and there remained no free electron. Thus, from this time on, the universe has
become transparent to photons and they could reach us after propagating for a long long time.
This situation is depicted in Figure 1. These very old photons, which have traveled since the
moment of this “last scattering”, are the cosmic microwave background (CMB). It was observed
in 1965 by Penzias and Wilson by chance.
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-
-

-

-

+
+

+

+
+

+
- +

-

+
-

+
- +

-

𝑇 < 𝑇𝑐

Figure 1: When T > Tc, electrons were free and constantly scattered off photons, so that the
universe was “foggy”. After the temperature drops below Tc, electrons are all captured by
protons, and photons can propagate without scattering.

The observations tell us that the CMB is extremely homogeneous and isotropic, i.e. we
observe the same average temperature T0 ∼ 2.7 K no matter which part or direction of the
sky we observe. Since photons were constantly scattering off free electrons and thus in thermal
equilibrium, the temperature spectrum of the CMB exhibits that of almost perfect blackbody
radiation. Moreover, the CMB could be generated only when the universe was hotter in the
past. Thus the discovery of the CMB was the knockdown blow for the steady state cosmology
which was competing against the hot big bang model in 60’s. Note that, after removing
all the contaminations and foreground effects, we have genuine temperature fluctuations of
the magnitude δT/T0 ∼ 10−5. We will return to this point later. In Figure 2 we show the
background and fluctuation temperature maps of the CMB.

2.2.2 Horizon problem

The CMB has brought, with the triumph of the hot big bang cosmology, big mysteries at the
same time. Let us consider 1 of them, namely, why the CMB is so much homogeneous. For
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Figure 2: (Left) the cosmic microwave background is observed to be extremely homogeneous
and isotropic with the average temperature T0 ∼ 2.7 K. (Right) however, it contains genuine
temperature fluctuations with respect to T0 of the magnitude δT/T0 ∼ 10−5. The temperature
fluctuation map is taken by the Planck satellite [17].

this, it is very convenient to introduce the conformal time τ , defined by

dτ ≡ dt

a
. (2.24)

With τ , the line element (2.1) is written as

ds2 = a2(τ)
(
−dτ 2 + δijdx

idxj
)
, (2.25)

so that the metric is written as a product of the static Minkowski metric times the scale factor.
What does the conformal time mean? Let us consider the radial propagation of light, which is
the null geodesic ds2 = 0. Then, using the spherical coordinate we can write the radial distance
r a photon has traveled from some initial moment in terms of the conformal time as

r = τ , (2.26)

i.e. the conformal time measures the (comoving) distance a photon has traveled.
Then what’s the trouble with the CMB? We can straightforwardly find that from an initial

moment i till present 0, the conformal time (i.e. the distance photons have traveled)

τ =

∫ 0

i

dt

a
=

∫ 0

i

1

a

dt

da
da =

∫ 0

i

1

aH
d log a ∝ a1/2|0i , (2.27)

where for each equality we have used 1) the scale factor is a function of time solely, a = a(t),
2) the definition of the Hubble parameter, ȧ = aH, and 3) assumption of a matter dominated

universe, H ∼ ρ
1/2
matter ∼ a−3/2. Now, without loss of generality, we can take initial moment as

the initial singularity a(ti) = 0, where also τ = 0, so that simply τ ∝ a1/2. Further, using the
relation between the scale factor which is normalized to a0 = 1 at present and the redshift z

a =
1

1 + z
, (2.28)

we can find τ ∝ (1 + z)−1/2. Using z0 = 0 and zCMB ∼ 1100, we can easily find

τCMB

τ0

∼ 1√
11003

∼ 0.03 . (2.29)
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Thus, at the moment when the CMB was generated, the past light cones stemming from the
two end points do not have any overlapping region initially, i.e. those two points were never in
causal communication and thus there is no reason they should have the same temperature with
the accuracy of 10−5: we must impose a heavy fine tuning over 104− 105 causally disconnected
patches at the moment of the last scattering unless we provide a natural way for them to have
the same temperature. This is the so-called horizon problem. It is depicted in the left panel
of Figure 3. Note that the spatial distance shown in the figure is the comoving one, thus the
physical distance is obtained by multiplying the scale factor a(t) which vanishes as we approach
the cosmic singularity, currently at τ = 0.

𝜏0

𝜏CMB

𝜏𝑖 = 0

Observed to be 

Homogeneous & isotropic

No overlap initially

𝑥

Observed CMB𝐻0
−1

∝ 𝑇−1

𝜆𝐻0
−1

Physical 

size

∝ 𝑇−3/2

𝐻CMB
−1

Causal 

size

Figure 3: (Left) conformal diagram of the universe. From the cosmic singularity (τi = 0) until
the moment of the CMB generation (τCMB) there was no time for the CMB to achieve causal
communication to have the same temperature T0. (Right) as a sample calculation, we can see
that at that time the universe was filled with 104 − 105 causally disconnected patches.

To have a more concrete idea, let us assume that the observed CMB size coincides with the
current Hubble patch 1/H0, within which causal communications are possible. Then let us ask
whether they were the same when the CMB was generated, or if different how much they were
different. First, what is λH−1

0
, the physical size that corresponds to 1/H0? Physical sizes simply

scale with the scale factor a(t), which is inversely proportional to the temperature T . Thus, we
can easily find

λH−1
0

= H−1
0

aCMB

a0

= H−1
0

T0

TCMB

. (2.30)

Meanwhile, H evolves according to the Friedmann equation (2.16). It is important to notice
at this moment that H depends on the energy density, i.e. which types of matter contents
are there. For simplicity we assume the universe is dominated by matter that is inversely
proportional to the physical volume as can be read from (2.22), and thus H is proportional to
T 3:

H2 ∝ ρmatter ∝ a−3 ∝ T 3 , (2.31)

so that we can find H−1
CMB, the Hubble horizon radius when the CMB was generated, as

H−1
CMB = H−1

0

(
T0

TCMB

)3/2

. (2.32)
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Thus, if we compare the ratio of these volumes,

λ3
H−1

0(
H−1

CMB

)3 =

(
TCMB

T0

)3/2

∼ 4× 104 . (2.33)

That is, assuming that at present the Hubble horizon size and the CMB scale are the same,
when the CMB was generated, the corresponding physical volume was filled with 104 - 105

causally disconnected patches: see the right panel of Figure 3. Thus, it is a tremendous fine
tuning that these disconnected patches all turn out to have the same temperature with the
accuracy of 10−5 as the current observations on the CMB demand.

2.3 Inflation

2.3.1 Inflation: what and how

Thus, we see that at the heart of the horizon problem lies the fact that the Hubble horizon
1/H = 1/ (ȧ/a) always expands faster than the physical length scale λ ∼ a,

d

dt

(
λ

H−1

)
∼ d

dt

[
a

(ȧ/a)−1

]
= ä < 0 , (2.34)

irrespective of whether the universe is dominated by matter or radiation. Thus, we can just turn
upside down and make the physical size expands faster than the Hubble horizon: then physical
scales expand faster than the horizon so causal communication could be possible during this
stage. This tells us

d

dt

(
λ

H−1

)
> 0 ←→ ä > 0 . (2.35)

That is, the universe experiences an accelerated expansion. This period of accelerated expansion
is called “inflation”.

How can we more quantitatively say if it’s inflation or not? We can rewrite (2.19) as

ä

a
=

2ρ

6m2
Pl

− 3ρ+ 3p

6m2
Pl

= H2 + Ḣ > 0 , (2.36)

where the 2nd equality follows by applying (2.16) and (2.18), and the last inequality is the
definition of inflation (2.35). Thus, inflation occurs when the following condition is satisfied:

ε ≡ − Ḣ

H2
< 1 . (2.37)

This parameter, which tells whether it’s inflation or not, is called “slow-roll” parameter, in the
context of slow-roll inflation: see the next section.

So with what kind of matter can we have inflation? From (2.19), we see that to have ä > 0
we need a special form of matter which has a negative pressure, p < −ρ/3, or in terms of the
equation of state w,

w ≡ p

ρ
< −1

3
. (2.38)
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Clearly usual pressureless matter (w = 0) or radiation (w = 1/3) cannot support inflation. The
simplest candidate is the so-called cosmological constant Λ, which has

pΛ = −ρΛ (wΛ = −1) . (2.39)

Then the Friedmann equation (2.16) is trivially solved: since Λ is, as the name suggests, a
constant and so is H:

H2 =
Λ

3m2
Pl

= constant . (2.40)

Thus we can see that the scale factor increases exponentially during inflation as

a ∝ exp

(√
Λ

3m2
Pl

t

)
. (2.41)

2.3.2 Horizon problem revisited

So the question is: how does inflation solve the horizon problem? Now we can move to the
conformal time to see a clear visualization how inflation solves the horizon problem. Dur-
ing inflation, for convenience driven by a cosmological constant Λ so that H is constant, the
conformal time is given by

τ =

∫
dt

a
=

∫
e−Ht

a0

dt = − 1

aH
< 0 . (2.42)

That is, the conformal time is negative during inflation. Further, now the cosmic singularity
a = 0 can be pushed to τ = −∞. Thus, even the two end points at τ = τCMB have no overlap
at τ = 0, now τ can be extended to negative infinity during inflation so that there could be
ample overlapping region enough to explain the homogeneity of the CMB.

As is clear from Figure 4, the longer inflation lasts, the larger the overlapping region be-
comes. Thus we need a certain duration of inflation to explain the homogeneous CMB. The
amount of inflation is quantified by the number of e-folds N between some initial (i) and final
(f) moments, which is given by

N ≡
∫ f

i

Hdt =

∫ f

i

da

a
= log

(
af
ai

)
. (2.43)

Thus, with a given N , the final scale factor is related to the initial scale factor by af = aie
N ,

i.e. the universe has expanded by eN times. Now we can compute how large N should be for
the CMB. The most natural way is that at the beginning of inflation (or the part of inflation
relevant for our observable universe) the physical length scale λH−1

0
is smaller than the Hubble

horizon during inflation HI so that causal communication has been established within λH−1
0

to
have the same temperature. This gives

λH−1
0

= H−1
0

ai
a0

= H−1
0

af
a0

ai
af

= H−1
0

T0

Tf
e−N < H−1

I . (2.44)

Thus, solving for N from the last inequality, we obtain

N > log

(
T0

H0

)
− log

(
Tf
HI

)
∼ 67− log

(
Tf
HI

)
, (2.45)
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𝜏0

𝜏CMB

0

Observed to be 

Homogeneous & isotropic

𝑥

Observed CMB𝐻0
−1

∝ 𝑇−1

𝜆𝐻0
−1

Physical 

size

∝ 𝑇−3/2

𝐻CMB
−1

Causal 

size

𝜏𝑖 = −∞

Hot big bang starts

Causally communicated

Physical size expands 

faster than 

the Hubble horizon

Figure 4: (Left) conformal diagram of the universe, this time including inflation. Inflation
extends τ to −∞, giving ample room for causal communication well before the onset of hot
big bang evolution at τ = 0. (Right) inflation corresponds to the period when the physical size
λ ∼ a expands faster than the Hubble horizon 1/H.

where we have used H0 ∼ 10−42 GeV and T0 ∼ 10−13 GeV. Thus, assuming that the logarithmic
term which includes two unknown factors give a number of O(1), we require that

N & 60 . (2.46)

That is, to explain the homogeneity of the CMB, i.e. to solve the horizon problem, we need 60
e-folds of expansion: during inflation the universe should have expanded by e60 ∼ 1026 times.

2.3.3 Single field inflation and slow-roll approximation

The cosmological constant is obviously the simplest candidate that drives inflation, but the
problem is that if this is the case, inflation never ends and we cannot recover the universe in
which we live with stars, galaxies, clusters of galaxies and so on. Thus, we need some different
material which can mimic the cosmological constant and at the same time provide a “graceful
exit” from inflation. This is usually achieved by a scalar field φ. For simplicity here we assume
that this scalar field, named “inflaton” in the sense that it drives inflation, is minimally coupled
to gravity and has canonical kinetic term. Then the action is the sum of the gravitational sector,
which we take the Einstein-Hilbert action, and the matter sector:

S =

∫
d4x
√−gm

2
Pl

2
R +

∫
d4x
√−g

[
−1

2
gµν∂µφ∂νφ− V (φ)︸ ︷︷ ︸

≡Lm

]
. (2.47)
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The corresponding energy-momentum tensor Tµν of φ can be obtained by perturbing the matter
Lagrangian with respect to gµν ,

Tµν = − 2√−g
δ (
√−gLm)

δgµν
= ∂µφ∂νφ− gµν

[
1

2
gρσ∂ρφ∂σφ+ V (φ)

]
. (2.48)

Then we can easily compute 00 and ii components which can then be matched to the energy
density and pressure respectively3 [see (2.15)]:

ρ = −T 0
0 =

1

2
φ̇2 +

1

2

(∇φ)2

a2
+ V , (2.49)

p =
1

3
T ii =

1

2
φ̇2 − 1

6

(∇φ)2

a2
− V . (2.50)

Thus, if potential dominates over the kinetic energy (∂µφ∂
µφ � V ) these simplify to ρ ≈

V ≈ −p, thus the inflaton provides a nearly cosmological constant, leading to an exponential
expansion of the universe, viz. inflation.

Let us write the background equation of motion for φ. From this we can find a number of
useful formulae which do not resort to the dynamics of φ but to V and its derivatives only. The
equation of motion for φ can be found from the Euler-Lagrange equation,

∂µ

[
∂L

∂(∂µφ)

]
=
∂L
∂φ

. (2.51)

This gives

−�φ+
∂V

∂φ
= 0 , (2.52)

where

� ≡ 1√−g∂µ
(√−ggµν∂ν) = − ∂2

∂t2
− 3H

∂

∂t
+

∆

a2
, (2.53)

with ∆ ≡ δij∂i∂j being the spatial Laplacian operator. Here for the last equality we have taken
the background metric. Thus, the background field φ = φ(t) follows the equation of motion

φ̈+ 3Hφ̇+
∂V

∂φ
= 0 . (2.54)

So how this equation for φ simplifies? From (2.19), using (2.49) and (2.50) we require

ä

a
= − φ̇

2 − V
3m2

Pl

> 0 . (2.55)

Note that we can again precisely find (2.37) by using (2.49) and (2.50) for (2.16) and (2.18).
Then this means

φ̇2 < V . (2.56)

3The relations between fluid quantities in terms of one or more scalar fields are highly non-trivial. See [18]
for example.
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Taking a time derivative on both sides, this says φ̈ < ∂V/∂φ. Thus, (2.54) is simplified to

3Hφ̇+
∂V

∂φ
= 0 . (2.57)

Thus we can replace φ̇, or more generally the dynamics of φ, with the derivatives of the potential
V .

Then now let us consider the slow-roll parameter ε, (2.37). Applying (2.57), we find

ε = − Ḣ

H2
≈ φ̇2/(2m2

Pl)

V/(3m2
Pl)
≈ 3

2

1

V

V ′2

9H2
≈ m2

Pl

2

(
V ′

V

)2

, (2.58)

where V ′ ≡ ∂V/∂φ. Thus, ε in the slow-roll approximation tells us how steep the potential slope
is. We can introduce another important slow-roll parameter η, which describes how quickly ε
evolves:

η ≡ ε̇

Hε
≈
[
H
m2

Pl

2

(
V ′

V

)2
]−1

m2
Pl

V ′

V

[
V ′′

V
−
(
V ′

V

)2
]
φ̇ ≈ 2m2

Pl

V ′′

V
+ 4ε . (2.59)

Also note that in the slow-roll approximation the e-fold N can be written in terms of the
potential solely:

N =

∫ f

i

Hdt =

∫ f

i

H
dt

dφ
dφ =

∫ f

i

H

φ̇
dφ ≈ 1

m2
Pl

∫ i

f

V

V ′
dφ . (2.60)

3 Background dynamics

In the previous section, we have briefly recalled the basic of inflation driven by a single inflaton
field. Being well acquainted with the prerequisite knowledge, now we move to our main topic of
multi-field inflation. Explicitly, we consider a n-dimensional multi-field system with a generic
field space metric Gab coupled to the Einstein gravity:

S =

∫
d4x
√−g

[
m2

Pl

2
R− 1

2
Gabg

µν∂µφ
a∂νφ

b − V (φ)

]
. (3.1)

We may well consider more general possibilities, such as f(R) gravity [19] or P (Gab, X
ab, φa)

with Xab ≡ −gµν∂µφa∂νφb/2 [20]. But the discussions and considerations presented in this
article can be straightly applied and extended, so we restrict our discussions to (3.1).

We begin with the background dynamics. The energy-momentum tensor derived from (3.1)
is of the form

Tµν = Gab∂µφ
a∂νφ

b − gµν
[

1

2
Gabg

ρσ∂ρφ
a∂σφ

b + V (φ)

]
, (3.2)

from which we can combine the 00 and ij components of the Einstein equation to find

H2 =
1

3m2
Pl

[
1

2
φ̇2

0 + V (φ0)

]
, (3.3)

Ḣ = − φ̇2
0

2m2
Pl

, (3.4)
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where φ̇2
0 ≡ Gabφ̇

a
0φ̇

b
0 with φa0 being the background value. The background equation of motion

for the scalar fields can be obtained either by the variation of the action (3.1) with respect to
φa or ν = 0 component of the conservation of the energy-momentum tensor T µν;µ = 0 as

Dtφ̇
a
0 + 3Hφ̇a0 +GabVb = 0 , (3.5)

where

Dtφ̇
a
0 =

Dφ̇a0
dt
≡ dφ̇a0

dt
+ Γabcφ̇

b
0φ̇

c
0 (3.6)

is a covariant time derivative with Γabc being the Christoffel symbol constructed by the field
space metric Gab. For more geometric discussions, see e.g. [21].

Before we proceed further to discuss perturbations, it is very useful to consider the change
of basis in the field space. As in space-time, φa plays the role of coordinates in the field space4.
Thus we are free to choose and/or transform to a convenient basis. One possible choice is a
local orthogonal frame: we can introduce a complete set of vielbeins eIa = eIa(t) which maps the
general, arbitrary basis denoted by the index a into a local orthogonal frame denoted by the
superscript I as

eIae
J
bG

ab = δIJ and eIae
J
b δIJ = Gab . (3.7)

Note that here we have not specified the new, orthogonal IJ basis: we may choose whatever
frame we like as long as it is orthogonal. A physically important one is the so-called “kinematic
basis”, which is set along and perpendicular to the field trajectory [21, 22, 23]. The unit tangent
vector T a is defined by

T a ≡ φ̇a0
φ̇0

. (3.8)

The normal vector Na which satisfies GabT
aN b = 0 is naturally proportional to the derivative

of T a, i.e. DtT
a ∝ Na. Taking a time derivative to T a and using (3.5), we find

DtT
a = − φ̈0

φ̇0

T a − 1

φ̇0

(
3Hφ̇a0 + V a

)
. (3.9)

Projecting this equation along T a and Na, we obtain respectively

φ̈0 + 3Hφ̇0 + VT = 0 , (3.10)

DtT
a = −VN

φ̇0

Na ≡ θ̇Na , (3.11)

where VT ≡ VaT
a and VN ≡ VaN

a are the projection of the potential derivative onto the
tangential and perpendicular direction to the trajectory respectively, and we have defined the
proportionality parameter as the angular velocity θ̇ of the trajectory. Note that the background
equation along the tangent direction (3.10) is precisely the same as that in single field inflation
(2.54). Thus we are naturally led to identify the tangential component of the field fluctuations
as what is associated with the curvature perturbation, as we will see in later sections. Also
note that the kinematic basis is not the only sensible choice for an orthogonal basis. We will
discuss another physically illuminating choice in the next section.

4This is of particular caution when we discuss non-linear perturbations, for which we will further return to
this point in Section 7.
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4 Dynamics of perturbations

Up to now, we have considered background dynamics only. But as mentioned before, the ob-
servables in the universe such as the temperature anisotropies of the CMB and the inhomoge-
neous distribution of galaxies on large scales are originated from the primordial perturbations.
During inflation, the whole observable patch of the universe was once deep inside the hori-
zon, subject to quantum fluctuations around the homogeneous background. These fluctuations
exit the horizon and become classical perturbations before they disappear due to rapid expan-
sion. Since the perturbation in the matter sector is equivalent to that in space-time, there
are small perturbations in otherwise smooth three-hypersurfaces. Once inflation is over and
Hubble horizon expands faster than the physical scales, these perturbations enter the horizon
and matter piles up, leading eventually to gravitational collapse when the amplitude of density
perturbation exceeds certain critical value. Thus cosmological perturbations produced during
inflation lies at the heart of the observational tests. In this section, we first take a conventional
approach to the cosmological perturbations in multi-field inflation to gain solid idea. More
careful considerations on cosmological perturbations will be given in the following section.

4.1 Solutions of constraints

We begin with the Arnowitt-Deser-Misner (ADM) form of the metric [24],

ds2 = −N 2dt2 + γij(β
idt+ dxi)(βjdt+ dxj) , (4.1)

where N is the lapse function and βi is the shift vector and γij is the spatial metric. With the
extrinsic curvature

Kij =
1

2N (∂tγij − βi;j − βj;i) , (4.2)

with the covariant derivative being with respect to γij, the action (3.1) is rewritten as

S =

∫
d4x
√
γN

[
m2

Pl

2

(
R(3) +KijK

ij −K2
)
− 1

2
Gabg

µν∂µφ
a∂νφ

b − V (φ)

]
, (4.3)

where R(3) is the curvature of three-dimensional hypersurface of constant t, constructed from
γij, and K ≡ Ki

i.
Varying the action (4.3) with respect to N and βi respectively yield the constraints

R(3) −
(
KijKij −K2

)
=

2

m2
Pl

[
1

2
Gabg

µν∂µφ
a∂νφ

b + V (φ)

]
, (4.4)(

Kij − γijK
)

;j
=

Gab

m2
PlN

(
φ̇b − βj∂jφb

)
∂iφa . (4.5)

Solving these constraints give the solutions of unphysical perturbation variables. As advertised,
in this section we work in the flat gauge in which the scalar sector of the spatial metric γij is
unperturbed:

γij = a2(t)
(
δij + hTTij

)
, (4.6)

where the pure tensor hTTij is transverse and traceless:

hTT
i
i = hTT

ij
,j = 0 . (4.7)
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For our discussion in this section at linear order, it is sufficient to obtain the linear solutions of
the constraints. Writing the perturbation parts of the variables as

N = 1 + α , (4.8)

βi = χ,i + βTi , (4.9)

φa = φa0 +Qa , (4.10)

where the transverse vector βTi satisfies ∂iβTi = 0, we find the solutions of the constraints as

α =
Gab

2m2
PlH

φ̇b0Q
a ≡ NaQa , (4.11)

−2m2
PlH

∆

a2
χ = 6m2

PlH
2α− αφ̇2

0 +Gabφ̇
a
0DtQ

b + VaQ
a , (4.12)

and βTi = 0. Plugging these solutions back into the action, we obtain the quadratic action for
the field fluctuations Qa relevant for linear perturbation theory.

We can also arrive at the same solutions from the conventional perturbed Einstein equation.
We can write the perturbed metric as

ds2 = −(1 + 2A)dt2 + 2aBidtdxi + a2 [(1 + 2ϕ)δij + 2Eij] dxidxj , (4.13)

where the 0i and ij components can be decomposed into

Bi = B,i + Si , (4.14)

Eij = HT,ij + F(i,j) +
1

2
hTTij , (4.15)

with A = α and B = χ/a. Here the pure vectors Si and Fi are transverse:

Si,i = F i
,i = 0 . (4.16)

Then at linear order the scalar, vector and tensor equations are all decoupled and we can
consider them independently from each other. The flat gauge condition (5.35) corresponds to
setting ϕ = HT = 0, the 00 and 0i components of the Einstein equation are respectively, with
the energy-momentum tensor (3.2),

6H2A+ 2H
∆

a
B =

1

m2
Pl

(
−Gabφ̇

a
0DtQ

b + φ̇2
0A− VaQa

)
, (4.17)

2HA,i =
1

m2
Pl

Gabφ̇
a
0∂iQ

b , (4.18)

from which we can find the same solutions for A and B as (4.11) and (4.12), respectively.

4.2 Quadratic action for perturbations

Having found the linear solutions of the constraints, now we can use them to write the quadratic
action of the field fluctuations Qa and the tensor perturbation hTTij . After straightforward
manipulations, we can obtain the quadratic action as [23, 25, 26, 27, 28]

S2 =

∫
d4x

a3

2

{
GabDtQ

aDtQ
b − δij

a2
Gab∂iQ

a∂jQ
b −M2

abQ
aQb +

m2
Pl

4

[(
ḣTTij

)2

− 1

a2
∂khTTij ∂kh

TT
ij

]}
,

(4.19)
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where

M2
ab ≡ Vab − Racdbφ̇

c
0φ̇

d
0 + (3− ε) φ̇0a

mPl

φ̇0b

mPl

+
1

m2
PlH

(
φ̇0aVb + φ̇0bVa

)
, (4.20)

with Vab ≡ V;ab, Ra
bcd ≡ Γabd,c−Γabc,d + ΓaceΓ

e
bd−ΓadeΓ

e
bc being the Riemann tensor associated with

the field space and ε being the slow-roll parameter defined in (2.37). The field indices are raised
and lowered by the field space metric Gab. The equations of motion we can find by perturbing
(4.19) with respect to Qa and hTTij are, respectively,

D2
tQ

a + 3HDtQ
a − ∆

a2
Qa + (M2)abQ

b = 0 , (4.21)

ḧTTij + 3HḣTTij −
∆

a2
hTTij = 0 . (4.22)

We see that in general the field fluctuations are coupled to each other through the effective
mass matrix M2

ab. Also note that the tensor sector is exactly the same as that in single field
inflation.

While we will solve (4.21) and (4.22) later in Section 6, at the moment for (4.21) it is
convenient to make use of the local orthogonal vielbeins eIa introduced in Section 3. Using
the orthogonal basis is particularly useful to connect the field fluctuations to the curvature
perturbation. The field fluctuation Qa in an arbitrary basis can be transformed into the one in
the orthogonal frame by incorporating eIa as

QI = eIaQ
a . (4.23)

Further, introducing uI ≡ aQI and moving to the conformal time dτ = dt/a, we obtain

S2 =

∫
dτd3x

1

2

[
δIJ

(
uI
′
uJ
′
+ 2uI

′
ZJ

Ku
K + ZI

KZ
J
Lu

KuL − δij∂iuI∂juJ
)
− a2M2

IJu
IuJ
]
,

(4.24)
where a prime denotes a derivative with respect to the conformal time, M2

IJ ≡ eaIe
b
JM

2
ab −

H2(2− ε)δIJ , and ZI
J ≡ eIaDτe

a
J . The resulting equation of motion is

uI
′′

+ 2ZI
Ju

J ′ + ZI
J
′
uJ − ZI

JZ
J
Ku

K −∆uI + a2(M2)IJu
J = 0 . (4.25)

Thus we see that while the basis is orthogonal, the form of the equation of motion at first
looks more complicated. This is because the vielbeins that map from an arbitrary basis to
the orthogonal one are time-dependent, eIa = eIa(t), so that the change of the vielbeins itself is
reflected in the antisymmetric matrix ZIJ = −ZJI . Note, however, that we have used in (4.25)
usual partial derivatives, not covariant ones. Indeed, using ZIJ we can define a new covariant
derivative Dτ acting on quantities such as vI labelled with the I-index as

DτuI ≡
duI

dτ
+ ZI

Ju
J . (4.26)

Then the quadratic action (4.24) becomes very simple [23]:

S2 =

∫
dτd3x

1

2

[
δIJ
(
DτuIDτuJ − δij∂iuI∂juJ

)
− a2M2

IJu
IuJ
]
, (4.27)

so is the equation of motion:

D2
τu

I −∆uI + a2(M2)IJu
J = 0 . (4.28)
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4.3 Explicit calculations: two-field case

Having discussed the general aspects, in this section we consider explicitly two-field inflation
case. The benefit is three-fold: first, we will perform explicit calculations in detail so that we see
how the previous discussions become materialized. Second, two-field inflation is the simplest
and thus most intuitive case with multiple number of fields, yet captures many important
aspects of multi-field inflation. Lastly, we can visualize the geometric implications very easily.

4.3.1 Kinematic basis

First we consider the kinematic basis. For two-field case, one of the vielbeins corresponds to
the tangent vector T a and the other to the normal vector Na,

eaT = T a and eaN = Na . (4.29)

Then the parallel and normal perturbations with respect to the inflationary trajectory are given
respectively by

uT = aQT = aTaQ
a , (4.30)

uN = aQN = aNaQ
a . (4.31)

By choosing this frame, we find that ZTN = −ZNT = −aθ̇ = −θ′. Then, the quadratic action
(4.24) becomes

S2 =

∫
dτd3x

1

2

[
uT
′2 − (∇uT )2 −

(
a2M2

TT − θ′2
)
uT

2

+ uN
′2 − (∇uN)2 −

(
a2M2

NN − θ′2
)
uN

2

−4θ′uT
′
uN − 2

(
a2M2

TN + θ′′
)
uTuN

]
, (4.32)

where the symmetric matrix M2
IJ consists of the following elements:

M2
TT = VTT + 2H2ε(3− ε) +

2

m2
PlH

φ̇0VT − (2− ε)H2 , (4.33)

M2
NN = M2 − (2− ε)H2 , (4.34)

M2
TN = VTN − 2εθ̇H , (4.35)

where M2 ≡ VNN + εm2
PlH

2R is the (effective) mass squared of the orthogonal mode uN with
R being the Ricci scalar parametrizing the geometry of the field space, and the projections of
the potential derivatives can be written as

VTT = H2

(
3ε− 3δ1 − δ2 +

θ̇2

H2

)
, (4.36)

VTN = Hθ̇

(
−3 + 2ε− 2δ1 +

θ̈

Hθ̇

)
, (4.37)
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where we have defined

δn ≡
1

Hnφ̇0

dn+1φ0

dtn+1
. (4.38)

The action (4.32) in the kinematic basis leads to the coupled equations of motion describing
the evolution of both modes uT and uN :

uT
′′ − 2θ′uN

′
+
(
−∆ + a2M2

TT − θ′2
)
uT +

(
a2M2

TN − θ′′
)
uN = 0 , (4.39)

uN
′′

+ 2θ′uT
′
+
(
−∆ + a2M2

NN − θ′2
)
uN +

(
a2M2

NT + θ′′
)
uT = 0 . (4.40)

4.3.2 Mass basis

In the very previous section we have considered the perturbations in the kinematic basis, set
along and perpendicular to the background inflationary trajectory. In general for a curved
trajectory, which naturally incorporates “heavy” and “light” degrees of freedom, in the mass
matrix in the kinematic basis which can be written as

VIJ =

(
VTT VTN
VTN VNN

)
, (4.41)

the off-diagonal component of the mass matrix VTN is non-zero, as can be read from (4.37).
Thus, regarding heaviness (or lightness) of the relevant degrees of freedom, it is most convenient
to adopt another set of basis in which the mass matrix VIJ becomes diagonal. We may call this
as the “mass basis” [29]. Then the two eigenvalues of the mass basis correspond to the light and
heavy masses along the trajectory respectively. Notice that if one performs the change-of-basis
around the bottom of the potential [30], no kinematic information is required because geometry
determines everything. Explicit diagonalization of (4.41) gives two eigenvalues,

λ± =
1

2

[
VNN + VTT ± (VNN − VTT )

√
1 + β2

]
where β ≡ 2VTN

VNN − VTT
, (4.42)

so that λ− (λ+) corresponds to Vll (Vhh). The corresponding eigenvectors transformed from the
kinematic basis are then

eal = T a cosψ −Na sinψ =

(
cosψ
− sinψ

)
,

eah = T a sinψ +Na cosψ =

(
sinψ
cosψ

)
,

(4.43)

with

cosψ ≡ 1 +
√

1 + β2√
2
(

1 + β2 +
√

1 + β2
) and sinψ ≡ β√

2
(

1 + β2 +
√

1 + β2
) . (4.44)

So what does the angle ψ mean? This becomes transparent if we write the change-of-basis
matrix P is, with eal and eah on the first and second column and row respectively is

P =

(
cosψ sinψ
− sinψ cosψ

)
. (4.45)
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Thus, given the kinematic basis {T a, Na}, we can rotate it by ψ to obtain the mass basis. This
situation is depicted in Figure 5. Notice that when we discuss about the kinematic basis, we
take care of not θ, which is the rotation angle from the general basis {φ1, φ2} to the kinematic
one, but only θ̇. This is because the field space coordinates φa can be set totally arbitrary,
so important is only the rate of change of the kinematic basis with respect to the general
basis, i.e. the “angular velocity” of the trajectory. But ψ denotes the misalignment between
the kinematic and mass bases, thus not only its rate of change but also its value itself are
important to describe the dynamics along the trajectory: if ψ 6= 0 so that the two bases are
misaligned, oscillations of the trajectory may be caused until the misalignment disappears.

𝜙1

𝜙2

𝑒𝑇
𝑒𝑁

𝑒𝑙

𝑒ℎ

𝜓

Background trajectory

𝑄1

𝑄2

𝜃
𝜗

Figure 5: A schematic plot showing the relation between the arbitrary field basis φ1, φ2, kine-
matic basis {eT , eN} and mass basis {el, eh}. The field fluctuations in the field basis are decom-
posed into {Q1, Q2}. The angular velocity of the kinematic basis is θ̇ while that of the mass
basis is ϑ̇, so that θ, ϑ and ψ are related by θ = ϑ+ψ, although for θ and ϑ only their rates of
change are important since the field basis is arbitrary, with respect to which θ and ϑ are set.

Finally, M2
IJ in (4.24) in the mass basis is

M2
ll = Vll − 2εH2

[(
3− ε+

ε̇

Hε

)
cos2 ψ − θ̇

H
sin(2ψ) +m2

PlR sin2 ψ

]
−H2(2− ε) , (4.46)

M2
lh = 2εH2

[
−1

2

(
3− ε+

ε̇

Hε

)
sin(2ψ)− θ̇

H
cos(2ψ) +

1

2
m2

PlR sin(2ψ)

]
, (4.47)

M2
hh = Vhh − 2εH2

[(
3− ε+

ε̇

Hε

)
sin2 ψ +

θ̇

H
sin(2ψ) +m2

PlR cos2 ψ

]
−H2(2− ε) . (4.48)

21



Then the quadratic action (4.24) becomes explicitly [31]

S2 =

∫
dτd3x

1

2

[
u′l

2 − (∇ul)2 −
(
a2M2

ll − ϑ′2
)
u2
l

+ u′h
2 − (∇uh)2 −

(
a2M2

hh − ϑ′2
)
u2
h

− 4ϑ′u′luh − 2
(
a2M2

lh + ϑ′′
)
uluh

]
, (4.49)

where ϑ′ = (θ − ψ)′ denotes the angular velocity of the mass basis. The first and second lines
denote the free terms of the light and heavy modes respectively, while the third line is the
interaction between them. Note that the form of the action (4.49) is precisely the same as that
in the kinematic basis (4.32). This should be obviously the case, since both the kinematic and
mass bases are orthogonal ones.

5 Formulation of perturbations

In the previous section, we have considered the perturbations in the flat gauge to extract
physical scalar degrees of freedom. Let us recall the general arguments: on top of the matter
sector which contains n scalar fields, the gravitational sector brings additional 4 scalar, 4 vector
and 2 tensor degrees of freedom. However, not all of them are physical, as we have the freedom
to choose an arbitrary coordinate system with the same physics. That is, gravity allows gauge
degrees of freedom. These fictitious gauge degrees of freedom can be removed by imposing
appropriate gauge conditions and by solving the constraints – naively we have n + 4 scalar
variables: n from n scalar field components and 4 from the metric. Since there are 1 temporal
and 1 spatial gauge transformations in the scalar sector, we can eliminate 2 of them. In the
flat gauge discussed in the previous section, we impose the conditions that the perturbations
of three-dimensional spatial metric on each time slice vanish. The remaining metric degrees
of freedom are perturbations of the lapse function and the shift vector. They further can
be removed by solving 2 constraint equations, so that after all n degrees of freedom are left.
Namely, we can write all the physical degrees of freedom solely in terms of the field fluctuations
Qa.

This however is not necessarily the only sensible choice. Especially, we do not directly
observe the inflaton fields – the temperature fluctuations in the CMB and the distribution of
galaxies on large scales reflect the initial perturbation in the curvature of the constant-time spa-
tial hypersurfaces. This curvature perturbation becomes manifest in other gauge choices, not in
the flat gauge we adopted in the previous section in which by definition there is no perturbation
on spatial hypersurfaces. But the curvature perturbation is associated with the metric, so in
this case we have to give 1 degree of freedom to the gravitational sector while the remaining
n−1 to the matter sector that contains n fields. But how can we do this conveniently, since the
gravitational sector receives contributions from the total matter contents? Thus, we need to
reconsider the formulation of perturbations more formally to establish possible gauge choices
on concrete ground. We can discuss formally the issue of gauge fixing in the Hamiltonian for-
mulation, which is also useful for path integral quantization of cosmological perturbations [32].
In this section, we consider the Hamiltonian analysis of cosmological perturbations to study
the gauge conditions systematically.
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5.1 First-order form

For the Hamiltonian formulation, we begin with the canonical momentum of γij as

Πij =
δSG
δ∂tγij

=
m2

Pl

2

√
γ(Kij − γijK) . (5.1)

The pure gravity part of the action then is written in the first-order form,

SG =

∫
d4x

(
Πij∂tγij −NHG − βiHi

G

)
, (5.2)

where

HG =
2

m2
Pl

√
γ

(
ΠijΠij −

1

2
Π2

)
− m2

Pl

2

√
γR(3), (5.3)

Hi
G = −2

(
∂jΠ

ij + ΓijkΠ
jk
)
, (5.4)

with Π ≡ Πi
i. Here, the lapse N and the shifts βi play the role of Lagrangian multipliers for the

constraints H and Hi respectively, which are interpreted as the generators of diffeomorphism.
Likewise, we can write the matter part of the action in the first-order form as

SM =

∫
d4x

(
Πa∂tφ

a −NHM − βiHi
M

)
, (5.5)

where the canonical momentum Πa and the constraints HM and Hi
M are

Πa =

√
γ

N Gab

(
∂tφ

b − βi∂iφb
)
, (5.6)

HM =
Gab

2
√
γ

ΠaΠb +
1

2

√
γγijGab∂iφ

a∂jφ
b +
√
γV (φa) , (5.7)

Hi
M = Πa∂

iφa . (5.8)

Thus, the action in the first-order form is given by

S =

∫
d4x

[
Πij∂tγij + Πa∂tφ

a −N (HG +HM)− βi
(
Hi
G +Hi

M

)]
. (5.9)

It is clearly seen that unphysical N and βi become Lagrange multipliers accompanying con-
straints HG +HM and Hi

G +Hi
M , respectively.

We are interested in the cosmological perturbations around the time-dependent classical
background. For gravity sector, we separate the FRW background quantities and their pertur-
bations as:

Πij =
P (t)

6a(t)

[
δij + πij(t,x)

]
, (5.10)

γij = a2(t) [δij + hij(t,x)] , (5.11)

N = N0(t) + α(t,x) , (5.12)

βi = βi(t,x) . (5.13)
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Note that at the moment we have kept the background lapse function denoted by N0(t), not
simply setting it to 1. This is because we can obtain a background equation by varying the
zeroth order action with respect to N0 [see (5.16) and (5.21)]. For the matter sector, the
perturbations around the classical backgrounds φa0(t) are written as

φa = φa0(t) +Qa(t,x) , (5.14)

Πa = Pa(t) + πa(t,x) . (5.15)

We can obtain the classical solutions from the zeroth order action,

S0 =

∫
d4x

[
P∂ta+ Pa∂tφ

a
0 −N0

(
− P 2

12m2
Pla

+
GabPaPb

2a3
+ a3V

)]
. (5.16)

Varying this with respect to the classical backgrounds, we obtain the background equations of
motion as:

δS0

δP
= 0 : ȧ = − P

6m2
Pla

, (5.17)

δS0

δa
= 0 : Ṗ = − P 2

12m2
Pla

2
+

3GabPaPb
2a4

− 3a2V , (5.18)

δS0

δPa
= 0 : φ̇a0 =

GabPb
a3

, (5.19)

δS0

δφa0
= 0 : Ṗa = −a3Va −

1

2a3
Gcd

,aPcPd , (5.20)

δS0

δN0

= 0 :
P 2

12m2
Pla

=
GabPaPb

2a3
+ a3V , (5.21)

Combining these equations, we obtain the familiar background equations (3.3), (3.4) and (3.5).
Note that from the linear order action

S1 =

∫
d4xN0

[
a

6
h

(
−Ṗ +HP +

P 2

12m2
Pla

2
+

3GabPaPb
2a4

− 3a2V

)
+
P

3
π

(
ȧ+

P 2

6m2
Pla

)
+Qa

(
Ṗa +

1

2a3
Gcd

,aPcPd + a3Va

)
+ πa

(
φ̇a0 −

GabPb
a3

)
+

α

N0

(
P 2

12m2
Pla
− GabPaPb

2a3
− a3V

)]
, (5.22)

where h ≡ hii and π ≡ πii, we can immediately read the same background equations, which
we obtained by perturbing the zeroth order action with respect to the background variables,
as the constraints for the perturbation variables.

5.2 Gauge fixing conditions

Having found the first-order form of the action, now we can proceed formal discussion on
the possible choice of gauge fixing. Before we begin explicitly with the quadratic action for
cosmological perturbations, let us recall how to remove properly the unphysical degrees of
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freedom for a constrained system, viz. when constraints are present [33]. Let us consider a
Hamiltonian with r constraints in a 2f -dimensional phase space (q1, · · · , qf ; p1, · · · , pf ),

Htotal(qi, pi) = H(q1, · · · , qf ; p1, · · · , pf ) +
r∑

m=1

λmχm(q1, · · · , qf ; p1, · · · , pf ) , (5.23)

where the Lagrangian multipliers λm are combinations of unphysical degrees of freedom. Since
there are r constraints χm, the number of degrees of freedom in the phase space is reduced
to 2f − r by solving r constraints. But the phase space should be even-dimensional, so total
remaining degrees of freedom should be not 2f − r but 2f − 2r. That is, still r unphysical
degrees of freedom remain. This is because different values of λm correspond to different copies
of physical degrees of freedom in the phase space on χm = 0. Thus we need r more, gauge-fixing
conditions ψm(q1, · · · , qf ; p1, · · · , pf ) = 0. In quantum field theory, these gauge fixing conditions
are subject to det([χm, ψn]) 6= 0 so that just one set of physical degrees of freedom is chosen.
By choosing gauge fixing conditions satisfying [ψm, ψn] = 0, we can identify ψm as unphysical
canonical momenta pm then the remaining f − r momenta (p∗1, · · · , p∗f−r) are physical. Then
det([χm, ψn]) = det([χm, pn]) = det(i∂χm/∂qn) 6= 0 so that it is always possible to identify
unphysical variables qm by inverting χm(q1, · · · , qf ; p∗1, · · · , p∗f−r; p1 = · · · = pr = 0) = 0. Thus,
we are finally left with 2f − 2r physical, constrained variables (q∗1, · · · , q∗f−r; p∗1, · · · , p∗f−r).

Now we return to our discussion on the cosmological perturbations around the classical
solutions. At quadratic order, the first-order form of the action is written as

S2 =

∫
d4x

(
πa∂tQ

a − 2a3Hπij∂thij −H2 + αC0
1 + βiC

i
1

)
, (5.24)

where H2 is the quadratic Hamiltonian, and Cµ
1 denote the constraints linear in perturbations.

They are given by

H2 = 4a3H2m
2
Pl

2

[
1

2
πijAijklπ

kl + πij
(

2hij −
1

2
δijh

)]
+
Gab

2a3
(πaπb − hPaπb)

+
a

2
Gab∂iQ

a∂iQ
b +

a3

2

(
VabQ

aQb + hVaQ
a
)

+

(
5m2

Pl

4
a3H2 +

Gab

8a3
PaPb

)
hijhij −

(
3m2

Pl

8
a3H2 − Gab

16a3
PaPb

)
h2

+ a
m2

Pl

2

(
1

4
h∆h− 1

2
hhij ,ij +

1

2
hij∂k∂ihjk −

1

4
hij∆hij

)
+ a3V

4

(
h2

2
− hijhij

)
, (5.25)

C0
1 = a3h

(
GabPaPb

4a6
+
m2

Pl

2
H2

)
+ a

m2
Pl

2

(
hij ,ij −∆h

)
− a3VaQ

a − Gab

a3
Paπb + 2m2

Pla
3H2π − a3

2
hV ,

(5.26)

Ci
1 = − 1

a2
Pa∂

iQa − 2aHm2
Pl

(
∂jπ

ij + ∂jh
ij − 1

2
∂ih

)
, (5.27)

with Aijkl ≡ δikδjl + δilδjk− δijδkl. Notice that going beyond cubic order, which is necessary for
non-linear perturbation theory, we can schematically write

S≥3 =

∫
d4x

(
−H≥3 + αC0

≥2 + βiC
i
≥2

)
, (5.28)

25



where the subscript ≥ n denotes n-th order and beyond in perturbations.
Since gravity has four constraints, we need four gauge fixing conditions ψµ (µ = 0, 1, 2, 3)

satisfying
det ({Cµ, ψν}) 6= 0 , (5.29)

where curly brackets denote the Poisson brackets. To extract the possible gauge fixing condi-
tions, we need the Poisson brackets of the constraints Cµ with the fluctuations hij and Qa. We
can explicitly find{

hij(t,x), C0(t,y)
}

= −2Hγ̃−1/2
{
δij +

(
−hij + δijh− 2πij + δijπ

)
+
[
(h+ π)hij − 2hikhjk − 2(hilπ

jl + hjlπ
il) + πklhklδij

]
+ (−2hilπ

lkhjk + hklπ
klhij)

}
δ(3)(x− y) , (5.30){

hij(t,x), Ck(t,y)
}

= − 2

a2

(
δk(i∂

x
j) − Γkij

)
δ(3)(x− y) , (5.31){

Qa(t,x), C0(t,y)
}

= − γ̃
−1/2

a3
(Pa + πa)δ

(3)(x− y) , (5.32){
Qa(t,x), Ci(t,y)

}
= − 1

a3
γ̃ik∂kQ

aδ(3)(x− y) , (5.33)

where γ̃ij = γij/a
2. Since the participating degrees of freedom are the perturbed metric hij and

the field fluctuations Qa, we can think of four possibilities for the gauge fixing conditions:

1. Both the ψ0 and the ψi conditions come from hij.

2. Both the ψ0 and the ψi conditions come from Qa.

3. The ψ0 condition comes from hij, whereas the ψi condition comes from Qa.

4. The ψ0 condition comes from Qa, whereas the ψi condition comes from hij.

However, the 3-vector condition made up of Qa, say, ψi = ψi(Q
a, ∂kQ

a) satisfies

{
ψj(Q)(t,x), Ci(t,y)

}
= − γ̃

ik

a2
∂kQ

a(t,y)

[
∂ψj
∂Qa

(t,x) +
∂ψj

∂(∂lQa)
(t,x)∂xl

]
δ(3)(x− y)

= − γ̃
ik

a2
Dkψjδ

(3)(x− y) . (5.34)

Thus it vanishes under ψi = 0, and (5.29) is violated. That is, the spatial vector constraints
Ci cannot be satisfied with the field fluctuations Qa. Hence, plausible gauge fixing conditions
should be chosen between the possibilities 1 and 4.

For the first possibility, the gauge fixing is imposed entirely from the metric fluctuation.
One simple example is

ψ0 = 0 ,

ψi = ∂j
(
hij −

δij
3
h

)
.

(5.35)
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In terms of the metric decomposition in (4.13) and (4.15) the gauge fixing by ψµ = 0 in this
choice is to set the scalar components of hij zero, so that there is no scalar perturbation in the
spatial metric as in (5.35). Thus in this gauge condition, the curvature of the three-hypersurface
is uniform so it is called uniform-curvature gauge. Since we are considering spatially flat
universe, we may call it “flat” gauge condition. In the flat gauge, the scalar degrees of freedom
are entirely given to Qa. Meanwhile, as an example for the fourth possibility, we can make use
of the conditions

ψ0 = Gabφ̇
a
0Q

b ,

ψi = ∂j
(
hij −

δij
3
h

)
.

(5.36)

We can note from (3.2) that the condition ψ0 = 0 is equivalent to T 0
i = 0. In terms of

hydrodynamic fluid, the 3-velocity of the fluid vanishes in this gauge, ui = 0. Thus in this
gauge condition we do not observe momentum flux, and we move together with the cosmic
fluid. So this gauge condition is known and the “comoving” gauge condition, and one scalar
degree of freedom is associated with the metric – the curvature perturbation. But notice that
all field contents contribute to ψ0. A more convenient way of implementing ψ0 = 0 will be
discussed in the following sections.

5.3 Quadratic action in the comoving gauge

Having discussed the possible gauge conditions, now we consider the quadratic action (6.2) for
which we have not yet applied any gauge yet. For this, we decompose the metric perturbation
hij using the scalar, vector and tensor components as we already did in (4.13) and (4.15)5:

hij = 2ϕδij + 2HT,ij + 2∂(iFj) + hTTij . (5.37)

The quadratic action (6.2) looks horribly complex, so we first need to arrange terms for physical
clarity. For this, we introduce the Mukhanov-Sasaki variable [35] à la single field inflation as

Q̃a ≡ Qa − φ̇a0
H
ϕ . (5.38)

Then, up to irrelevant auxiliary field terms which can be eliminated from dynamics after ap-
propriate redefinitions, we obtain a surprisingly simple form:

S2 =

∫
d4x

a3

2

{
GabDtQ̃

aDtQ̃
b − Gab

a2
∂iQ̃a∂iQ̃

b −M2
abQ̃

aQ̃b +
m2

Pl

4

[(
ḣTTij

)2

− 1

a2
∂khTTij ∂kh

TT
ij

]}
,

(5.39)
where M2

ab is given by (4.20).
Since the pure tensor action in (5.39) is the same as that in single field inflation, we from

now on concentrate on the scalar sector. As mentioned at the beginning of this section, it is very
conventional to adopt the flat gauge for multi-field inflation in which ϕ = HT = 0 so that simply

5We may write the scalar components as 2HLδij + 2(∂i∂j −∆δij/3)HT so that HL is the only longitudinal
contribution [34]. Note that in this decomposition ϕ = HT −∆HT /3.
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Q̃a = Qa. This is because the number of the physical degrees of freedom, after eliminating the
unphysical ones, is the same as the number of field contents. But in the comoving gauge, where
one physical degree of freedom is the curvature perturbation ϕ, we need to fix a non-trivial
temporal gauge condition C0 for which all the field fluctuations contribute as can be read from
ψ0 in (5.36). Thus, (5.38) is, while it gives a very simple form of the quadratic action (5.39), not
most convenient to implement the comoving gauge condition. A more convenient alternative is
to decompose Qa into the directions along and orthogonal to time evolution [36] as

Qa(t,x) = Qa
⊥(t,x) + φ̇a0(t)π̃(t,x) , (5.40)

with the orthogonality condition
Gabφ̇

a
0Q

b
⊥ = 0 . (5.41)

We can then rewrite the temporal gauge condition of (5.36) very simply as as

ψ0 = φ̇2
0π̃ . (5.42)

Thus, we can impose the the comoving gauge conveniently by π̃ = 0. Note that the linear
gauge transformation Qa → Qa − φ̇a0ξ0 tells us

π̃ → π̃ − ξ0 and Qa
⊥ → Qa

⊥ . (5.43)

This means that π̃ is the fluctuation in the direction of the time translation itself, and is
thus interpreted as the Goldstone mode resulting from the spontaneous breaking of the time
translation invariance [37]. Meanwhile, the orthogonal fluctuations Qa

⊥, which are usually called
“isocurvature” modes, are gauge invariant6. Then, we can write the multi-field version of the
Mukhanov-Sasaki variable (5.38) as

Q̃a(t,x) = Qa
⊥(t,x)− φ̇a0

H
(ϕ−Hπ̃) (t,x) ≡ Qa

⊥(t,x)− φ̇a0
H
π(t,x) . (5.44)

Note that due to the orthogonality condition, n− 1 out of total n Qa
⊥’s are independent in the

comoving gauge: the remaining single degree of freedom is π, which is also gauge invariant.
With this decomposition, the scalar quadratic action is rewritten in terms of gauge invariant
variables π and Qa

⊥ as, using the time derivative of (5.41) to eliminate DtQ
a in the mixing term

with π,

S2 =

∫
d4x

a3

2

[
GabDtQ

a
⊥DtQ

b
⊥ −

Gab

a2
∂iQa

⊥∂iQ
b
⊥ −M2

abQ
a
⊥Q

b
⊥

+2εm2
Pl

(
π̇2 − 1

a2
∂iπ∂iπ

)
− 4

H
VaQ

a
⊥π̇

]
. (5.45)

We close this section by writing the curvature perturbation in a form convenient for comput-
ing higher order correlation functions that we will discuss later. We can non-linearly generalize
the metric perturbation (5.37) by exponentiating it as [42]

γij = a2(t)e2ϕ(t,x)
[
eh

TT
]
ij
, (5.46)

6Note that in models with non-minimal couplings to gravity [38], for single field case the curvature perturba-
tion remains invariant [39] under the conformal transformation by which the gravitational sector becomes the
minimal Einstein-Hilbert one [40], but for multi-field this is not the case [41].
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where det
[
eh

TT
]

= 1, i.e. the matrix hTT is traceless and represents tensor perturbations,

so that the scalar perturbation is isolated as ϕ. Notice that this form also means the scalar
perturbation can be interpreted as the “local expansion rate” which can be written as the
determinant of γij: see (7.39). In the comoving gauge in which ϕ = R, the transformation from
π to R is given by [43, 44]

R = π +

(
ε− δ

2

)
π2 +

1

H
ππ̇ − 1

4a2H2

[
∂iπ∂iπ − ∂i∂j∆−1 (∂iπ∂jπ)

]
+

ε

H

[
∂iπ∂i∆

−1π̇ − ∂i∂j∆−1
(
∂iπ∂j∆

−1π̇
)]
− 1

4H
ḣTTij ∂

i∂jπ + · · · . (5.47)

In terms of R, the quadratic action remains the same with π replaced by R. But the transfor-
mation (5.47) does give rise to additional contributions to the higher order action in terms of
π as we will see in Section 7.

5.4 Two-field case

Now we consider two-field case explicitly. Due to the orthogonality condition, we know that
Qa
⊥ is proportional to the normal vector Na: Qa

⊥ ∝ Na. We denote the amplitude of Q⊥ as F ,
and use the (linear) relation (5.47) to replace π simply with R. That is, the gauge-invariant
variable Q̃a is written in terms of R and F as

Q̃a = NaF − φ̇a0
H
R . (5.48)

Then the quadratic action becomes

S2 =

∫
d4x

a3

2

{
2εm2

Pl

[
Ṙ2 − (∇R)2

a2

]
+ Ḟ2 − (∇F)2

a2
−M2

effF2 + 4θ̇
φ̇0

H
ṘF

}
. (5.49)

where M2
eff = VNN + εm2

PlH
2R − θ̇2. Identifying uT = −φ̇0R/H and uN = F , after some

manipulations we can recover (4.32).

5.4.1 Effective single field theory

Note that if a hierarchy of scales is present in the mass matrix, then we can compute a fairly
reliable effective single field theory: see [45] for a concrete review on this subject. If we do not
have any light mode other than R, we can integrate out the heavy isocurvature modes F by
performing formally the path integral over F . Writing (5.49) schematically as

S2 =
1

2

∫
R∆RRR+

1

2

∫
F∆FFF +

∫
F∆RFR , (5.50)

we can evaluate the Gaussian integral over the heavy field F as

e−Seff[R] = exp

(
1

2

∫
R∆RRR

)∫
DF exp

(
1

2

∫
F∆FFF +

∫
F∆RFR

)
= exp

{
1

2

∫
R∆RRR−

1

2

∫ [
(∆RFR) ∆−1

FF (∆RFR)
]}

det [∆FF ]−1/2 . (5.51)
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Then the effective action for R reads

Seff[R] =
1

2

∫
R∆RRR−

1

2

∫
d4xd4y∆RFR(x)∆−1

FF(x, y)∆RFR(y) + Scounter , (5.52)

where Scounter denotes the contributions from the functional determinant and does not depend
on R. Note that instead of formally performing the Gaussian integral, we could solve for F via
its equations of motion

∆FFF = −∆RFR , (5.53)

which has the formal solution F = −∆−1
FF∆RFR. Substituting this solution into (5.50) gives

Seff[R] =
1

2

∫
R∆RRR−

1

2

∫
∆RFR∆−1

FF∆RFR , (5.54)

with the only difference from the formal result being the absence of Scounter. Thus at quadratic
order, we can simply substitute the solution for F back into the original action (5.49) to obtain
the desired effective action for R solely [36].

The effective action obtained in this manner is intrinsically non-local, as the operator ∆FF =
−�+M2

eff contains derivative operators. However, given that the adiabaticity condition [46]∣∣∣∣∣ θ̈θ̇
∣∣∣∣∣�Meff (5.55)

is satisfied, we can expand the solution of (5.53) as a power series of M2
eff as

F =
(
−�+M2

eff

)−1
2θ̇
φ̇0

H
Ṙ =

1

M2
eff

(
1 +

�
M2

eff

+ · · ·
)

2θ̇
φ̇0

H
Ṙ , (5.56)

making the non-local theory to the one with higher derivatives. Especially, the leading term
gives a simple modified kinetic term:

S2 =

∫
d4xa3εm2

Pl

[(
1 +

4θ̇2

M2
eff

)
Ṙ2 − (∇R)2

a2

]
, (5.57)

which is interpreted as the speed of sound c−2
s [23, 36, 47]. That is, the propagation speed of

the adiabatic mode R is reduced by the interaction with the heavy isocurvature mode F , as
the kinetic energy of R is extracted to excite F . Including higher order derivative operators in
the expansion (5.56) leads to a modified dispersion relation in such a way that the validity of
the effective theory is improved [48].

6 Power spectrum

6.1 Free solutions of mode functions and power spectrum

Having discussed various forms of the quadratic action for perturbations, now we solve the
derived equations of motion for those perturbations. What we have seen previously is that in
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general there are always interactions between different components. These mixing terms lead
to the coupled set of differential equations, for example (4.39) and (4.40). Thus finding exact
solutions of these coupled equations is rather non-trivial. But given that the interactions are
small enough, we can perturbatively find the solutions and corrections to the power spectrum
of the perturbation of our interest. Presuming that the interactions are sufficiently small, we
conveniently split the quadratic part of the action as

S2 = S2,free + S2,int , (6.1)

where S2,free contains only free, decoupled terms for a certain component Ψ without interaction
with other degrees of freedom, while S2,int includes quadratic interactions among them. The
leading solution of a certain perturbation component Ψ is coming from the decoupled free
quadratic action for Ψ, which has the following schematic form as a harmonic oscillator:

Sfree =

∫
dτd3x

1

2

[
Ψ′

2 − (∇Ψ)2 −m2Ψ2
]
, (6.2)

with m2 being time-dependent in general. To obtain this form we need to perform further
manipulations. For example, for the decoupled free part of the quadratic action for the curvature
perturbation R [or equivalently π at quadratic order: see (5.47)] we rescale R as

Ψ =
aφ̇0

H
R ≡ zR , (6.3)

which gives m2 = z′′/z. The resulting equation of motion we can derive from (6.2) is

Ψ′′ −∆Ψ−m2Ψ = 0 . (6.4)

We can write the Fourier mode Ψ(τ, k), which will be more convenient for the subsequent study,
as

Ψ(τ,x) =

∫
d3k

(2π)3
eik·xΨ(τ, k) , (6.5)

then the equation of motion (6.4) becomes, for the Fourier mode,

Ψ′′ + (k2 +m2)Ψ = 0 . (6.6)

Identifying k2 + m2 ≡ ω2
k(τ), we can see that (6.6) describes a harmonic oscillator with time

dependent frequency ω2
k(τ). Being a canonically normalized harmonic oscillator, we can follow

the standard quantization procedure for Ψ. That is, we promote Ψ and the conjugate momen-
tum ΠΨ = Ψ′ to operators Ψ̂ and Π̂Ψ and imposes the canonical commutation relations between
them.

Since Ψ is a free field, we can expand the operator Ψ̂ in terms of the creation and annihilation
operators in the Fourier space. The Fourier mode given by (6.5) is promoted to the operator

Ψ̂(τ, k), which we can expand in terms of the creation and annihilation operators:

Ψ̂(τ, k) = a(k)Ψk(τ) + a†(−k)Ψ∗k(τ) , (6.7)

where the creation and annihilation operators satisfy the standard commutation relations[
a(k), a†(q)

]
= (2π)3δ(3)(k− q) , (6.8)
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otherwise zero. Now we require that the canonical conjugate variables Ψ̂ and Π̂Ψ satisfy the
equal time canonical commutation relation[

Ψ̂(τ,x), Π̂Ψ(τ,y)
]

= iδ(3)(x− y) . (6.9)

Using the Fourier mode (6.5) and the expansion (6.7) with the commutation relation (6.8), we
can see that the mode function Ψk satisfies the normalization condition

Ψk
dΨ∗k
dτ
− dΨk

dτ
Ψ∗k = i . (6.10)

To determine the mode function Ψk(τ), which amounts to fix the vacuum state |0〉 defined
by

a(k)|0〉 = 0 for all k , (6.11)

we impose the vacuum boundary condition when the mode is deep inside the horizon τ → −∞,
i.e. k � aH where the mode function solution is the positive frequency mode with ωk = k:

Ψk =
1√
2k
e−ikτ . (6.12)

With this boundary condition and the normalization condition (6.10), the general solution for
(6.6) can be written in terms of the Bessel functions, and for later convenience we use the
Hankel function:

Ψk(τ) =
√
−τ
[
c1(k)H(1)

ν (−kτ) + c2(k)H(2)
ν (−kτ)

]
, (6.13)

where c1(k) and c2(k) are coefficients to be determined, and

ν2 ≡ 9

4
− m2

H2
(6.14)

is assumed to be constant. To fix the coefficients, we require that when the mode is deep inside
the horizon τ → −∞ we recover the vacuum boundary solution (6.12). This can be found by
taking the argument of the Hankel function −kτ very large,

H(1)
ν (z) −→

z�1

√
2

πz
exp

[
i
(
z − π

2
ν − π

4

)]
, (6.15)

with H
(2)
ν being the complex conjugate of H

(1)
ν . Thus, to match (6.12), c1(k) and c2(k) should

be

c1(k) =

√
π

2
ei(ν+1/2)π/2 and c2(k) = 0 . (6.16)

A particularly important and simple case is when ν = 3/2 exactly, which corresponds to the
massless limit:

Ψk =
1√
2k

(
1− i

kτ

)
e−ikτ . (6.17)

Given the free solution of Ψk, now we can compute the power spectrum of Ψk, defined by

〈0|Ψ(k)Ψ(q)|0〉 ≡ (2π)3δ(3)(k + q)
2π2

k3
PΨ(k) , (6.18)
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so that in terms of the mode function Ψk

PΨ(k) =
k3

2π2
|Ψk|2 , (6.19)

which can be evaluated at a convenient time, e.g. the moment of horizon crossing. For example,
the power spectrum of the curvature perturbation can be directly found from its free quadratic
action as

PR =
k3

2π2

∣∣∣∣Ψk

z

∣∣∣∣2 =

(
H

2π

)2
1

2εm2
Pl

. (6.20)

Alternatively, using the kinematic basis discussed in Sections 3 and 4 in which R is related to
the tangential component uT in the standard manner as

R = −H
φ̇0

QT = −H
φ̇0

uT

a
, (6.21)

we can write

PR(k, τ) =
H2

φ̇2
0

PTT (k, τ) =
k3

4π2a2m2
Plε

∣∣uTk ∣∣2 . (6.22)

where m2 for uT is given by, as can be read from (4.39), m2 = a2M2
TT − θ′2. Using the mass

basis instead gives similar results.

6.2 Corrections to the power spectrum

In the previous section, we have obtained the free power spectrum with the quadratic in-
teractions between different components being ignored. Now we consider the effects of the
interactions to the power spectrum perturbatively. Having perturbative interactions, we can
compute readily the corrections due to the interaction terms between different fields using the
in-in formalism [49], which let us briefly recall here.

One crucial point when interactions exist, viz. the system is evolving, is that any (vacuum)
expectation values should be taken with respect to the interaction vacuum state |Ω〉, i.e. the
actual vacuum state of the theory, not the free vacuum state |0〉 defined in the previous section.
For this description, we resort to the interaction picture. In quantum mechanics, the interaction
picture (or Dirac picture) is an intermediate between the Schrödinger picture and the Heisenberg
picture. Whereas in the other two pictures either the state vector or the operators carry time
dependence, in the interaction picture both carry part of the time dependence of observables.
The purpose of the interaction picture is to shunt all the time dependence due to the free
Hamiltonian H0 onto the operators, leaving only the interaction Hamiltonian Hint affecting the
time-dependence of the state vectors.

Now, we denote by
〈
Ô(t)

〉
the expectation value evaluated at a time t of a time-dependent

operator

Ô(t) =
(
e
−i

∫ t
tin

H0(t′)dt′
)†
Ô
(
e
−i

∫ t
tin

H0(t′′)dt′′
)
, (6.23)

where tin is some early “in” time when the interaction is turned on. This expectation value is
taken with respect to the vacuum state at that time |Ω(t)〉 that has evolved from an “in” state,
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which we take as the vacuum |0〉, according to

|Ω(t)〉 = e
−i

∫ t
tin

Hint(t
′)dt′ |0〉 . (6.24)

Given appropriate normalizations, now let us consider Hint as a small perturbation to the free
Hamiltonian H0. Expanding the exponential in (6.24), in terms of Hint, we obtain7

〈
Ô(t)

〉
=

〈
0

∣∣∣∣∣∣
[

1− i
∫ t

tin

Hint(t
′)dt′ +

1

2

(
−i
∫ t

tin

Hint(t
′)dt′

)2

+ · · ·
]†
Ô(t)

×
[

1− i
∫ t

tin

Hint(t
′)dt′ +

1

2

(
−i
∫ t

tin

Hint(t
′′)dt′′

)2

+ · · ·
]∣∣∣∣∣ 0
〉

=
〈

0
∣∣∣Ô(t)

∣∣∣ 0〉+ i

∫ t

tin

dt1

〈
0
∣∣∣[Hint(t

′), Ô(t)
]∣∣∣ 0〉

−
∫ t

tin

dt2

∫ t1

tin

dt2

〈
0
∣∣∣[Hint(t1),

[
Hint(t2), Ô(t)

]]∣∣∣ 0〉+ · · · , (6.25)

where for the last equality we have used the commutator identity

AAB − 2ABA+BAA = [A, [A,B]] . (6.26)

Having briefly recalled the in-in formalism, now we consider the corrections to the free power
spectrum of Ψ due to the interaction terms between different fields, which we collectively denote
by Φ. Schematically we write the interaction terms as

S2,int =

∫
d4xa3c(t)O(Φ)ΦO(Ψ)Ψ , (6.27)

where c(t) is the time-dependent coupling between Ψ and Φ, and O(X) is the possible derivative
operator for the field X. Since the interaction Hamiltonian contains two free field contents, the
first non-vanishing contribution to the two-point function comes from the interaction Hamilto-
nian squared. Correspondingly, the correction terms now involve two free propagators: one for
Ψ and the other for the coupled field Φ. Thus, in terms of the free propagator

i∆X
+−(x, x′) ≡ 〈0 |X(x′)X(x)| 0〉 , (6.28)

where the subscript + (−) denotes forward (backward) in time with i∆+− = −i∆∗−+, from
(6.25) we can write as the two-point function of Ψ including the leading corrections due to its

7Here, we omit for simplicity limtin→−∞(1−iε) with ε� 1, but tin is evaluated in this limit after all.
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interaction with Φ as

〈Ω |Ψ(t,x)Ψ(t,y)|Ω〉 = i∆Ψ
+− −

∫ t

ti

dt1d
3x1

∫ t

ti

dt2d
3x2(a3c)(t1)(a3c)(t2)

×O(Ψ)
1 i∆Ψ

+−(t, t1)O(Ψ)
2 i∆Ψ

−+(t, t2)O(Φ)
1 O(Φ)

2 i∆Φ
+−(t1, t2)

−
∫ t

ti

dt1d
3x1

∫ t1

ti

dt2d
3x2(a3c)(t1)(a3c)(t2)

×
[
O(Ψ)

1 i∆Ψ
+−(t1, t)O(Ψ)

2 i∆Ψ
+−(t, t2)O(Φ)

1 O(Φ)
2 i∆Φ

+−(t1, t2)

+O(Ψ)
1 i∆Ψ

−+(t, t1)O(Ψ)
2 i∆Ψ

−+(t2, t)O(Φ)
1 O(Φ)

2 i∆Φ
+−(t2, t1)

]
.

(6.29)

This is most general expression for the two-point correlation function of Ψ including the leading
corrections due to the interaction with Φ. The corresponding power spectrum can be found by
taking the Fourier transformation of 〈Ω |Ψ(t,x)Ψ(t,y)|Ω〉.

6.2.1 Two-field case

For definiteness, let us consider explicitly the corrections to the power spectrum of R due to
the interaction with Qa

⊥ in the simplest two-field case. The total quadratic action including the
interaction is (5.49), from which we read the coefficient of the quadratic mixing term and the
derivative operators as

c(t) =
√

8εmPlθ̇ , O(R) = ∂t , O(F) = 1 . (6.30)

Then the two-point correlation of R is given by

〈Ω |R(t,x)R(t,y)|Ω〉 = i∆R+− −
∫ t

ti

dt1d
3x1

∫ t

ti

dt2d
3x2(a3c)(t1)(a3c)(t2)

× ∂t1i∆R+−(t, t1)∂t2i∆
R
−+(t, t2)i∆F+−(t1, t2)

−
∫ t

ti

dt1d
3x1

∫ t1

ti

dt2d
3x2(a3c)(t1)(a3c)(t2)

×
[
∂t1i∆

R
+−(t1, t)∂t2i∆

R
+−(t, t2)i∆F+−(t1, t2)

+∂t1i∆
R
−+(t, t1)∂t2i∆

R
−+(t2, t)i∆

F
+−(t2, t1)

]
. (6.31)

The power spectrum is obtained by performing the Fourier transformation of the above result.
In the very simple limit of constant c(t), which corresponds to a constant turn, using the massive
mode function solution (6.13) with (6.16) for F , we find

PR =

(
H

2π

)2
1

2εm2
Pl

(
1 +

4c2C

εm2
PlH

2

)
, (6.32)

where [50]

C ≡ π

4
<
{∫ ∞

0

dx1

∫ ∞
x1

dx2

[
x
−1/2
1 H(1)

ν (x1)eix1x
−1/2
2 H(2)

ν (x2)e−ix2

−x−1/2
1 H(1)

ν (x1)e−ix1x
−1/2
2 H(2)

ν (x2)e−ix2

]}
. (6.33)
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Especially, if F is also very light so that ν → 3/2, we can perform the integral analytically
using the massless mode function solution (6.17) to find

C =
1

2
(α− log x)2 +

π2

8
− γ2

2
− 3

4
=
α2

2
+
π2

8
− γ2

2
− 3

4

∣∣∣∣
k=aH

, (6.34)

where α ≡ 2 − log 2 − γ ≈ 0.729637 with γ ≈ 0.577216 being the Euler-Mascheroni constant,
and for the second equality we have evaluated at the moment of horizon crossing k = aH8 [see
also (6.46)]. For the field fluctuations Qa in the flat gauge, we can find similar results.

6.3 Alternative solutions

In the previous sections, we have considered the free, decoupled and interaction terms sep-
arately, and have regarded the latter as perturbations to apply the in-in formalism. This is
because fully solving the coupled differential equations is a non-trivial task. We can, however,
take a different approach to solve the equations of motion directly. As we will see, we still treat
the interaction terms perturbatively, so in this sense it is equivalent to what we have seen in the
previous sections. One advantage of the alternative we present here is that all the corrections,
including the deviations from perfect de Sitter limit τ = −1/(aH), are systematically taken into
account. We will solve for the field fluctuations Qa in the flat gauge, but it is straightforwardly
extended to the curvature perturbation R in the comoving gauge.

Our starting point is the equation of motion for Qa (4.21). Defining ua ≡ aQa and

x ≡ −kτ =
k

aH
(1 + ε+ · · · ) , (6.35)

we can rewrite (4.21) as [52]

D2
xu

a +

(
1− 2

x2

)
ua =

3

x2
ζabu

b , (6.36)

where ζab is given by

ζab = Gabε+
φ̇a0
H

φ̇b0
H

+
Ra

cd
b

3

φ̇c0
H

φ̇d0
H
− V ab

3H2
+ · · · . (6.37)

Since ua canonically normalizes (4.19), we can apply the canonical commutation relations be-
tween ua and its conjugate momentum Dτu

a:[
ua(τ,x), Dτu

b(τ,y)
]

= iδ(3)(x− y)Gab , (6.38)

otherwise zero.
What we can see from the rescaled equation of motion (6.36) is that the left hand side

describes the evolution of a single component ua in perfect de Sitter background, while every-
thing else – including the deviations from perfect de Sitter background and mixing with other

8In fact, if we integrate the outermost integral of (6.33) from xe ≡ −kτe, we may interpret − log(−kτe) = Nk
as the number of e-folds elapsed between the moment of horizon crossing for the mode of our interest and the
end of inflation τe [51]. This seems diverging as xe → 0, but see the discussion below (6.44).
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components – is placed on the right hand side. Thus we can solve the homogeneous part of
(6.36),

D2
xu

a
0 +

(
1− 2

x2

)
ua0 = 0 , (6.39)

very easily with the boundary conditions, as in the previous sections, being imposed at x→∞
as

ua0(x, k) = aa(k)u0(x) + aa†(−k)u∗0(x) , (6.40)

where the creation and annihilation operators satisfy the commutation relations[
aa(k), ab

†
(q)
]

= (2π)3δ(3)(k− q)Gab (6.41)

and the mode function solution u0(x) is that of a massless field (6.17):

u0(x) =
1√
2k

(
1 +

i

x

)
eix . (6.42)

With these boundary conditions, along with the same normalization condition as (6.10), we
can apply the standard Green’s function method to solve the inhomogeneous equation as [51]

ua(x) = ua0(x) +
3

2
i

∫ ∞
x

du

u2
ζabu

b(u) [u∗0(u)u0(x)− u∗0(x)u0(u)] . (6.43)

The first correction terms are obtained by computing the integral with ub(u) being the homo-
geneous solution u0, and the next corrections by plugging the solution with leading correction
terms, and so on. We can iterate as many times as we like to find more and more accurate
solutions.

To implement the slow-roll approximation evaluated at, say, the moment of horizon crossing
k = aH which is different from x = 1 by O(ε) as can be read from (6.35), we take the ansatz
ζab = ζab(log x) and expand ζab as a power series in log x:

ζab =
∞∑
n=0

ζabn+1

n!
(log x)n , (6.44)

with ζabn = O(εn). This expansion is valid as long as the series converges, which is the case
for a wide range of value for x as e−1/O(ε) � x � e1/O(ε). We can substitute the expansion
ansatz (6.44) into the Green’s function solution (6.43) and integrate iteratively to find the
desired solution for ϕa explicitly in terms of the slow-roll parameters. Especially, we can find
the asymptotic solution at later time x→ 0 as

ua(x) −→
x→0

i√
2kx

{
aa(k)− aa†(k) +

[(
α +

iπ

2

)
ζa1 b − ζa1 b log x+ · · ·

]
ab(k)

−
[(
α +

iπ

2

)
ζa1 b − ζa1 b log x+ · · ·

]∗
ab
†
(−k) + · · ·

}
,

(6.45)
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with α being the same numerical factor as encountered in (6.34). This gives〈
Qa(k)Qb(q)

〉
=

1

2ka2x2
δ(3)(k + q)

(
Gab + 2αζab1 − 2ζab1 log x+ · · ·

)
=

H2

2k3
δ(3)(k + q)

[
(1− 2ε)Gab + 2αζab1 + · · ·

]∣∣∣∣
k=aH

, (6.46)

where for the second equality we have evaluated the right hand side at the moment of horizon
crossing k = aH. While we can proceed as much accurate as we like, what we have obtained
is the power spectrum of the field fluctuations in the flat gauge, not that of the curvature
perturbation R. Thus we need additional manipulation that relates Qa and R. Unlike single
field case, in multi-field case it is non-trivial as we have seen from (5.38) and (5.44). Fortunately,
there is a very simple geometric identity called the δN formalism that relates Qa and R in a
very straightforward manner: see (7.44). We postpone more detailed discussions on the δN
formalism to the following section.

7 Towards non-linear perturbations

Up to now, we have considered linear cosmological perturbations. They are described by
quadratic action presented in many different forms in the previous section like (5.39). The
structure of the action is, with appropriate manipulations, essentially that of a harmonic os-
cillator, so we can directly apply our conventional wisdom in quantum field theory. Being
described as quantum harmonic oscillators, linear cosmological perturbations are free, leading
to the conclusion that the power spectra are the only non-vanishing correlation functions. The
rapid observational advances during the last decade, especially the most recent Planck mission
for the CMB temperature anisotropies, have constrained the properties of the power spectra
as [12]:

log
(
1010PR

)
= 3.094± 0.034 , (7.1)

nR ≡
d logPR
d log k

+ 1 = 0.9645± 0.0049 , (7.2)

r ≡ PTPR
. 0.12 . (7.3)

Indeed, these observational constraints have been very powerful in discriminating different
models of inflation and in ruling out the models inconsistent with observations. For example,
the simple quartic potential model is not favoured well beyond 2σ level, since this model predict
too large tensor-to-scalar ratio of r & 0.2.

With further developments in observations – including the polarization of the CMB, gravi-
tational waves and distribution of galaxies on large scales – that allow us to probe a wide range
of scales, we can hope to make use of higher-order correlation functions to constrain more
tightly inflation models and to probe inflationary dynamics. The higher-order correlation func-
tions, starting from three-point function or its Fourier transform, the bispectrum, incorporate
non-linear perturbations described beyond quadratic action of the cosmological perturbations.
Thus non-linear perturbations also tell us the “interactions” among the degrees of freedom
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participating in inflation, revealing the important physics underlying inflation that cannot be
extracted from the power spectra9. The amplitude of the bispectrum, the first non-zero probe
of non-linear perturbations, is conveniently parametrized by the so-called non-linear param-
eter fNL [53], which is roughly speaking the ratio of the bispectrum to the power spectrum
squared, and the current observational constraints from the CMB on different configurations
of the bispectrum are [54]

f local
NL = 2.5± 5.7 (0.8± 5.0) ,

f equil
NL = −16± 70 (−4± 43) , (7.4)

f ortho
NL = −34± 33 (−26± 21) ,

where the numbers in the parentheses are obtained by combining the polarization data. So cur-
rently our universe is largely consistent with free, linear, Gaussian cosmological perturbations.
The importance of non-linear perturbations however does not diminish and we can expect to
further constrain or even detect the deviation from perfect Gaussian nature of the primordial
perturbations, viz. the primordial non-Gaussianity in near future. In this section, we discuss
how to describe non-linear perturbations in multi-field inflation.

7.1 Issue of mapping

An important point we have to take care of when we discuss non-linear field fluctuations in
multi-field inflation in the flat gauge is that, as emphasized previously, in the field space φa

plays the role of coordinates. Thus, as we do in general relativity, it is of crucial convenience to
maintain the covariance of the formulation: the field fluctuations δφa around the background
trajectory φa0 = φa0(t) are coordinate dependent – for example, we are free to choose the time
slicing condition as δφ1 = 0 – and is thus not covariant. How then to formulate δφa covariantly?
We begin by noting that the two points, φa0(t) and φa = φa0 +δφa, can be connected by a unique
geodesic with respect to the field space metric Gab [27, 28]. This geodesic is parametrized
by λ that runs from 0 to ε, corresponding to the two endpoints of the geodesic, φa0 and φa

respectively. Here, ε is a bookkeeping parameter to count the order of perturbation and we will
set it to unity in the end. To specify the geodesic, we need the initial point φa0 and its velocity,
which we denote by Qa. This situation is depicted in Figure 6.

Denoting the covariant derivative with respect to λ by Dλ ≡ D/dλ, we can write the geodesic
equation for φa(λ) as

D2
λφ

a =
d2φa

dλ2
+ Γabc

dφb

dλ

dφc

dλ
= 0 , (7.5)

with the following the initial conditions at λ = 0:

φa|λ=0 =φa0 , (7.6)

Dλφ
a|λ=0 =

dφa

dλ

∣∣∣∣
λ=0

≡ Qa . (7.7)

Expanding φa(λ = ε) as a power series with respect to ε from λ = 0, we find

φa(λ = ε) = φa|λ=0 +
dφa

dλ

∣∣∣∣
λ=0

ε+
1

2!

d2φa

dλ2

∣∣∣∣
λ=0

ε2 +
1

3!

d3φa

dλ3

∣∣∣∣
λ=0

ε3 + · · · . (7.8)

9Of course higher-order correlation functions may well contribute to the power spectrum as loop corrections.
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
Tangent space

stemming from 

Field space

Background 

trajectory

𝜙0
𝑎(𝑡)

ቤ
𝑑𝜙𝑎

𝑑𝜆
𝜆=0

= 𝑄𝑎

𝜙0
𝑎(𝑡) 𝜙𝑎(𝑡, 𝒙)

𝜙𝑎 𝜆 = 0 = 𝜙0
𝑎

𝜙𝑎(𝜆 = 1)

Figure 6: A schematic figure showing a physical field φa in the field space around the background
trajectory φa0(t). The geodesic connecting φa and φa0 is parametrized λ, which runs from 0 to ε.

Since the derivatives with respect to λ here are not covariant ones, we can trade quadratic and
higher derivatives with single ones by using the geodesic equation (7.5). That is, we can replace
the quadratic derivative with

d2φa

dλ2
= −Γabc

dφb

dλ

dφc

dλ
, (7.9)

and the third order derivative with

d3φa

dλ3
=
(
ΓadeΓ

e
bc − Γabc;d

) dφb
dλ

dφc

dλ

dφd

dλ
, (7.10)

and so on. Thus, we can write (7.8) as

φa(λ = ε) = φa0 +Qaε− 1

2
ΓabcQ

bQcε2 +
1

6

(
ΓbdeΓ

e
bc − Γabc;d

)
QbQcQdε3 + · · · , (7.11)

Setting ε = 1, we finally obtain

φa − φa0 ≡ δφa = Qa − 1

2
ΓabcQ

bQc +
1

6

(
ΓadeΓ

e
bc − Γabc;d

)
QbQcQd + · · · . (7.12)

We can see that at linear order, the field fluctuations δφa and the vector Qa are identical.
However, going beyond linear order they are manifestly different as we can see from the above
equation. Only when we write the equations in terms of Qa, they can be expressed in a covariant
manner.

7.2 Cubic order action

Having found the covariant description of the field fluctuations, we can straightly calculate
the third and higher-order action of the field fluctuations Qa in the flat gauge. Given the
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higher-order action of our interest, we can use the in-in formalism discussed in the previous
section to compute the corresponding higher-order correlation functions. For example, to com-
pute the bispectrum, we need the third order action for the first non-zero contributions. It is
straightforward after some arrangement to find the third order action as

S3 =

∫
d4xa3

{
3m2

PlH
2α3 + 2m2

PlHα
2 ∆

a2
χ− m2

Pl

2a4

[
χ,ijχ,ij − (∆χ)2

]
α

+ (g1)abcQ
aQbQc + (g2)abcDtQ

aQbQc + (g3)abcDtQ
aDtQ

bQc

+αGabφ̇
a
0∂iQ

b∂iχ−GabDtQ
a∂iQ

b∂iχ− 1

2
αGab

∂iQa∂iQ
b

a2

}
, (7.13)

where the coefficients (gi)abc are given by

(g1)abc =
1

6

(
Rdabe;cφ̇

d
0φ̇

e
0 + Vabc

)
+

1

2
Nc
(
−Rdabeφ̇

d
0φ̇

e
0 + Vab

)
− φ̇2

0

2
NaNbNc , (7.14)

(g2)abc =
1

6
(Rdbca + 3Rabcd) φ̇

d
0 + φ̇0aNbNc , (7.15)

(g3)abc = −1

2
GabNc , (7.16)

and α (and Na) and χ are the linear solutions of the lapse and shift given by (4.11) and (4.12)
respectively. Note that the first three terms of (7.13) are coming from the gravity sector,
while the rest from the matter sector. From (7.13) we can compute the bispectrum of the
field fluctuations Qa, evaluated at the moment of the horizon crossing. We can calculate the
bispectrum of the curvature perturbation by implementing the δN formalism: see [25, 28].

In the comoving gauge, we have already singled out the curvature perturbation as (5.46) in
a non-perturbative manner. So we can straightforwardly expand the action in terms of R and
the orthogonal modes Qa

⊥. The only caution is that the Goldstone mode π, in terms of which
the quadratic action (5.45) is written, is related to R non-linearly as (5.47) so that we have
additional non-linear contributions from the quadratic action. Then we can find the leading
action cubic in R the same as the standard single field case [43]:

SRRR =

∫
d4xa3m2

Pl

[ (
−ε2 + 2εδ1

)
RṘ2 − 2ε2Ṙ∂iR∆−1∂iṘ+

(
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)
R(∇R)2
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+
1

4
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0φ̇
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0φ̇

c
0

3H3
+
Gabφ̈

a
0φ̈

b
0

H2

)
R3

]
+O(ε3) . (7.17)

Meanwhile, the π-Qa
⊥ mixing term in the quadratic action leads to the following R2Q⊥ mixing

in the cubic order action:

Squadratic mixing =

∫
d4xa3VaQ

a
⊥

H

{
(3ε− δ1)RṘ+

1

H

(
RR̈+ Ṙ2

)
− 1− ε

4a2H

[
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]
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) (
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+O(ε2) .

(7.18)
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We can also find the other mixing terms – Q3
⊥, RQ2

⊥ and R2Q⊥ – straightly as

Scubic mixing =

∫
d4xa3

{
− Vabc

6
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b
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c
⊥ −
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∆−1∂i

(
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}
. (7.19)

Again, we can straightly compute the bispectrum of the curvature perturbation and the cor-
rections from the interaction with the orthogonal modes Qa

⊥ using the in-in formalism as we
did in the previous section.

7.3 Large-scale approximation

Until now, we have considered the standard cosmological perturbation theory. Here, “stan-
dard” means that our perturbative expansion is based on the order of perturbations we are
interested in. For example, with the typical order of perturbations being denoted by ζ, for
linear perturbation theory we are interested in O(ζ) and drop higher-order contributions, for
second-order theory O(ζ2), and so on. While perfectly legitimate, it is not the only and most
convenient approach. Especially, if we are interested in non-linear perturbations, we have to go
to the higher-order action or Einstein equations of our interest since the contributions of, say,
second-order perturbations are otherwise not captured. Furthermore, as we have seen, finding
the higher-order action is very tedious and usually requires further manipulations including
integrations by parts and the background equation of motion.

In this section, we briefly discuss an alternative approach based on large-scale approxi-
mation. The benefit of this approach is twofold. During inflation, physical scales expand
faster than the Hubble horizon. Thus all scales of our observational interest were once far
outside horizon during inflation so that taking large-scale approximation for them is making
very good sense to track their evolution on super-horizon scales. More importantly, the fully
non-linear perturbation equations to be solved become surprisingly simple irrespective of the
order of perturbations of our interest. This means we can follow the full non-linear evolution
of perturbations, not necessarily order by order as we do in the standard manner.
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7.3.1 Non-linear equations

First we decompose the energy-momentum tensor as measured by observers moving orthogo-
nally (four-velocity is identical to the normal vector) to the slices set by the 3+1 decomposition
of the ADM metric. Naturally, we can interpret the energy density E as the pure temporal
part, i.e. two indices are all contracted with the normal vector, the momentum density J i as
one index contracted with the normal vector while the other projected, and the spatial energy-
momentum tensor Sij as the pure spatial part, i.e. two indices are all projected. In the ADM
decomposition, we can write the unit timelike vector normal to the constant-time hypersurface
nµ has the components

nµ =

(
1

N ,
βi

N

)
, (7.20)

nµ = (−N , 0) . (7.21)

With this, if we choose to write in the simplest forms, we have

E = N 2T 00 , (7.22)

Ji = NT 0
i , (7.23)

Sij = Tij . (7.24)

In the ADM decomposition scheme, we can also write the Einstein equation in terms of
the components orthogonal and tangential to the constant-time hypersurface [34]. The two
constraint equations follow from those involving temporal components, i.e. both or one of the
indices of the Einstein equation is contracted with the normal vector. The geometric parts
of them are the well-known Gauss-Codazzi equations, and the corresponding matter parts are
precisely the energy and momentum density E and Ji found above. Further, these equations
do not involve explicit time derivatives. Thus, they are equations of constraints which must
be satisfied by the fundamental ADM variables, γij and γ̇ij, at all times. We can obtain the
energy and the momentum constraints as

R(3) +
2

3
K2 −Ki

jK
j
i =

2

m2
Pl

E , (7.25)

K
j
i;j −

2

3
K;i =

Ji
m2

Pl

, (7.26)

respectively, where

Kij ≡ Kij −
1

3
γijK (7.27)

is the traceless part of Kij. The dynamical equations thus involve the spatial energy-momentum
tensor Sij. They can be formally written as the Lie derivatives of γij and Kij, or more explicitly,
the trace and traceless evolution equations can be found as

K,0 − βiK,i = −N ;i
;i +N

(
R(3) +K2 +

1

2m2
Pl

S − 3

2m2
Pl

E
)
, (7.28)

K
i
j,0 − βkKi
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j − βk,jKi

k = −N ;i
;j +
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3
δijN ;k

;k +N
(
R

(3)i

j +KK
i
j −

1

m2
Pl

S ij
)
,

(7.29)
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where the trace and traceless parts of Sij, denoted by S and S ij, are given in the same way
as Kij, i.e. S ≡ γijSij and S ij ≡ Sij − γijS/3. The local energy and momentum conservation
equations, given by T 0µ

;µ = 0 and T µi;µ = 0 are

E,0 − βiE,i = NK
(
E +
S
3

)
+NKi

jS
j
i +

1

N
(
N2J i

)
;i
, (7.30)

Ji,0 − βjJi,j − βj ,iJj = NKJi −
(
Eδj i + Sj i

)
N;j −NSj i;j . (7.31)

With these non-linear equations with the energy-momentum tensor given by (3.2), we now can
apply the large-scale approximation. That is, we assume a certain smoothing scale 1/k greater
than which we can approximate well the actual observable universe. Then identifying

ε ≡ k

aH
(7.32)

as the fictitious parameter associated with a spatial gradient ∂i, we can expand the exact non-
linear equations as a power series in ε. For more careful accounts on the conditions for this
expansion, see e.g. [42].

Before we proceed further, let us pause for a minute and consider the geometry set by the
time slicing. A choice of a time coordinate determines a family of constant-time hypersurfaces
Σ in the perturbed space-time, which we refer to as time slicing. With each time slicing there
are three important geometrical quantities: namely, the intrinsic scalar curvature of each Σ,
the expansion rate θ and the shear σ of the unit vector field normal to Σ. The “curvature
perturbation” represents the amplitude of perturbation in the intrinsic curvature of Σ. The
remaining two quantities θ and σ are both connected with the behaviour of the vector normal
to Σ. Here, we concentrate on the expansion rate θ being given by the divergence of the normal
vector (7.20). Then we can identify θ as the extrinsic curvature (4.2):

θ = nµ;µ = −K . (7.33)

As θ denotes the expansion rate, we can interpret the extrinsic curvature K as the “local”
Hubble parameter H = H(t,x):

K(t,x) ≡ −3H(t,x) . (7.34)

Then, by neglecting the second-order spatial gradient terms, the fully non-linear energy con-
straints, ADM trace and the scalar field equations of motion become [55]

H2 =
1

3m2
Pl

(
Gab

2

∂φa

N∂t
∂φb

N∂t + V

)
, (7.35)

∂H

N∂t = − Gab

2m2
Pl

∂φa

N∂t
∂φb

N∂t , (7.36)

D

N∂t

(
∂φa

N∂t

)
+ 3H

∂φa

N∂t +GabVb = 0 . (7.37)

Thus, in terms of the proper time Ndt the above equations are precisely the same as the
background equations (3.3), (3.4) and (3.5). That is, on sufficiently large scales, the informa-
tion on the evolution of non-linear perturbations can be described by essentially background
equations [56].
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Another important point is that from (7.35), (7.35) and (7.37) the local Hubble parameter,
which is essentially a geometric quantity, is related to the background-like field evolution. From
the non-perturbative form of the spatial metric (5.46), using the identity

K = − d

Ndt
log
√
γ , (7.38)

from (7.34) we notice

H(t,x) =
d

Ndt
log (aeϕ) . (7.39)

Now, for each spatial point x we can define the integral with respect to the proper time:

N ≡
∫
HNdt , (7.40)

which is, withH being the volume expansion rate of the three-hypersurfaces, the total expansion
of the spatial volume, vix. the number of e-folds. From (7.39), given one and another moments
t1 and t2, we can trivially obtain

N =

∫ 2

1

HNdt = log

[
a(t2)

a(t1)

]
+ ϕ(t2)− ϕ(t1) ≡ N0 + ϕ(t2)− ϕ(t1) . (7.41)

Thus the total number of e-folds is given by the background number of e-folds N0 given solely by
the background scale factor, and the difference between the curvature perturbations evaluated
at each moment. That is,

δN ≡ N −N0 = ∆ϕ . (7.42)

Notice that we have not specified the gauge conditions on the hypersurfaces at t1 and t2. Thus
we are free to choose in such a way that the initial hypersurface at t1 is flat, on which by
definition ϕ(t1) = 0, and the final one at t2 is comoving, ϕ(t2) = R(t2). Then

δN(t1, t2) = R(t2) , (7.43)

i.e. the perturbation in the number of e-folds is identical to the non-linear final comoving
curvature perturbation.

With multi-field inflation in our mind, let us take the initial time t1 to be some time during
inflation when all the modes of our interest are sufficiently outside the horizon so that the large-
scale approximation is valid, and the final time t2 to be some time after inflation when R has
reached its constant value. Then the dependence of δN on t1 appears through the phase space
variable10 φa(t1) and φ̇a(t1). But if we further make use of the slow-roll approximation since t1
is some time during inflation, we can eliminate the dependence on φ̇a(t1) so that δN depends
only on φa(t1). Thus, we can relate the field fluctuations on the initial flat hypersurface Qa(t1)
and the final comoving curvature perturbation R(t2) as

R(t2) = δN = Na(t1)Qa(t1) +
1

2
Nab(t1)Qa(t1)Qb(t1) + · · · , (7.44)

where Na ≡ ∂N/∂φa and so on and we have explicitly expanded up to second order. This is
the so-called δN formalism [52, 55, 56, 58].

10As can be read from(5.15) and (5.19), φ̇a is to be precise not the conjugate momentum of φa. See [57] for
more careful discussions on the phase space for inflationary dynamics.
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7.3.2 Scale dependence in the δN formalism

In the previous section, we have seen that the δN formalism is implemented in the configuration
space with two fixed initial and final moments t1 and t2 respectively. These moments are
common to all modes of observational interest, and hence the momentum dependence which is
of crucial observational importance is not explicit. This however becomes manifest by taking
into account the moment of horizon crossing for each mode as follows [59]. For a certain mode
with k, the horizon crossing happens at t0 < t1, i.e. k = (aH)0. Then, the number of e-folds
elapsed between t0 and t1 is obviously k-dependent as

∆Nk ≡ log

(
a1

a0

)
≈ log

[
(aH)1

k

]
. (7.45)

Therefore, the field fluctuations at the initial moment Qa(t1) in terms of which the δN formalism
is written as in (7.44) can be expanded as

Qa(N1 = N0 + ∆Nk) = Qa(N0) + ∆NkDNQ
a(N0) +

1

2
(∆Nk)

2D2
NQ

a(N0) + · · · , (7.46)

where N0 and N1 are the numbers of e-folds corresponding to t0 and t1 respectively, and DN is
a covariant derivative with respect to N . Thus, we can see that the non-trivial k-dependence
is gained between the moment of horizon crossing t0(k) which is different mode by mode, and
the initial moment for the δN formalism t1 which is common to all modes. In some sense, t1 is
an intermediate reference moment from which the evolution of each mode until t2 is identical.
Figure 7 shows t0(k), t1 and t2 and the evolution of the curvature perturbation.

Σc(t2) R(t2) = const

Σf(t2) ϕ(t2) = 0

Σf(t1)

ϕ(t1) = 0

Σf(t0(k))

ϕ(t0) = 0

δN(t2, t0; k)

N0(t2, t1; k)

N0(t1, t0; k)

Figure 7: A schematic figure showing different moments described in the main text: t0(k),
t1 and t2. We evaluate the final comoving curvature perturbation R(t2) on the hypersurface
Σ(t2) with comoving slicing after all isocurvature modes have decayed. We meanwhile choose
flat slicing on which the curvature perturbation under this slicing condition, denoted by ϕ, of
course vanishes. Since t1 and t2 are common to all modes of observational interest, the evolution
of R is identical between them. But t0(k) is different for different k-modes so the evolution of
R between t0 and t1 is distinctive for each mode.
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For practical purpose, we have to find explicitly the derivatives DNQ
a, D2

NQ
a and so on.

From the equation of motion for Qa on very large scales with N being the time variable [28],

DNQ
a = wabQ

b + · · · , (7.47)

wab = u(a;b) +
Rc(ab)d

3

φ̇c0
H

φ̇d0
H
, (7.48)

wa(bc) = u(a;bc) +
1

3

[
R(a|de|b;c)

φ̇d0
H

φ̇e0
H
− 4Ra(bc)d

φ̇d0
H

]
, (7.49)

ua = − Va
3H2

, (7.50)

where the indices between vertical bars are excluded from the symmetrization, then (7.46)
becomes

Qa(N1) = Qa+∆Nk

(
wabQ

b +
1

2
wabcQ

bQc + · · ·
)

+
1

2
(∆Nk)

2 [(DNw
a
b)Q

b + wabw
b
cQ

c
]
+ · · · .
(7.51)

where all terms on the right hand side are evaluated at N0, and

DNw
ab = wab;c

φ̇c0
H
. (7.52)

Note that ∆Nk spans 5 - 10 for the current observational range of the CMB, but as we can see
the coefficients of (∆Nk)

2 are of second order in slow-roll, so it is safely suppressed compared
to ∆Nk terms as long as the expansion (7.46) or (7.51) remains valid.

7.3.3 Correlation functions in the δN formalism

Now using the δN formalism, we compute the correlation functions of the final comoving
curvature perturbation R(t2). We first move to the Fourier space, where from (7.44) we can
write the Fourier component of R(t2) as

Rk(t2) = Na(t1)Qa
k(t1) +

1

2
Nab(t1)

[
Qa(t1) ? Qb(t1)

]
k

+ · · · , (7.53)

where star denotes a convolution. We first calculate the power spectrum PR and its momentum
dependence, viz. the spectral index nR. For the power spectrum it is sufficient to work to linear
order in Qa, in which case it is identical to δφa. The two-point correlation function of R(t2) is,
from (7.53), related to that of Qa as

〈Rk(t2)Rq(t2)〉 = Na(t1)Nb(t1)
〈
Qa

k(t1)Qb
q(t1)

〉
. (7.54)

Using (7.51), the two-point correlation function of Qa at t1 can be written in terms of that at
the moment of horizon crossing t0 as〈

Qa
k(t1)Qb

q(t1)
〉

=
〈
Qa

k(t0)Qb
q(t0)

〉
+ 2∆Nkw

a
c

〈
Qb

k(t0)Qc
q(t0)

〉
, (7.55)
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where assuming thatQa is light and follows slow-roll dynamics,
〈
Qa

kQ
b
q

〉
is given by (6.46). Thus,

from the definition of the power spectrum (6.18), we can read the leading power spectrum of
the curvature perturbation in the δN formalism as

PR =

(
H

2π

)2

NaNa . (7.56)

To compute the scale dependence to leading order in slow-roll, there are obvious two leading
contributions: the scale dependence of H2(t0) which gives rise to −2ε, and wac which is multi-
plied by ∆Nk. The other terms, e.g. the derivative of ζab, are further slow-roll suppressed so
are sub-leading. Hence we can straightforwardly calculate the spectral index as

nR − 1 =
D logPR
d log k

= −2ε− 2
NaNbw

ab

NcN c
. (7.57)

An obvious new contribution is the field space curvature Rabcd contained in wab. This term
must be O(ε) to be consistent with the observational constraint (7.2), barring an accidental
cancellation with other terms.

The bispectrum of R is defined in a similar manner to the power spectrum by

〈Rk1(t2)Rk2(t2)Rk3(t2)〉 ≡ (2π)3δ(3)(k1 + k2 + k3)BR(k1, k2, k3) . (7.58)

As we have seen, the δN formalism concerns the evolution on super-horizon scales thus can
describe the non-Gaussianity generated by non-linear evolution on very large scales. It is
however blind to what happens on smaller scales, including the moment of horizon crossing.
We thus usually assume when we compute the bispectrum using the δN formalism that the
intrinsic non-Gaussianity of the fields at the moment of horizon crossing is negligible,〈

Qa
k1

(t0)Qb
k2

(t0)Qc
k3

(t0)
〉

= 0 . (7.59)

This is however not necessarily the case always, since there are models of inflation where the
intrinsic non-Gaussianity at the horizon crossing is not negligible. Therefore to make a proper
account of non-Gaussianity using the δN formalism, we should make use of the form that gives
the intrinsic non-Gaussianity as small as possible, by e.g. appropriate field redefinition [60].

From (7.53), we can see that the three-point function consists of two terms,

〈Rk1(t2)Rk2(t2)Rk3(t2)〉 =NaNbNc

〈
Qa

k1
Qb

k2
Qc

k3

〉
+

1

2

{
NabNcNd

〈[
Qa ? Qb

]
k1
Qc

k2
Qd
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〉
+ 2 perm

}
.

(7.60)

We can compute these terms very easily: for the first term, using (7.51) and (6.46), we can
easily find

Na(t1)Nb(t1)Nc(t1)
〈
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}
= (2π)3δ(3)(k1 + k2 + k3)Na(t1)Nb(t1)Nc(t1)

H4(t0)

4k3
1k

3
2k

3
3

wabc
(
k3
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)
. (7.61)
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Likewise, for the second term using (7.55) trivially gives

1

2
Nab(t1)Nc(t1)Nd(t1)

〈[
Qa(t1) ? Qb(t1)

]
k1
Qc

k2
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〉
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H4(t0)

4k3
1k

3
2

(
γacγbd + 2∆Nk1w

acγbd + 2∆Nk2γ
acwbd

)
.

(7.62)

Thus putting both terms together, the leading bispectrum reads

BR(k1, k2, k3) =
NabNaNb

(N cNc)2
[PR(k1)PR(k2) + 2 perm] , (7.63)

where we have defined the dimensionfull power spectrum

PR ≡
2π2

k3
PR , (7.64)

so that the definition of the power spectrum (6.18) reads similar to (7.58):

〈R(k)R(q)〉 ≡ (2π)3δ(3)(k + q)PR(k) . (7.65)

A convenient way of parametrizing non-Gaussianity is to introduce a set of so-called non-
linear parameters. It is defined by the local expansion of the curvature perturbation around its
linear, Gaussian component [53]:

R = Rg +
3

5
fNLR2

g + · · · . (7.66)

Using the δN formalism, we are interested in the form of the non-linearity generated during the
super-horizon evolution of the curvature perturbation. On super-horizon scales, perturbations
at different locations cannot communicate with each other, and in this sense the non-linearity
produced during this stage is local. Conversely, in the Fourier space, the momenta that con-
stitute the momentum triangle of the Fourier transformation of the three-point correlation
function, i.e. the bispectrum, are very different. Typically, one of three momenta is very small
in magnitude, and the remaining two are pointing almost the opposite directions with nearly
equal magnitude. Because of the form of the triangle these momenta constitute, it is frequently
referred to as the “squeezed limit”. From the expansion (7.66), we can easily compute the
bispectrum as

BR(k1, k2, k3) =
6

5
fNL [PR(k1)PR(k2) + 2 perm] , (7.67)

where we have assumed for simplicity that fNL is a constant. Comparing (7.63) and (7.67), we
can read the leading, scale-independent fNL as [61]

6

5
fNL =

NabNaNb

(N cNc)2
. (7.68)

Furthermore, as we did for the power spectrum, we can also compute the scale dependence
of fNL by incorporating ∆Nk term explicitly. In the equilateral configuration in which we are
sensibly calculate nfNL

, the running of fNL [62], we can trivially find

nfNL
≡ D log fNL

d log k
= −NaNbNcw

abc

NdeNdNe

+ 4wab
(
NaNb

NdNd

− NacNbN
c

NdeNdNe

)
. (7.69)
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The first term in (7.69) comes from (7.61), i.e. the non-linearity generated during the evolution
of the field fluctuations between t0 and t1, while the other terms in (7.69) arises from the
non-linear couplings.

8 Conclusions

Inflation offers a simple and consistent framework in which both the homogeneity and isotropy
of the current observable universe as well as the tiny initial perturbations as can be observed
from the temperature anisotropies in the CMB. Indeed, with the recent observations on the
CMB we have entered the era of data-driven cosmology and the concordance cosmological
model, ΛCDM, provide a very good fit to the power spectrum of the CMB anisotropies. The
constraints on the properties of the primordial perturbations, (7.1) - (7.4), tell us that the
primordial adiabatic perturbation has nearly scale-invariant power spectrum and follows almost
perfect Gaussian statistics, with the contribution of the tensor perturbation, i.e. the primordial
gravitational waves, occupying less than a few percent of power on large scales relevant for the
CMB observations. These are mostly consistent with the predictions of simple single field
inflation models.

While single field inflation provides the best fit to the data without free parameters, then
what should be the merit to consider multi-field inflation? As mentioned at the beginning of
this article, multi-field inflation can open a rich possibilities beyond the predictions in single
field models that could be constrained and even detected by observations. Some of them include
the isocurvature perturbations, correlated or anti-correlated with the curvature perturbation,
detectable level of non-Gaussianity that may have non-trivial scale dependence, and possibly
residual signatures that survive elusive post-inflationary dynamics such as reheating. Beyond
these exciting observational possibilities there are a number of theoretical motivations to study
multi-field inflation. The early universe is a huge particle accelerator, and the trail of yet
unknown parent physics, whose low-energy effective theory is the standard model of particle
physics, should be left on cosmic scales with a multiple number of inflaton fields. In this article
we have considered a few basic bricks to understand the dynamics of multi-field inflation.

With advanced observation programs in operation and in plan on the CMB as well as
large-scale structure, we are entering the precision era for cosmological observations with un-
precedented quality and quantity of data in the coming decade. By that time we should a good
understanding about the inflationary dynamics with strong observational supports and/or con-
straints, along with further lessons about the nature of the physics underlying inflation. At the
same time we may well witness the interesting possibilities of multi-field inflation, with further
observational and theoretical opportunities widely open.
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A Gauge transformations

In this appendix section, we address the issue of gauge transformation which was not discussed
in the main text. For that, we first consider the issue of “background” and “perturbation”.
In the background universe U , there is no ambiguity in choosing the time coordinate on the
homogeneous and isotricpic spatial hypersurfaces in such a way that time is constant: t = t1
corresponds to the moment when the homogeneous scalar field has a specific value of φ(t = t1),

and so on. However, in a perturbed universe Û , our choice of time is arbitrary in the sense
that we can choose arbitrary coordinate system where the deviation from homogeneity and
isotropy is small. In different coordinate systems, the notion of perturbations is different too.
For example, we can choose spatial hypersurfaces on which the density perturbation vanishes.
Thus, just saying that the density perturbation is such and such is not enough. We have to
also specify the coordinate system in describing the density perturbation.

Let us consider in a more detail. How can we define the perturbation in a scalar quantity
φ̂ at a point p in the perturbed universe Û? To define the perturbation, we need to specify
the corresponding background value φ0: the difference between φ̂ and φ0 is the perturbation
δφ(p). But what is the corresponding background φ0? For this, we have to specify a coordinate

system, or mapping in such a way that each point in the perturbed universe Û is associated
with the corresponding point xµ in the background universe U . Once this mapping is specified,
the perturbation

δφ(p) = φ̂(p)− φ0(xµ) (A.1)

is meaningful.

Û U

)(ˆ px
µ

µ
x̂

p

)( px
µ

µ
x

µξ

Figure 8: A schematic image of gauge transformation.

So to specify perturbations we only need to specify the coordinate system, or the mapping
between Û and U . The problem is, as stated before, there is no natural choice of this mapping
and one is as good (or bad) as the others. Thus we need to know how one mapping is related to
another. It is very important to note that any change induced by a change in the mapping is not
physical: it is simply a transformation because we have changed the coordinate, or “gauge”, to
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describe the same thing. In this sense, this non-physical change is called gauge transformation.
Suppose two coordinate systems, xµ and x̂µ, which map p in Û to the corresponding different
points in U , are related by

x̂µ(p) = xµ(p) + ξµ(xν(p)) . (A.2)

If this transformation is infinitesimal, we have

δ̂φ(p) = φ̂(p)− φ0(x̂µ(p))

= δφ(p)− [φ0(x̂µ(p))− φ0(xµ(p))]

= δφ(p)− ξν ∂φ0

∂xν
(xµ(p)) . (A.3)

Since the background universe U is spatially homogeneous and isotropic, φ0 = φ0(x0) so we
simply have

δ̂φ(p) = δφ(p)− φ̇0(t(p))ξ0(xµ(p)) , (A.4)

where we have taken x0 = t. It is very important to note that we are comparing two different
mappings, xµ(p) and x̂µ(p), from the same point p in Û . It is schematically shown in Figure 8.

Note that we can extract the gauge transformations of the metric perturbations by requiring
that ds2 be invariant under the gauge transformation11: with the coordinate transformations

t→ t̂ = t+ ξ0(t,x) , (A.5)

xi → x̂i = xi + ξi(t,x) , (A.6)

we can easily see that in the linear order

a
(
t̂
)
≡ â =

(
1 +Hξ0

)
a(t) , (A.7)

d̂t =
(

1 + ξ̇0
)
dt+ ξ0

,idx
i , (A.8)

d̂xi = dxi + ξ̇idt+ ξi,jdx
j . (A.9)

From the fact that the line element in space-time is the same irrespective of the coordinate

11Generic gauge transformation law for an arbitrary tensor quantity Q under the coordinate transformation
xµ → x̂µ = xµ + ξµ can be written in terms of the Lie derivatives as

δ̂Q− δQ = −LξQ ,

where Lξ is the Lie derivative in the direction of the vector ξ. By component, a Lie derivative on a tensor
Tα1···

β1··· is given by

Lξ (Tα1···
β1···) = ξγ∂γT

α1···
β1··· − (∂γξ

α1)T γα2···
β1··· + (∂β1

ξγ)Tα1···
γβ2··· + · · · .

For example, the perturbations in the metric tensor transform as

δ̂gµ − δgµν = −gµν,ρξρ − gρνξρ,ν − gµρξρ,µ .
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transformation, we can write using the perturbed metric (4.13)

d̂s
2

=−
(

1 + 2Â
)
d̂t

2
+ 2âB̂id̂td̂xi + â2

[
(1 + 2ϕ̂) δij + 2Êij

]
d̂xid̂xj

=−
[
1 + 2

(
Â+ ξ̇0

)]
dt2 + 2a

(
B̂i −

ξ0
,i

a
+ aξ̇i

)
dtdxi

+ a2

{[
1 + 2

(
ϕ̂+Hξ0

)]
δij + 2

(
Êij +

ξi,j + ξj,i
2

)}
dxidxj , (A.10)

where ξi = δijξ
j. Equating this expression with (4.13), we can find that under the coordinate

transformation given by (A.5) and (A.6), the new metric perturbations are given by

Â = A− ξ̇0 , (A.11)

B̂i = Bi +
ξ0
,i

a
− aξ̇i , (A.12)

ϕ̂ = ϕ−Hξ0 , (A.13)

Êij = Eij −
ξi,j + ξj,i

2
. (A.14)

Further, we can decompose the spatial gauge transformation vector ξi into the scalar and
transverse vector components as we did for the metric perturbation,

ξi = δijξ,j + ξ(tr)i , (A.15)

where ξ(tr)i
,i = 0. Then, we can find trivially that the scalar, vector and tensor components of

Bi and Eij given by (4.14) and (4.15) transform as

B̂ = B +
ξ0

a
− aξ̇ , (A.16)

Ŝi = Si − aξ̇(tr)
i , (A.17)

ĤT = HT − ξ , (A.18)

F̂i = Fi − ξ(tr)
i , (A.19)

ĥTTij = hTTij . (A.20)

Notice that the tensor perturbation hTTij as well as the combination Si − aḞi remain the same
under the gauge transformation, i.e. it is gauge-invariant. Thus, when we consider the vector
and tensor perturbations, we need not worry about the gauge ambiguity because the variables
we are dealing with are from the beginning gauge invariant. Gauge ambiguity only matters for
scalar perturbations, and we will explicitly discuss this issue in the following section. Also, it
is fruitful to notice that for the scalar components of the Einstein equation, B and HT only
appear in the specific combination aB − a2ḢT [44]. From (A.16) and (A.18), we can see that

âB̂ − â2 ˙̂
HT = a

(
B +

ξ0

a
− aξ̇

)
− a2 d

dt
(HT − ξ) = aB − a2ḢT + ξ0 , (A.21)

so that although the transformations of B and HT include the spatial component of the gauge
transformation ξ, in practice only ξ0, the time translation matters.
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