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Abstract

Results of theoretical studies of the quantum unstable systems
caused that there are rather widespread belief that a universal feature
od the quantum decay process is the presence of three time regimes
of the decay process: the early time (initial) leading to the Quantum
Zeno (or Anti Zeno) Effects, ”exponential” (or ”canonical”) described
by the decay law of the exponential form, and late time characterized
by the decay law having inverse—power law form. Based on the funda-
mental principles of the quantum theory we give the proof that there
is no time interval in which the survival probability (decay law) could
be a decreasing function of time of the purely exponential form but
even at the "exponential” regime the decay curve is oscillatory modu-
lated with a smaller or a large amplitude of oscillations depending on
parameters of the model considered.
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1 Introduction

The discovery of radioactivity in the nineteenth century initialized the study
of the process of decay of radioactive elements. Experiments have shown
that the radioactive decay of the sample of radioactive elements is a process
extended in time, and that with the passage of time the number of elements
in the sample, which emits radioactive radiation, decreases. These obser-
vations and assumption that the decay rate follows the laws of probability
led Rutherford and Sody to the formulation of radioactive decay law as a
function of time [1, 2]. This radioactive decay law allows to determine the
number N(¢) of atoms of the radioactive element at the instant ¢ knowing
the initial number Ny = N(0) of them at initial instant of time ¢, = 0 and
has the exponential form: N(t) = Ny exp [—At], where A > 0 is a constant.
Since then, the belief that the decay law has the exponential form has be-
come common. The rise of Quantum Mechanics led to an understanding
that the radioactive decay similarly to the process of emission of photons
by excited atoms are time dependent quantum processes. So the question
arose how to describe such processes within the quantum theory. Probably
the most known attempt to solve this problem is the Weisskopf—~Wigner the-
ory of spontaneous emission [3]. Considering the excited atomic levels and
applying the Shrodinger equation to describe the time evolution Weisskopf
and Wigner found that to a good approximation the non—decay probability
of the excited levels is a decreasing function of time having exponential form.
Further studies of the quantum decay processes showed that basic principles
of the quantum theory does not allow them to be described by an expo-
nential decay law at very late times [4, [B] and at initial stage of the decay
process (see e.g. [5] and references therein). Theoretical analysis shows that
at late times the survival probability (i. e. the decay law) should tends to
zero as t — oo much more slowly than any exponential function of time and
that as a function of time it has the inverse power—like form at this regime
of time [4, 5]. There was many unsuccessful attempts to verify experimen-
tally predicted deviations from the exponential form of the decay law at late
times regime (see eg. [6]). The first experimental evidence of deviations of
the decay law from exponential form at such a time regime was reported in
[7]. The early times properties of the decay process lead to the so called
Quantum Zeno Effect [8, 9], that is to slowing down sufficiently frequently
observed decay process up to stop it down in the case of the continuously
observed the unstable system. The experimental confirmation of this effect



was reported, e.g. in [10] and recently in [I1]. All these results of theoretical
and experimental researches caused that there are rather widespread belief
that a universal feature of the quantum decay process is the presence of three
time regimes of such a decay process: the early time (initial), exponential (or
”canonical”), and late time having inverse-power law form [12]. This belief
is reinforced by a numerous presentations in the literature of decay curves
obtained for quantum models of unstable systems. The typical form of such
a decay curve one can find in Fig. (). In this context, each experimental
evidence of oscillating decay curve at times of the order of life time is con-
sidered as an anomaly caused by a new quantum effects or new interactions
(see eg. [13][14]). The question arises, if indeed in the case of one component
quantum unstable systems these oscillations of the decay process at the ”ex-
ponential” regime are an anomaly, or perhaps universal feature of quantum
decay processes. Here we give the proof that there is no time interval in
which the survival probability (decay law) could be a decreasing function of
time of the purely exponential form. We also show that even in the case of
a single component unstable system the decay curve has an oscillatory form
with a smaller or a large amplitude of oscillations depending on the model
considered.

2 Preliminaries

The main information about properties of quantum unstable systems is con-
tained in their decay law, that is in their survival probability. Let the ref-
erence frame O be the common inertial rest frame for the observer and for
the unstable system. Then if one knows that the system in the rest frame
is in the initial unstable state |¢p) € H, (H is the Hilbert space of states
of the considered system), which was prepared at the initial instant ¢, = 0,
then one can calculate its survival probability (the decay law), P(t), of the
unstable state |¢) decaying in vacuum, which equals

P(t) = la(t)]*, (1)

where a(t) is the probability amplitude of finding the system at the time ¢
in the initial unstable state |¢),

a(t) = (olo(t)). (2)



and |¢(t)) is the solution of the Schrédinger equation for the initial condition

6(0)) = |9): 5
iho|6(1)) = Hlo(t)). (3)

Here |¢), |¢(t)) € H, and H denotes the total self-adjoint Hamiltonian for
the system considered. Note that if |¢) represents an unstable state then
it cannot be an eigenvector for H: In such a case the eigenvalue equation
H|¢) = €s]¢) has no solutions for |¢) under considerations.

There is |¢(t)) = U(t)|¢), where U(t) is unitary evolution operator and
U(0) = I is the unit operator. Thus a(t) = (¢|U(t)|¢). The one—parameter
family of unitary operators U(t) forms group: U(t;) U(ty) = U(t; + t2). The
the total Hamiltonian H of the system is a generator of this group. This
means that operators H and U(t) have common eigenfunctions.

From the results of theoretical studies of the problem which one can find
in the literature it is known that the amplitude a(t), and thus the decay law
P(t) of the unstable state |¢), are completely determined by the density of
the energy distribution w(FE) for the system in this state [15],

alt) = / w(BE) e nEtgp, (4)
Spec.(H)

where w(E) > 0 and a(0) = 1, (see also: [4] Bl [16], [17]). From this relation
and from the Riemann—Lebesgue lemma it follows that |a(t)| — 0 as t — oo.
It is because from the normalization condition a(0) = 1 it follows that w(E) is
an absolutely integrable function. These properties are the essence of the so-
called Fock—Krylov theory of unstable states [I5]. (Note that this approach
is also applicable in Quantum Field Theory models [18] 19]).

Khalfin in [4] assuming that the spectrum of H must be bounded from
below, (Spec.(H) = [Epmin,o0) and E,,;, > —o0), that is that w(F) = 0 for
E < E,in, and using the Paley—Wiener Theorem [20] proved that in the case
of unstable states there must be |a(t)] > A exp[—bt?], for |t| — oco. Here
A>0,b>0and0 < g < 1. Therefore the decay law P4(t) of unstable states
decaying in the vacuum, (I), can not be described by an exponential function
of time t if time ¢ is suitably long, t — oo, and that for these lengths of time
P,(t) tends to zero as t — oo more slowly than any exponential function of
t. As it was mentioned, this effect was confirmed in experiment described in
the Rothe paper [7].



3 The Breit—Wigner model

In general the spectral density w(F) has properties similar to the scatter-
ing amplitude, i.e., it can be decomposed into a threshold factor, a pole-
function P(FE) with a simple pole (often modeled by a Breit-Wigner) and
a smooth from factor F(FE). So, we can write w(F) = O(E — Eun) (F —
Ewin)® P(E) F(E), where «; depends on the angular momentum [ through
ap = a+ 1, [5] (see equation (6.1) in [5]), 0 < a < 1) and O(F) is a step
function: ©(E) =0 for £ <0and O(F) =1 for E > 0. The sim-
plest choice is to take o« = 0,1 = 0, F(E) = 1 and to assume that P(FE) has
a Breit-Wigner form. It turns out that the decay curves obtained in this
simplest case are very similar in form to the curves calculated for the above
described more general w(E), (see [16] and analysis in [5]). So to find the
most typical properties of the decay curve it is sufficient to make the relevant
calculations for w(F) modeled by the the Breit—-Wigner distribution of the
energy density.

The typical form of the survival probability P(¢) obtained in such a way
is presented in Fig (I). The calculations were made for w(F) having the
Breit-Wigner form w(E) = wpw (F),

N
— 0
2

I
(E=Ep+ (5P

wa(E) = (E — Emm)

(5)

where NN is a normalization constant.

The case w(E) = wpw(F) is the typical case considered in numerous
papers and used therein to model decay processes: Among others, the Breit—
Wigner model is often used to justify a belief that there exists the ”exponen-
tial time regime” of the decay process (see eg. [12],21] and Fig (). Therefore
it is very important to analyze real form of the decay curves obtained using
w(F) = wpw(F) and this is why we consider this case in this paper. What is
more, substituting wpw (F) into ({]) allows one to find the analytical formula
for the amplitude a(t). The result is (see, eg. |21} 22] 23])

a(t) = Ne_%(EO — i)t X
x{1 - % [e% E1< . %(ER + %Fo)t>
HB (- 2B - o) ] (©
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Figure 1: Decay curves obtained for wgw (F) given by Eq. (B). Axes: x =
/10 — time t is measured in lifetimes 75 = FLL, y — survival probabilities on a
logarithmic scale (The solid line: the decay curve P(t) = |a(t)|* The dotted

line: the canonical decay curve P.(t) = |a.(t)|*>. The case sy = %" = 1000.

where Ej(x) denotes the integral-exponential function defined according to
[24] and ER = E() - Emz'n-

The standard canonical form of the survival amplitude a.(t), is given by
the following relation,

at) = exp [~y (By — £ Iy)) (7)

Iy is the decay rate and FL’O = 79 is the lifetime (time ¢ and [ are measured
in the rest reference frame of the particle).
It is convenient to consider the following function

(1) = : (8)

There is [((¢)|*> = P(t)/P.(t), where P.(t) = |a.(t)|* is the canonical exponen-
tial form of the decay law. Analysis of properties of this function allows one
to visualize all the more subtle differences between P(t) and P.(t). For ex-
ample, if one finds a time interval [t1, o] such that ((t) = const for t € [t1,ts]
this will mean that the survival probability P(t) has purely exponential form
in this time interval.

The function ((t) takes the following form in the case of the unstable



system modeled by wpw (F):

ct) = N {1 . % [e% E1< - %(ER + %Fo)t>
i

+(—1)E1< h(ER - %FO)t) ] } 9)

This function was used to find numerically |((¢)|? for w(E) = wpw (E). Re-
sults of numerical calculations are presented in Figs (2]) and (3]): It turns out

that in the case considered the form of |((¢)|*> and P(t) depends on the ratio

def _E .
sp = i = B Bmn,

T
The derivative of ((t) given by (@) equals [22, 23]

ac(t) N I In ; i
W Z%feﬁ El(— ﬁ(ER—i_gFO)t) (10)

From the properties of the integral-exponential function F;(x) it follows that
the equation ag—?) = 0 can be satisfied at most for some isolated values of
time t. So, from the formula (I0) the conclusion follows: Within the model
considered there is no time interval [ty,?s], (where t; < t5), in which ((t) =
const for t € [ty,1s], that is, there is no time interval in which the survival
probability P(t¢) has a pure exponential form. This conclusion explains the

results presented in Figs ([2]) and (3]).

4 The general case

Results obtained for w(E) = wpw(£) and presented in Figs ([2) and (3)
can be understood as the interference of the pole contribution, a,u.(t), into
the survival probability a(t) and the cut contribution, ac.(t), to a(t) =
Apote(t) +acut (). Analogous effects take place in all models of unstable states,
in which unstable states are defined by poles of w(E) in the complex plane.
Within the much more general Fock—Krylov theory [I5] of unstable states
the only condition that must be met by w(FE) is an absolute integrability of
w(E): If w(F) is an absolutely integrable function (even without the poles in
the complex plane) then the Riemann-Lebesque lemma ensures that P(t) =
la(t)|* = 0 ast — oo, where a(t) is given by (). The question arises whether,
in the most general case of w(F) and a(t) defined by () (i. e. within the
Fock—Krylov theory), the effect described in the previous Section takes place
or not.
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Figure 2: A comparison of decay curves obtained for wpy (F) given by Eq.
(B) with canonical decay curves. Axes: z = t/7p — time t is measured in
lifetimes 79, y — The function f(t) = (|C(t)]? = 1) = 77;‘:(3) — 1, where ((t)
is defined by the formula (§). The top panel: sp = 10. The middle panel:

sg = 100. The lower panel: sz = 1000.

So let us assume that the survival amplitude a(t) is defined by (2)) and
can be represented as a Fourier transform () of some absolutely integrable
w(F). Now we can consider the general case of ((t) defined using this general
a(t). From the definition (§) it follows that the equivalent form of ((¢) is

c(t)= et in (Bo=57T0) o). (11)
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Figure 3: A comparison of decay curves obtained for wgw (E) given by Eq.
(@) with canonical decay curves. Axes: z = t/7p — time t is measured in

lifetimes 79, y — The function f(¢) = (|¢(¢)]* — 1) =

is defined by the formula
sg = 1000.

Hence

where

PO

Pay — L where ¢(t)
®), P(t) = |a(t)]?, P.(t) = |ac(t)|*>. The case

+(By = S To) C(t) — 3 h(H) (1), (12)
def ., 1 0Oalt)
h(t) =ih a—t) 5 (13)



is the effective Hamiltonian governing the time evolution in the subspace of
unstable states Hy = PH and P = [¢)(¢| (see [25] and also [22, 23] and
references therein). The subspace H o H| = QH = (I— P)H is the subspace
of decay products. The equivalent formula for h(¢) has the following form

i = (EHIO0) "

a(t)

If (p|H|¢) exists then using unitary evolution operator U(t) and projection
operators P and () the last relation can be rewritten as follows

(PlHQU(t)|9)
a(t)

Let us assume now that (¢|H|¢) exists and there exists instants 0 < t; <
ty < oo of time ¢ such that for any ¢t € (t1,t3) there is ((t) = ((t1) = ((t2) =
const & ¢y 7 0. In this case there should be 8%—9 = 0 for all t € (ty,12).
Taking into account that by definition ((¢) # 0 from (I2) we conclude that
it is possible only and only if for t; <t < o,

h(t) = (¢|H|¢) + (15)

(t) — (Bo— 5 1) =0, (16)

that is if and only if
h(t) = h(t)) = h(ts) = const £ ¢, # 0, (17)

for t; <t <t,. Using (I8 and the property |¢(t)) = U(t) |¢) one concludes
that the equality h(t) = h(t) = ¢5, can take place if

PIHQU(t)|¢) _ (9lHQU(t:)|9) (18)
a(t) a(ta) .

Taking into account the group properties of the one—parameter family of
unitary operators U(t) we can use in (I8) the product U(t) U(ts —t) = U(t2)
def af(tz)

instead of U(ty). Next using the complex function A(to,t) = o One can
replace the relation (I8]) by the following one
GIHQU() [ Alta,t)l8) — Ulta = 1)[0)] = 0. (19)
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This condition can be satisfied in two cases: The first one is

Ulta = 1)[9) — Altz, 1)|¢) = 0, (20)

and the second one occurs when [A(t9,t)|¢) — U(ta —t)|¢)] # 0 and vectors
((p|H)t = H|¢p) and QU(t) [A(t2,t)|¢) — Ul(ty — t)|¢)] are orthogonal to
each other.

The first case means that 82—9 = 0 if and only if the vector |¢) representing
an unstable state of the system is an eigenvector for the unitary evolution
operator U(t). As we noted earlier the evolution operator U(t) and the total
Hamiltonian H of the system have common eigenvectors. This means that
%(tt) = 0 for t € (t1,t2) if and only if the unstable state |¢) of the system is
an eigenvector for H, which is in contradiction with the property that the
vector |¢) representing the unstable state cannot be the eigenvector for the
total Hamiltonian H.

The second case: From the definition of the projectors P and @ it follows
that this case can be realized only if the vector H|¢) is proportional to
the vector |¢): H|p) = ay|¢), that is similarly to the first case 848—9 =0
if and only if the vector |¢) representing the unstable state of the system
considered is an eigenvector for the total Hamiltonian H, which is again in
clear contradiction with the condition that the vector |¢) representing the
unstable state cannot be the eigenvector for the total Hamiltonian H.

Taking into account implications of the above two possible realizations
of the relation (I9) we conclude that the supposition that such time interval
[t1,1s] can exist that ((t) = const = ((t;) = ((ta) for t € (t1,t5) is false.
So taking into account the definition of ((t) the following conclusion follows:
Within the approach considered in this paper for any time interval [t;, t5] the
decay law can not be described by the exponential function of time. This
conclusion is the general one. It does not depend on models of quantum
unstable states and confirms the similar conclusion drawn earlier for the
Breit-Wigner model.

5 Final remarks

Summing up the oscillating decay curves of one component unstable system
can not be considered as something extraordinary or as anomaly: It seems
to be a universal feature of the decay process. Oscillatory modulated decay
curves are usually observed in two— or more component unstable systems. A
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typical example of such systems is a neutral meson complex. From the results
presented above it follows that such an effect can be also observed in one
component quantum unstable systems at the ”exponential” decay regimes
of times. What is more the oscillatory modulation of decay curves at the
"exponential” decays regime takes place even in the quantum unstable system
modeled by the Breit—-Wigner distribution of the energy density. In general,
the oscillatory modulation of the survival probability at the ”exponential”
decay regime and thus the decay curves with model depending amplitude and
oscillations period takes place even in the case of one component unstable
systems modeled by any physically acceptable form of w(F). From results
of the model calculations presented in Figs (2]) and (3] it follows that at the
initial stage of the ”exponential” (or ”canonical”) decay regime the amplitude
of these oscillations may be much less than the accuracy of detectors. Then
with increasing time the amplitude of oscillations grows (see Fig. (B])), which
increases the chances of observing them. This is a true quantum picture
of the decay process at the so—called ”exponential” regime of times which
should be taken into account when interpreting decay experiments with one
component unstable systems.
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