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Coleman-Weinberg symmetry breaking in SU(8) induced by a third rank

antisymmetric tensor scalar field II: the fermion spectrum

Stephen L. Adler∗

Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA.

We continue our study of Coleman-Weinberg symmetry breaking induced by a third rank

antisymmetric tensor scalar, in the context of the SU(8) model [1] we proposed earlier. We

focus in this paper on qualitative features that will determine whether the model can make

contact with the observed particle spectrum. We discuss the mechanism for giving the spin

3
2 field a mass by the BEH mechanism, and analyze the remaining massless spin 1

2 fermions,

the global chiral symmetries, and the running couplings after symmetry breaking. We note

that the smallest gluon mass matrix eigenvalue has an eigenvector suggestive of U(1)B−L,

and conjecture that the theory runs to an infrared fixed point at which there is a massless

gluon with 3 to -1 ratios in generator components. Assuming this, we discuss a mechanism

for making contact with the standard model, based on a conjectured asymmetric breaking of

Sp(4) to SU(2) subgroups, one of which is the electroweak SU(2), and the other of which is

a “technicolor” group that binds the original SU(8) model fermions, which play the role of

“preons”, into composites. Quarks can emerge as 5 preon composites and leptons as 3 preon

composites, with consequent stability of the proton against decay to a single lepton plus

a meson. A composite Higgs boson can emerge as a two preon composite. Since anomaly

matching for the relevant conserved global symmetry current is not obeyed by three fermion

families, emergence of three composite families requires formation of a Goldstone boson with

quantum numbers matching this current, which can be a light dark matter candidate.

I. INTRODUCTION

In this paper we continue our study of Coleman-Weinberg symmetry breaking in SU(8) induced

by a third rank antisymmetric tensor scalar field, which was initiated in an earlier paper [2]. In

that paper, referred to hereafter as (I), we showed that SU(8) is broken to SU(3)×Sp(4), and we

gave a detailed analysis of the Goldstone boson structure and the BEH mechanism, together with

a group-theoretic classification of residual states after symmetry breaking. The explicit numerical

calculation of (I) shows that the 56 of scalars responsible for SU(8) symmetry breaking leads to
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no residual scalar states below the symmetry breaking scale, since all components of the 56 are

either absorbed by the BEH mechanism into longitudinal components of the vector mesons, or

obtain masses at the symmetry breaking scale. However, the questions of the fermion spectrum

after symmetry breaking, and the absence of a massless U(1) gauge boson, were not addressed.

We begin the analysis of these issues in this paper. In Sec. 2 we discuss the BEH mechanism for

giving a mass to the spin 3
2 field, and in Sec. 3 we analyze the global chiral symmetries of the

model, taking SU(8) instantons into account. In Sec. 4 we analyze the residual massless fermions,

and in Sec. 5 the SU(3) and Sp(4) running couplings, after SU(8) symmetry breaking. In Sec. 6

we begin the study of how the SU(8) model of [1] can make contact with the fermion spectrum

of the standard model. In Sec. 6A we discuss mechanisms for generating the weak hypercharge,

and their possible relation to the structure of the smallest mass matrix eigenvalue found in (I).

In Sec. 6B we state three conjectures about the behavior of the SU(8) theory with full radiative

corrections, and based on these conjectures discuss constraints coming from extrapolation of the

standard model couplings in Sec. 6C, the U(1) generator structure of the 56 and 28 fermionic

preons in Sec. 6D, and the counting of three preon and five preon candidates for composite leptons

and quarks in Sec. 6E. Enumeration of two preon candidates for a composite Higgs boson is given

in Sec. 6F, and a possible mechanism for giving a double-singlet three family structure is given in

Sec. 6G. In Sec. 7 we analyze ’t Hooft anomaly matching conditions for our model. In Sec. 8 we

review motivations for and encouraging features of the SU(8) model, discuss further steps to be

undertaken, and state some experimental consequences that follow from the qualitative analysis of

this paper.

II. BEH MECHANISM FOR THE SPIN-3/2 FIELD

We turn now to consequences for the fermion spectrum arising from the scalar field minimum

φ produced by Coleman-Weinberg symmetry breaking. A key feature of the model of [1] is that

invariance under the SU(8) group forbids Yukawa couplings of the 56 and 28 representation spin 1
2

fermions to the 56 representation scalar field φ. However, as also pointed out in [1], SU(8) allows

a coupling of the representation 8 spin 3
2 fermion field to a linear combination λ of the 28 spin 1

2

fermion fields λa, a=1,2 of the form

λ
[αβ]

γνψγ
νφ

∗

[αβγ] (1)
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and its conjugate, which vanish when the gravitino gauge fixing condition

γνψγ
ν = 0 (2)

is imposed. In [1] this vanishing was adduced as a reason for excluding the coupling term of Eq.

(1), but in fact this is not correct when the vector field gauge coupling g is nonzero. The coupling

term of Eq. (1) vanishes only in the ungauged g = 0 limit, both because then γνψγ
ν = 0 is a valid

gauge condition, and also because in the zero gauge coupling limit, there is a supersymmetry [1]

linking the scalar φ and the fermions λa under which the coupling of Eq. (1) is not invariant.

To see what happens when one attempts to impose the condition γνψγ
ν = 0 in the presence of

gauge couplings, we follow the analysis of [3] and replace the four-component left chiral field ψγ
µ

by its two-component equivalent Ψγ
µ, in terms of which the condition of Eq. (2) takes the form

Ψγ
0 = ~σ · ~Ψγ , (3)

with ~σ the Pauli matrices. Multiplying Eq. (3) from the left by ~σ · ~B (with ~B, ~E the magnetic,

electric gauge fields, and from here on suppressing internal symmetry indices, which are always

understood to be contracted in the natural order, e.g. ( ~BΨµ)
β ≡ ~Bβ

γΨ
γ
µ etc.) we get after some

Pauli matrix algebra,

~σ · ~BΨ0 = ~σ · ~B~σ · ~Ψ = ~B · ~Ψ+ i~σ · ~B × ~Ψ . (4)

Comparing this with the secondary Rarita-Schwinger constraint, which in two-component form

reads

~σ · ~BΨ0 = ~B · ~Ψ+ ~σ · ~E × ~Ψ , (5)

we get

~σ · ( ~B + i ~E)× ~Ψ = 0. (6)

In general this will conflict with the Rarita-Schwinger primary constraint

~σ · ~D × ~Ψ = 0 , (7)

where ~D = ~∇+g ~A is the gauge field covariant derivative. So in the case of nonzero gauge coupling,

Eq. (2) is not a satisfactory gauge constraint on the spin 3
2 field. In [3], it is shown that the natural

constraint for quantizing the Rarita-Schwinger field, in the presence of gauge couplings, is in fact

the gauge covariant radiation gauge condition ~D · ~Ψ = 0.
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In view of this analysis, a coupling term of the form of Eq. (1) plus its adjoint is allowed with

a coefficient that is a nonzero power of the gauge coupling g. When the scalar field φ develops an

expectation φ, this leads to a self-adjoint coupling term proportional to

λ
[αβ]

γνψγ
νφ

∗

[αβγ] − ψνγγ
νλ[αβ]φ

[αβγ]
. (8)

Writing

|φ| ≡
[

φ
∗

[αβγ]φ
[αβγ]

]1/2 ,

φ̂[αβγ] =φ
[αβγ]

/|φ| ,

(9)

we can diagonalize Eq. (8) into terms proportional to

|φ|[(λ
[αβ]

φ̂ ∗

[αβγ] − ψνγγ
ν)(λ[αβ]φ̂

[αβγ] + γνψγ
ν )− (λ

[αβ]
φ̂ ∗

[αβγ] + ψνγγ
ν)(λ[αβ]φ̂

[αβγ] − γνψγ
ν )] , (10)

with the dimension one coefficient |φ| giving a mass through the BEH mechanism which has a

magnitude near the SU(8) breaking scale. Note that unlike a conventional Dirac mass term, which

couples left to right chiral fields, Eq. (10) couples left chiral fields to left chiral fields. Nonetheless,

we expect it to alter the propagators for the spin 3
2 field, and the components of the 28 spin 1

2 fields

that enter into Eqs. (1), (8), and (10), in a way that removes them from the low energy spectrum.

III. GLOBAL CHIRAL SYMMETRIES

We turn next to an analysis of the global chiral symmetries of the model of Ref. 1. Taking into

account the Lagrangian term of Eq. (1), the model is formally invariant under independent U(1)

rephasings of the representation 8 Rarita-Schwinger field ψµ, the representation 56 fermion field

χ, and the representation 28 fermion field λ⊥ that is orthogonal to the linear combination λ of 28

fields that is coupled to the Rarita-Schwinger field through Eq. (1). Rephasing invariance of Eq.

(1) requires that λ be assigned the same phase as ψµ, and so when Eq. (1) is included in the action

the formal chiral symmetry group, before taking SU(8) anomaly effects into account, is U(1)3.

Each independent rephasing corresponds to a formally conserved current, calculated from the

kinetic terms in the action, with an associated conserved charge operator. However, when all

rephasings are taken as the same, the corresponding current is the overall U(1) current, which

has an SU(8) anomaly through the triangle diagram when quantum effects are included, and so is

non-conserved . Taking quantum effects into account, the effective global chiral symmetry group
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is reduced to U(1)2. To find the associated conserved charges, we look for the anomaly-free linear

combination Q̂ of charges N8 + N28λ, N56, and N28⊥ associated with the fields ψµ, λ, χ, and λ⊥

respectively,

Q̂ = K8(N8 +N28λ) +K56N56 +K28⊥N28⊥ . (11)

The anomaly associated with each N in Eq. (11) is proportional to the index of the corresponding

representation, times an extra factor of 3 for Rarita-Schwinger fields. Since the indices of the SU(8)

representations 8, 56, and 28 are 1, 15, and 6 respectively (see Table I and footnote 1 below), the

condition for Q̂ to be free of SU(8) anomalies is

0 = 9K8 + 15K56 + 6K28⊥ , (12)

or dividing by a factor of 3,

0 = 3K8 + 5K56 + 2K28⊥ . (13)

Equation (13) has the following two independent solutions,

K8 =1, K56 = −
3

5
, K28⊥ = 0 ,

K8 =0, K56 = 1, K28⊥ = −
5

2
,

(14)

corresponding to the conserved U(1) charges

Q1 =N8 +N28λ −
3

5
N56 ,

Q2 =N56 −
5

2
N28⊥ .

(15)

Any linear combination of N8, N56, and N28⊥ that cannot be written as a linear combination of

Q1 and Q2 is non-conserved through the SU(8) anomaly, and gives rise to fermion non-conservation

through instanton processes. The basic instanton process can be represented as an effective La-

grangian coupled to a number of field lines for each fermion equal to the field representation index

[4], with an extra factor of 3 for spin-32 Rarita-Schwinger fermions. Thus, an instanton process

couples to 3 lines of the representation 8 field ψα
µ , 15 lines of the representation 56 field χ[αβγ], 6

lines of the representation 28 field λ[αβ], and 6 lines of the representation 28 field λ⊥[αβ], where we

have now shown the internal symmetry indices α, β, γ. As a check on the counting, the overall
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instanton process has 3 + 3× 15 = 48 upper indices, and 6× 2 + 6 × 2 = 24 lower indices, giving

after contraction a net of 24 upper indices. Since 24 ≡ 0 modulo 8, these can be contracted to an

internal symmetry singlet using three factors of the SU(8) invariant totally antisymmetric tensor

ǫα1...α8 . Because the instanton process involves three Rarita-Schwinger fields, which become heavy

after SU(8) breaking, and six fields λ, parts of which become heavy as well, it cannot lead to

fermion non-conserving effects in purely low energy processes. Thus, for low energy processes, in

addition to Q2 being conserved, the part of Q1 involving fields that do not become massive,

Q̃1 = N28∆λ −
3

5
N56 , (16)

is effectively conserved. Here ∆λ denotes the part of λ that does not mix with the Rarita-Schwinger

fields through the BEH mechanism, as discussed in further detail in the next section.

IV. MASSLESS FERMIONS REMAINING AFTER SU(8) BREAKING

To see what massless fermions remain after SU(8) breaking, we must analyze the coupling term

of Eq. (1) in terms of the representations under the residual symmetry group SU(3) × Sp(4).

Recalling that

8 =(1, 4) + (3, 1) + (1, 1) ,

28 =(3, 4) + (1, 5) + (1, 4) + (3, 1) + (3, 1) + (1, 1) ,

(17)

we see that the (1, 4) + (3, 1) + (1, 1) components of the spin 3
2 field, which accounts for all of the

SU(3)× Sp(4) representation content of this field, couple to the corresponding components of the

linear combination of 28 fields that enters into Eq. (1). This leaves the following residual massless

fermion fields:

• From the remainder ∆λ of the linear combination λ of the two 28 fermions we have the

representations

∆λ = (3, 4) + (1, 5) + (3, 1) . (18)

• From the orthogonal linear combination λ⊥ of the two 28 fermions we have the representa-

tions

λ⊥ = (3, 4) + (1, 5) + (1, 4) + (3, 1) + (3, 1) + (1, 1) . (19)
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• From the 56 fermions we have the representations

χ = (3, 5) + (3, 4) + (3, 4) + (3, 1) + (3, 1) + (1, 5) + (1, 4) + (1, 1)1 + (1, 1)2 . (20)

Using Eqs. (17)–(20) we can verify that the U(1) charges Q1 and Q2 of Eq. (15), which

were constructed to be free of SU(8) anomalies, are also anomaly-free with respect to the SU(8)

subgroups SU(3) and Sp(4). This is a consequence of a branching sum rule for Lie algebra indices

[5] which can be stated as follows. Let L1 and L2 be simple Lie algebras that are subgroups of the

algebra L, so that L ⊃ L1 × L2. A representation R of L will have the branching expansion

R =
∑

i

(R1i, R2i) , (21)

where we have used the notation of Eqs. (17)–(20). Then the index c(R) of the representation R is

related to the indices c(R1,2i) and dimensions D(R1,2i) of the representations R1i, R2i by the sum

rules,

c(R) =
∑

i

c(R1i)D(R2i) =
∑

i

D(R1i)c(R2i) . (22)

Taking L1 as the Lie algebra SU(3) and L2 as the Lie algebra Sp(4), and remembering to include

an extra factor of 3 multiplying Rarita-Schwinger indices, the first equality in Eq. (22) implies

that Q1,2 are SU(3) anomaly-free, and the second equality in Eq. (22) implies that Q1,2 are

Sp(4) anomaly-free. Analogous statements hold when later on we further decompose Sp(4) into

subgroups according to Sp(4) ⊃ SU(2)× SU(2).

V. RUNNING COUPLING ANALYSIS

We turn next to a study of the non-Abelian running couplings for the various groups figuring

in the model. For any non-Abelian gauge theory, the running coupling is governed by the equation

µdg/dµ = β(g), where µ is the scale mass and the beta function β(g) is given by

β(g) =−
g3

32π2
1

3
K ,

K ≡11c(1) − 26c(Weyl 3/2) − 2c(Weyl 1/2) − c(complex 0) ,

(23)

with c(s) the index of the group representation with spin s in the conventions1 of the McKay-Patera

tables [6]. As noted in [1], before SU(8) breaking the theory has K = 81, obtained by substituting

1 The customary particle physics normalization uses index values that are one-half of those in the McKay-Patera
tables, and thus has the 32π2 in the denominator of Eq. (23) replaced by 16π2. I am indebted to Peter Goddard
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the index values from Table I into Eq. (23), giving

K = 11(16) − 26(1) − 2(15 + 2× 6)− 15 = 81 . (24)

According to the sum rules of Eq. (22), another way to get the same result is to consider the

decomposition SU(8) ⊃ SU(3) × Sp(4), and to either (i) sum the SU(3) indices multiplied by

the multiplicity factor counting the number of times each occurs
(

given by the dimension of the

associated Sp(4) representation
)

, or to (ii) sum the Sp(4) indices multiplied by the multiplicity

factor counting the number of times each occurs
(

given by the dimension of the associated SU(3)

representation
)

, both as read off from the SU(8) branching expansions of Eqs. (17)–(20), together

with

63 = (1, 10)+(8, 1)+(3, 4)+(3, 4)+(3, 1)+(3, 1)+(1, 5)+(1, 4)1 +(1, 4)2+(1, 1)1+(1, 1)2 . (25)

The needed index values for SU(3) and Sp(4) are given in Tables II and III, and the needed

multiplicities are given in Tables IV and V.

TABLE I: SU(8) = A7 index values.

representation 1 8 28 56 63

index 0 1 6 15 16

TABLE II: SU(3) = A2 index values.

representation 1 3,3 8

index 0 1 6

TABLE III: Sp(4) = C2 index values.

representation 1 4 5 10

index 0 1 2 6

for explaining the connection [7] between index normalization and the normalization convention for the longest
group weight, and to Paul Langacker for pointing out that the Slanksy review [8] uses the McKay-Patera index
values without making the corresponding change in the denominator of Eq. (23).
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TABLE IV: SU(3) representation multiplicities above the SU(8) breaking scale. The first column gives the

weight in K, the second the originating SU(8) representation, and the next three columns the multiplicities

of the SU(3) representations listed in the first row. The K weights are the sums of the weights in Eq. (23)

for representations of the same type, i.e., a vector 56 and a scalar 56, and two 28.

K weight SU(8) 1 3,3 8

-26 8 5 1 0

-4 28 10 6 0

-3 56 11 15 0

11 63 25 10 1

TABLE V: Sp(4) representation multiplicities above the SU(8) breaking scale. The first column gives the

weight in K, the second the originating SU(8) representation, and the next four columns the multiplicities

of the Sp(4) representations listed in the first row. The K weights are the sums of the weights in Eq. (23)

for representations of the same type, i.e., a vector 56 and a scalar 56, and two 28.

K weight SU(8) 1 4 5 10

-26 8 4 1 0 0

-4 28 7 4 1 0

-3 56 8 7 4 0

11 63 16 8 1 1

The calculation for (i) is (with the factor preceding each × the index and the factor following

each × the multiplicity, and reading the rows in Table IV from bottom up),

K = 11(1× 10 + 6× 1)− 3(1× 15) − 4(1× 6)− 26(1 × 1) = 81 , (26)

and the calculation for (ii) is (again with the factor preceding each × the index and the factor

following each × the multiplicity, and reading the rows in Table V from bottom up),

K = 11(1 × 8 + 2× 1 + 6× 1)− 3(1 × 7 + 2× 4)− 4(1× 4 + 2× 1)− 26(1 × 1) = 81 . (27)

The reason for repeating the unbroken SU(8) calculation this way is that it anticipates the orga-

nizational method that we shall use to get the beta functions after SU(8) is broken.

Let us now do a similar analysis for the running couplings below the SU(8) breaking scale. Here

only the (8, 1) and (1, 10) of the original 63 vector gauge bosons remain massless, and all of the 56

scalars either get masses or become Goldstone modes that are absorbed into the massive vectors.

Turning to the fermions, only the 56 and one of the two 28 are present as complete multiplets; the

other 28 is present only as the partial multiplet given in Eq. (18). As we have seen, the remaining
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TABLE VI: SU(3) representation multiplicities below the SU(8) breaking scale. The first column gives the

weight in K, the second the originating SU(8) representation, and the next three columns the multiplicities

of the SU(3) representations listed in the first row.

K weight originating SU(8) 1 3,3 8

-2 28λ⊥
10 6 0

-2 28∆λ 5 5 0

-2 56 11 15 0

11 63 0 0 1

TABLE VII: Sp(4) representation multiplicities below the SU(8) breaking scale. The first column gives the

weight in K, the second the originating SU(8) representation, and the next four columns the multiplicities

of the Sp(4) representations listed in the first row.

K weight originating SU(8) 1 4 5 10

-2 28λ⊥
7 4 1 0

-2 28∆λ 3 3 1 0

-2 56 8 7 4 0

11 63 0 0 0 1

parts of this 28 combine with the representation 8 spin 3
2 to give massive spin 3

2 states, which do

not contribute to the running coupling below the SU(8) breaking scale. (We will discuss shortly

what happens when the spin 3
2 mass scale is appreciably below the SU(8) breaking scale.) Thus,

the analogs of Tables IV and V are as given in Tables VI and VII, with 28λ⊥
the complete multiplet

and 28∆λ the partial multiplet,

From Tables VI and VII, we get the analogs of the K calculations of Eqs. (26) and (27). For

the SU(3) running coupling, we find from Table VI that the analog of Eq. (26) is

K = 11(6× 1)− 2(1 × 15)− 2(1 × 5)− 2(1 × 6) = 14 , (28)

and for the Sp(4) running coupling, we find from Table VII that the analog of Eq. (27) is

K = 11(6 × 1)− 2(1 × 7 + 2× 4)− 2(1× 3 + 2× 1)− 2(1 × 4 + 2× 1) = 14 ; (29)

again, in these equations the factor preceding each × is the index and the factor following each

× is the multiplicity, and the rows in Tables VI and VII are read from bottom up. We see that

despite the differing multiplicity and index values, the SU(3) and Sp(4) couplings run to low

energies at exactly the same rate. For comparison, and as noted again later, for SU(3) with six
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flavors of Dirac fermions (each equivalent to two Weyl fermions), the corresponding calculation

gives K = 11(6×1)−4(1×6) = 42, a faster rate of running than given by Eqs. (28) and (29). The

fact that K remains positive after SU(8) breaking is a direct consequence of the BEH mechanism

that gives a mass to the spin 3
2 fermion and part of the 28 multiplets. If these were not removed

from the calculation of Eqs. (28) and (29), the analogous calculation in both cases would give

K = 11(6) − 2(15) − 4(6) − 26(1) = −14 , (30)

and the running couplings would start to decrease, rather than increasing, below the SU(8) breaking

scale. If the spin 3
2 mass scale is significantly below the SU(8) breaking scale, the K value of Eq.

(30) applies in the interval between them.

VI. MAKING CONTACT WITH THE STANDARD MODEL

A. Incorporating weak hypercharge

Any unification of forces beyond SU(3)×SU(2)×U(1) of the standard model must explain the

pattern of U(1) charges Y shown in Table VIII, the so-called weak hypercharge values. There are

two strategies in grand unification for explaining the pattern of Y values. The first, employed in the

SU(5), SO(10) and related models [9], is to find a group for which the appropriately normalized

U(1) generator, acting on the fermion representations, gives the standard model Y values. A

variant of this strategy, termed “flipped SU(5)”, uses an extra U(1)X , mixing with a U(1) coming

from SU(5), to get standard model Y values using a modified weak isospin assignment of the

fermions [10]. The paper [1] that introduced the SU(8) model studied here proposed to make

contact with flipped SU(5), through a modulo 5 periodicity in the U(1) charge structure, but this

is not compatible with the Coleman-Weinberg symmetry breaking pattern found in (I). Leaving

aside the question of getting the needed extra U(1)X , the analysis of (I) shows that SU(8) breaks

not to SU(3) × SU(5), as needed for both standard and flipped SU(5), but rather to the smaller

group SU(3)× Sp(4).

A second grand unification strategy for explaining the pattern of Y values is employed in the

SU(3)×SU(2)L×SU(2)R×U(1)B−L model [11] and related models such as the Pati-Salam model

[9]. It is based on the observation that the averages of Y values for each pair of consecutive rows

in Table VIII, noted by Y in the final column of the table, is identical to 1
2 (B − L), with B the

baryon number and L the lepton number. The Y values of the conjugated left-handed fermions are

all equal to ±1
2 added to the average Y , suggesting that there is an additional hidden SU(2) group,
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with third component generator T3 hidden = ±1
2 acting on the conjugated left-handed fermions, that

is broken at an energy scale above the standard model regime. The weak hypercharge is then given

by Y = Y + T3 hidden, and the electric charge is given as usual by Q = T3 + Y .

TABLE VIII: Fermions of a standard model family. The first column gives the left-handed fermion name

(the conjugates of left-handed fermions are right-handed), the second column the color SU(3) representation,

the third column the weak isospin SU(2) representation, the fourth column the weak isospin value T3, the

fifth column the weak hypercharge Y , the sixth column the electric charge Q, and the seventh column the

average Y , denoted by Y , for each pair of two consecutive rows in the table, which is equal to half the

difference between the baryon number B and the lepton number L.

fermion SU(3) SU(2) T3 Y Q = T3 + Y Y= 1
2 (B − L)

uL 3 2 1
2

1
6 = Y 2

3
1
6

dL 3 2 − 1
2

1
6 = Y − 1

3
1
6

d∗L 3 1 0 1
3 = Y + 1

2
1
3 − 1

6

u∗L 3 1 0 − 2
3 = Y − 1

2 - 23 − 1
6

νL 1 2 1
2 − 1

2 = Y 0 − 1
2

ℓL 1 2 - 12 − 1
2 = Y −1 − 1

2

ℓ∗L 1 1 0 1 = Y + 1
2 1 1

2

ν∗L 1 1 0 0 = Y − 1
2 0 1

2

There are two hints that this strategy is the correct one for the SU(8) theory broken initially

by the Coleman-Weinberg mechanism. The first hint is that the group Sp(4) admits the symmetry

breaking pattern Sp(4) ⊃ SU(2) × SU(2) as needed to get the non-Abelian part of the second

strategy models. Although there is no additional massless U(1) after SU(8) breaking, the second

hint comes from examining the structure of the residual vector meson mass spectrum after SU(8)

breaking, as given in Table IX. We see that the vector meson with the lowest nonzero mass matrix

eigenvalue, 0.0874, and that with the highest mass matrix eigenvalue, 1.384, are both U(1) gener-

ators that commute with the SU(3) and Sp(4) generators. The corresponding generators acting

on the fundamental 8 representation, with components numbered sequentially 1 through 8 and
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normalized so that the 2,3,7, and 8 components are −1, are

eigenvalue = 0.0874 ↔generator = (2.97,−1.00,−1.00, 0.343, 0.343, 0.343,−1.00,−1.00) ,

eigenvalue = 1.384 ↔generator = (−2.04,−1.00,−1.00, 2.01, 2.01, 2.01,−1.00,−1.00) .

(31)

We see that these are within a few percent of the trace orthogonal generators

eigenvalue = 0.0874 ↔generator ≃ (3,−1,−1,
1

3
,
1

3
,
1

3
,−1,−1) ,

eigenvalue = 1.384 ↔generator ≃ (−2,−1,−1, 2, 2, 2,−1,−1) .

(32)

Interestingly, the first line in Eq. (32), corresponding to the smallest vector meson mass eigenvalue,

has a ratio of color SU(3) charges to Sp(4) charges equal to −1
3 , which is the same as the ratio

of the Y = 1
2 (B − L) values of quarks to leptons in the final column of Table VIII. This is again

suggestive that the SU(8) model may make contact with the observed quarks and leptons through

an analog of the second strategy models based on SU(3)× SU(2)× SU(2)×U(1)B−L, and this is

the strategy that we will pursue in what follows.

TABLE IX: Algebraic formulas expressed in terms of a, b, and numerical values at the minimum a =

0.59762..., b = 0.67199..., for the vector gauge field eigenvalues m2
i , i =1,...,63, as well as the number

of degenerate eigenvalues of each type, and the SU(3) × Sp(4) representation content. In the final line,

E = − 1
8 (14a

2 + 15b2) and F = 3
4a

2b2, as given in Eq. (13) of (I).

eigenvalue degeneracy algebraic formula numerical value SU(3)× Sp(4) content

18 0 0.000 (1, 10) + (8, 1)

8 1
2a

2 0.179 (1, 4)1 + (1, 4)2

24 1
2 (a

2 + b2) 0.404 (3, 4) + (3, 4)

6 1
2 (2a

2 + b2) 0.583 (3, 1) + (3, 1)

5 2a2 0.714 (1, 5)

1, 1 2 roots x1,2 of x2 + Ex+ F = 0 0.0874, 1.384 (1, 1)1 + (1, 1)2

B. Three conjectures

Motivated by the observations in the preceding section, we now make three conjectures about

the behavior of the SU(8) theory when full radiative corrections are included.
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• First Conjecture. As the energy decreases, the Coleman-Weinberg potential evolves in such

a way that at a scale MSp(4) the symmetry c = a (with a = φ
[123]

and c = φ
[178]

) is broken,2

corresponding to the breaking of Sp(4) symmetry according to Sp(4) ⊃ SU(2)×SU(2). This

can happen if the coefficient A of the ǫ2 =
(

(c−a)/2
)2

term in the expansion of the potential

V in Eq. (12) of (I) evolves from positive to negative, changing the potential from one with a

stable minimum at c = a to a “Mexican hat” potential with an unstable extremum at c = a,

and two stable minima at |c − a| > 0. Since a and c are associated with the two distinct

SU(2) subgroups, the theory will break asymmetrically, rather than enforcing symmetry

between the two SU(2) subgroups as in left-right symmetric models. To see that group

theory permits this breaking, we note from Table XII that a− c = φ
[123]

− φ
[178]

lies in the

SU(3)× Sp(4) representation (1, 5), and that under Sp(4) ⊃ SU(2)× SU(2) the 5 of Sp(4)

decomposes into representations of SU(2) × SU(2) as 5 = (1, 1) + (2, 2). With the nonzero

expectation a − c lying in the (1, 1), the (2, 2) will be massless Goldstone bosons, with the

correct quantum numbers to be absorbed into the 4 broken generators of Sp(4), giving them

masses by the BEH mechanism.

• Second Conjecture. As the energy decreases further from MSp(4), the theory runs to an

infrared fixed point starting at an energy scale MU at which the mass matrix eigenvalue

0.0874 becomes exactly zero, and the corresponding generator becomes that of the first line

of Eq. (32).3 Rescaling by a factor of 2 so that the 2,3,7 and 8 components are −1
2 , this zero

eigenvalue of the gauge field mass matrix is then associated with U(1) generators G acting

on the fermions in the 8 and 56 representations, and −G acting on the fermions in the 28

representation, with G given by

G = (
3

2
,−

1

2
,−

1

2
,
1

6
,
1

6
,
1

6
,−

1

2
,−

1

2
) . (33)

Evidently, G will play the role of a proto-U(1) 1
2
(B−L) generator. An interesting aspect of

the U(1) generator G of Eq. (33) is that the components φ
[123]

, φ
[456]

, and φ
[178]

of φ at the

symmetry-breaking minimum of the Coleman-Weinberg potential all have the same G value

of 1
2 .

4 An equivalent observation is that the most general U(1) generator that commutes

with the SU(3) and Sp(4) generators has the form (c, a, a, b, b, b, a, a) with c + 4a + 3b = 0

2 See Sec. III of (I) for a detailed discussion of the c = a symmetry of the Coleman-Weinberg potential minimum.
3 A priori, MU could be above or below MSp(4), but the coupling constant analysis given below suggests that MU

lies below MSp(4).
4 This is also the same as the G value of the Higgs boson, suggesting that a vacuum tadpole can be viewed as a
“spurion” that absorbs or emits G = 1

2
.
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to give trace zero. Requiring that φ
[123]

, φ
[456]

, and φ
[178]

all have the same value of this

generator gives the additional condition c+2a = 3b, requiring a = −3b, c = 9b, which up to

normalization is Eq. (33).5

• Third Conjecture. We have seen that before Sp(4) breaking the running couplings of the

SU(3) and Sp(4) subgroups evolve at the same rate, with K = 14. The natural co-running

of these couplings is a prerequisite for implementing dynamical symmetry breaking, as em-

phasized early on by Weinberg [14]. After the asymmetric breaking of Sp(4) the K value of

SU(3) will remain the same, but the K values of the two new SU(2) subgroups will no longer

be 14. Since the index of the adjoint 3 representation of SU(2) is 4, the gluon contribution to

K for the SU(2) subgroups will change from the 11(6×1) of Eqs. (28) and (29) to 11(4×1),

with the fermion contribution unchanged by virtue of the index sum rule of Eq. (22). Thus

before taking effects of the asymmetric breaking into account, the nominal K value for each

of the two SU(2) subgroups will be K = −8. Taking into account the asymmetric breaking

of Sp(4), we postulate that one SU(2) subgroup will have a K value higher than −8 given

by K = −8 +∆+, and one will have a K value lower than −8 given by K = −8−∆−, with

∆± ≥ 0. We call the SU(2) that evolves with the higher value of K the “technicolor group”

SU(2)TC , and assume that it leads to binding of the original fermions at a scale MTC above

the standard model electroweak scale. We call the SU(2) that evolves with the lower value

of K the “electroweak group” SU(2)EW , and associate it with the electroweak component

of the standard model. Since it is evolving at a slower rate than the SU(3) group, it can

remain weak when the “color” interactions associated with the SU(3) group become strong.6

C. Constraints coming from extrapolation of the standard model couplings

We turn now to an analysis of the constraints on the postulated energy scales MSp(4), MTC , and

MU , and on the postulated running coupling evolution asymmetries ∆±, implied by extrapolation

5 This mechanism for emergence of an unbroken U(1) suggests that cosmological monopoles [12] will not form.
In the initial stage of symmetry breaking SU(8) ⊃ SU(3) × Sp(4), arising from the 56 scalar field, the groups
SU(8), SU(3) and Sp(4) that are involved are all simply connected, and thus [13] π2

(

SU(8)/(SU(3) × Sp(4))
)

=
π1

(

SU(3)×Sp(4)
)

= 0, and no monopoles are formed. Since no scalar field components survive the initial stages of
symmetry breaking, when an unbroken U(1) emerges at lower energies, there is no long range scalar field available
for monopole formation.

6 Our conjectures are related to ideas long in the literature under the names of “technicolor, “extended technicolor”,
“walking technicolor” and “little higgs”. For seminal papers, see [15] and [14], [16]. For good reviews see [17], [18],
[19] and [20]. See also [21] on “tumbling”.
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from the standard model couplings at the Z meson mass MZ = 91.2GeV = 0.0912TeV. Letting

gs denote the strong coupling, g the SU(2)EW coupling, and g′ the U(1) coupling of the standard

model [13], we have

g2s(MZ) =1.485 ,

g2(MZ) =0.4246 ,

g′ 2(MZ) =0.1278 .

(34)

These couplings can be evolved up in energy to the postulated scale MTC at which we conjecture

that preons bind to form the standard model fermions, using the customary evolution equations

[13]

1

g2s(MTC)
=

1

g2s(MZ)
−

7

8π2
log

(

MZ

MTC

)

,

1

g2(MTC)
=

1

g2(MZ)
−

10

24π2
log

(

MZ

MTC

)

,

1

g′ 2(MTC)
=

1

g′ 2(MZ)
+

20

24π2
log

(

MZ

MTC

)

.

(35)

We focus first on the non-Abelian couplings g2s , g
2
EW ≡ g2, and g2TC for the SU(3), SU(2)EW ,

and SU(2)TC groups that act between the energy scales MTC and MSp(4). Their evolution is given

by the formulas

1

g2s(MSp(4))
=

1

g2s(MTC)
−

7

24π2
log

(

MTC

MSp(4)

)

,

1

g2EW (MSp(4))
=

1

g2EW (MTC)
+

8 + ∆−

48π2
log

(

MTC

MSp(4)

)

,

1

g2TC(MSp(4))
=

1

g2TC(MTC)
+

8−∆+

48π2
log

(

MTC

MSp(4)

)

.

(36)

Combining the first two lines of Eq. (35) with the corresponding lines of Eq. (36) we get the

equations for evolution of g2s and g2EW between MZ and MSp(4),

1

g2s(MSp(4))
=

1

g2s(MZ)
−

7

24π2
log

(

MTC

MSp(4)

)

−
7

8π2
log

(

MZ

MTC

)

,

1

g2EW (MSp(4))
=

1

g2(MZ)
+

8 + ∆−

48π2
log

(

MTC

MSp(4)

)

−
10

24π2
log

(

MZ

MTC

)

.

(37)
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Since the SU(3) and Sp(4) couplings co-evolve below the SU(8) breaking scale, and assum-

ing that there are no finite coupling renormalizations at the Sp(4) breaking scale, the couplings

g2s(MSp(4)), g
2
EW (MSp(4)), and g

2
TC(MSp(4)) will be equal to a common value. Also, since we are

defining MTC as the scale at which the technicolor group SU(2)TC becomes strongly coupled,

we can effectively assume 1
g2
TC

(MTC)
= 0. This give two conditions on the four parameters MTC ,

MSp(4), ∆+, and ∆−, which can be used to generate the values for these parameters given in Table

X. We see that a large value of ∆+ is needed in order for the technicolor interaction to become

strong before the strong interaction, and that the value of ∆− required to match the SU(2)EW

coupling at MZ is in general considerably smaller than ∆+.

We consider next the emergent U(1) coupled to G, that is postulated in the second conjecture

to emerge at a scale MU . Its running coupling gU will obey

µ
dgU
dµ

=
g3U
24π2

∑

i

G2
i , (38)

with
∑

iG
2
i = 84.667 a sum of the G2 values for all of the individual tensor components listed in

Tables XI and XII. Integrating this, we get

1

g2U (MU )
=

1

g2U (MTC)
+

84.667

12π2
log

(

MTC

MU

)

. (39)

Between MTC and MZ , the U(1) running coupling for the weak hypercharge Y evolves according

to the third line of Eq. (35). At MTC we must match the coupling g′ to gTC and gU , to reflect the

fact that Y = Y + T3 hidden, with Y = G and T3 hidden = T3TC . The matching relation, derived in

the Appendix A, is

1

g′ 2
=

1

g2TC

+
1

g2U
, (40)

which when 1/g2TC = 0 reduces to g′ = gU . Combining this with Eq. (39) and with the third line

of Eq. (35), and noting that 0 ≤ 1
g2
U
(MU )

, we get the inequality

0 ≤
1

g′ 2(MZ)
+

84.667

12π2
log

(

MTC

MU

)

+
20

24π2
log

(

MZ

MTC

)

. (41)

This can be rearranged into the form

log

(

MU

MZ

)

≤
12π2

84.667g′ 2(MZ)
+ 0.882 log

(

MTC

MZ

)

, (42)

which was used to compute the upper bounds on MU given in the final column of Table X. We see

that for large values of MSp(4), MU is considerably below MSp(4).
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TABLE X: Values of ∆+, ∆−, and the upper bound MU , versus MTC and MSp(4).

MSp(4)(TeV ) MTC(TeV ) ∆+ ∆− MU (TeV )

105 10 78 53 3.3× 105

105 100 111 71 2.5× 106

105 1000 176 107 1.9× 107

109 10 50 16 3.3× 105

109 100 60 18 2.5× 106

109 1000 73 21 1.9× 107

1013 10 41 3.1 3.3× 105

1013 100 46 3.4 2.5× 106

1013 1000 53 3.7 1.9× 107

D. U(1) generator values for the 56 and 28 fermions below the SU(8) breaking scale

According to our second conjecture, the theory runs towards an infrared fixed point at and

below which there is a massless U(1) generator G given by Eq. (33). Applying G to the states

in the 56 representation given in Table VII of (I), and −G to the states in the 28 representation

given in Table VI of (I), we get the list of U(1) quantum number assignments given in Tables XI

and XII.

TABLE XI: Representation content and postulated U(1) generator −G values of SU(8) 28. All of these

states appear in λ⊥, while the states marked with a superscript D (signifying doublet) also appear in ∆λ.

SU(2)× SU(3)× SU(2) SU(3)× Sp(4) tensor components −G value

(1,1,1) (1,1) [23]+[78] 1

(1,3,1) (3,1) [45], [46], [56] − 1
3

(1,3,1)D (3,1) [14], [15], [16] − 5
3

(2,1,1) (1,4) [12], [13] -1

(1,1,2) (1,4) [17], [18] -1

(1,1,1)D (1,5) [23]−[78] 1

(2,1,2)D (1,5) [27], [28], [37], [38] 1

(2,3,1)D (3,4) [24], [25],[26], [34], [35], [36] 1
3

(1,3,2)D (3,4) [47], [48], [57], [58], [67], [68] 1
3

We see immediately from these tables that the fermions of the 56 and 28 representations cannot

give all of the standard model fermions of Table VIII. For example, U(1) generator values 1
2 and

−1
6 appear in Tables XI and XII, but U(1) generator values −1

2 and 1
6 are missing (or vice-versa
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TABLE XII: Representation content and postulated U(1) generator G values of the SU(8) 56 states χ.

SU(2)× SU(3)× SU(2) SU(3)× Sp(4) tensor components G value

(1,1,1) (1,1) [123]+[178], [456] 1
2 ,

1
2

(1,1,2) (1,4) [237], [238] − 3
2

(2,1,1) (1,4) [278], [378] − 3
2

(1,1,1) (1,5) [123]−[178] 1
2

(2,1,2) (1,5) [127], [128], [137], [138] 1
2

(1,3,1) (3,1) [234]+[478], [235]+[578], [236]+[678] − 5
6

(1,3,1) (3,1) [145], [146], [156] 11
6

(2,3,1) (3,4) [124], [125], [126], [134], [135], [136] 7
6

(1,3,2) (3,4) [147], [148], [157], [158], [167], [168] 7
6

(2,3,1) (3,4) [245], [246], [256], [345], [346], [356] − 1
6

(1,3,2) (3,4) [457], [458], [467], [468], [567], [568] − 1
6

(1,3,1) (3,5) [234]−[478], [235]−[578], [236]−[678] − 5
6

(2,3,2) (3,5) [247], [248], [257], [258], [267], [268] − 5
6

[347], [348], [357], [358], [367], [368]

if we reverse the overall sign of the U(1) generator G.) Thus, in order to make contact with the

fermions of the standard model, we must examine the possibility that the 56 and 28 fermions are

preons, from which the standard model fermions are formed as composites.7

E. Synopsis of three fermion and five fermion candidates for composite leptons and quarks

To study whether the SU(8) model fermions can be preons, we did a computer search of the

quantum numbers of all three fermion and five fermion combinations, using the enumeration of 28

and 56 representation states in Tables XI and XII. Sample results for the numbers of quark and

lepton candidates are given in Tables XIII and XIV, in which four possible cases were computed:

Y = ξ
∑

preons iGi with ξ = 1 or ξ = −1, and interchange (or non-interchange) of SU(3) 3 and 3.

These cases arise because the sign chosen for the U(1) generator G, and the labeling of quarks as

3 rather than 3, are both arbitrary conventions. In computing Tables XIII and XIV, we required

that at most one preon be an SU(2)TC singlet, and that the G value of this preon times the sum

of the G values of the other preons be negative, as suggested by the demand of a net attractive

7 For a good introduction to composite quarks and leptons, see Peskin [22]. For more recent reviews of preon models,
see Fritzsch [23] and Wesenberg [24].
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force. When the latter requirement is omitted, the nonzero entries in Tables XIII and XIV increase

as expected, but the 0 entries all remain unchanged. When this requirement is strengthened to

require that no preons be SU(2)TC singlets, additional 0 entries appear in the SU(2)TC singlet

rows, since an odd number of doublets cannot combine to give a singlet, and the entries in the

SU(2)TC doublet rows are unchanged.

From Tables XIII and XIV, we see that the SU(8) model can potentially account for all leptons,

but not quarks, as 3 preon composites, and can potentially account for all quarks, but not all

leptons, as 5 preon composites, using either the cases ξ = 1 with no 3 ↔ 3 (fifth column), or

ξ = −1 with 3 ↔ 3 (eighth column).

F. Synopsis of two fermion candidates for a composite Higgs boson

Scalar composites formed from the left chiral 56 and 28 fields are studied in Appendix B of

[1] using real Majorana representation γ matrices. For any two left chiral fields ΨL1 and ΨL2,

the scalar ΨL1ΨL2 = 0, but the scalar Ψc
L1ΨL2 6= 0, with c denoting charge conjugation. Since

Ψc
L = ΨT

Liγ
0 involves the Dirac transpose T but no complex conjugation, the group representation

content of Ψc
L1ΨL2 is simply the direct product of the representation content of Ψ1 and Ψ2. So

we can get the quantum numbers of two preon scalar composites8 by taking direct products of the

representations, and sums of the postulated U(1) generator values, given in Tables XI and XII.

The standard model Higgs field is an SU(2)EW doublet. If it is an SU(2)TC singlet it must

have weak hypercharge Y = Y = 1
2 (so its complex conjugate has Y = Y = −1

2), while if it is an

SU(2)TC doublet, making it a bi-doublet Higgs as assumed in left-right symmetric models, it must

have Y = 0. In Table XV we enumerate Higgs candidates corresponding to these three choices

of quantum numbers. The computation was done with the restriction that both preons in the

composite should be SU(2)TC doublets; when this restriction is dropped, the nonzero entries 5

increase to 18, but the 0 entries all remain unchanged. For all 5 candidates in Table XV G1G2 < 0,

and so the U(1) force, as well as the SU(2)TC force, is attractive. We see that the SU(8) model

can potentially account for an SU(2)TC singlet Higgs, but not for a bi-doublet Higgs, using either

the cases ξ = 1 or ξ = −1.

8 To check that the composite S ≡ ΨT
L1iγ

0ΨL2 is a two preon state, and not a preon-antipreon state, form the
commutator with the number operator N =

∫

d3x(Ψ†
L1ΨL1 + Ψ†

L2ΨL2). Using the symmetry ΨT
L1iγ

0ΨL2 =
ΨT

L2iγ
0ΨL1, it is easy to verify that the two commutator terms add rather than subtract, giving [S,N ] = 2S,

corresponding to a two preon state.
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TABLE XIII: Columns 5 through 8 give the number of candidates for three fermion composites in the SU(3),

SU(2)EW and SU(2)TC representations listed in columns 1 through 3, with the Y = ξ(G1 +G2+G3) value

listed in column 4. Gi is the −G value for a constituent fermion in the 28 as listed in Table XI, or the G

value for a constituent fermion in the 56 as listed in Table XII.

SU(3) SU(2)EW SU(2)TC Y ξ = 1 ξ = 1 ξ = −1 ξ = −1

3 ↔ 3 3 ↔ 3

3 2 1 1
6 0 0 0 0

3 1 2 − 1
6 0 0 0 0

1 2 1 − 1
2 15 15 43 43

1 1 2 1
2 14 14 5 5

TABLE XIV: Columns 5 through 8 give the number of candidates for five fermion composites in the SU(3),

SU(2)EW and SU(2)TC representations listed in columns 1 through 3, with the Y = ξ(G1+G2+G3+G4+G5)

value listed in column 4. Gi is the −G value for a constituent fermion in the 28 as listed in Table XI, or the

G value for a constituent fermion in the 56 as listed in Table XII.

SU(3) SU(2)EW SU(2)TC Y ξ = 1 ξ = 1 ξ = −1 ξ = −1

3 ↔ 3 3 ↔ 3

3 2 1 1
6 418 0 0 211

3 1 2 − 1
6 31 0 0 61

1 2 1 − 1
2 0 0 37 37

1 1 2 1
2 11 11 0 0

G. A mechanism for a doublet-singlet three family structure

There are enough candidates for composite leptons and quarks in Tables XIII and XIV to

give three lepton plus quark families with different internal structures, but without family triplet

symmetry relations among the families. If one interprets the observed three families as indicating

not a triplet structure, but instead a family doublet (perhaps the lightest two families) plus an

extra singlet (the heaviest family), there is a preonic construction within our model that gives

this, as follows. We note from Table XI that representations marked with a superscript D appear

in both ∆λ and λ⊥ and so are preonic family doublets, giving four potential contributors to

composite doublets if the preonic doublet (1, 1, 1) is excluded. Also, from Table XII we see that the

representation (1, 3, 1)(G = −5
6) appears twice, giving a fifth potential contributor to a composite

doublet. We reduce this list of five to four by assuming that a preonic doublet which can bind

to form a Higgs candidate in Table XV is split, with one member binding into the Higgs and one
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TABLE XV: Columns 5 and 6 give the number of candidates for two fermion scalar composites in the SU(3),

SU(2)EW and SU(2)TC representations listed in columns 1 through 3, with the Y = ξ(G1+G2) value listed

in column 4. Gi is the −G value for a constituent fermion in the 28 as listed in Table XI, or the G value for

a constituent fermion in the 56 as listed in Table XII.

SU(3) SU(2)EW SU(2)TC Y ξ = 1 ξ = −1

1 2 1 1
2 0 5

1 2 1 − 1
2 5 0

1 2 2 0 0 0

member contributing to quarks and leptons as a preonic singlet, and we exclude from the preonic

singlets list the other preon that binds with this split doublet to form the Higgs. Specifically,

corresponding to two ξ = 1 cases in Table XV with a family doublet preon binding to a singlet

preon, either we treat (2, 1, 2)(G = 1) from Table XI as a split doublet, and (2, 1, 1)(G = −3
2) from

Table XII as an excluded singlet, designating this Case (1), or we treat (2, 3, 1)(G = 1
3) from Table

XI as a split doublet, and (2, 3, 2)(G = −5
6) from Table XII as an excluded singlet, designating

this Case (2). Then requiring quark doublets to have one family doublet preon plus four singlet

preons, lepton doublets to have one family doublet preon plus two singlet preons, and quark and

lepton singlets to respectively be constructed entirely from singlet preons, we get the enumeration

of candidates listed in Table XVI for the two cases. We see that there are enough candidates in

both cases for three quark lepton families. If we drop the assumption that the preonic doublet,

one member of which binds in the Higgs, contributes its other member as a preonic singlet, then in

both cases some of the entries in Table XVI become 0, and three complete families are no longer

obtained.

TABLE XVI: Column 5 gives the number of Case (1) candidates, and column 6 gives the number of Case (2)

candidates, for quark and lepton composites in the SU(3), SU(2)EW and SU(2)TC representations listed

in columns 1 through 3, with the Y value listed in column 4. The notations D or S following the entries

indicate respectively family doublet, singlet.

SU(3) SU(2)EW SU(2)TC Y Case (1) Case (2)

3 2 1 1
6 27D, 24S 23D, 24S

3 1 2 − 1
6 1D, 1S 1D, 3S

1 2 1 − 1
2 2D, 3S 1D, 3S

1 1 2 1
2 2D, 1S 1D, 2S
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VII. ANOMALY MATCHING CONDITIONS

Since we are postulating that the massless preons bind to form massless composite quarks and

leptons, we must address the ’t Hooft anomaly matching conditions [25] that impose a consistency

condition on the formation of such bound states. Two different formulations of the ’t Hooft

conditions have been given in the literature, both starting from the assumption that there are

one or more exact global chiral symmetries, whose conserved currents can be coupled at the three

vertices of an anomalous triangle graph.

’t Hooft’s argument proposes gauging the global symmetries, which is possible once “spectator”

fermions are added to the theory to cancel the global triangle anomalies. The low energy theory,

in which some of the preons have been confined to bound states, must still be anomaly-canceling.

But since the spectator fermions contribute the same anomalies at high and low energies, the

anomalies computed at high energy from preons circulating in each triangle graph must be equal

to the anomalies computed at low energy from composites circulating in the same triangle graph.

If anomalies do not match, then chiral symmetry must be spontaneously broken, with appearance

of a corresponding Goldstone boson.

Frishman, Schwimmer, Banks, and Yankielowicz [26] , and Coleman and Grossman [27], have

given an alternative argument, which avoids the introduction of spectator fermions. They proceed

instead from the observation of Dolgov and Zakharov [28] that in a massless chiral theory, the

absorptive part of the anomalous triangle contains a δ(q2) term. In order for this term to match

from the high energy theory to the low energy theory, either the preonic and composite anomalies

must match, or there must be a Goldstone boson arising from chiral symmetry breaking, which

also contributes a delta function to the absorptive part.

An essential feature of both arguments is that the global symmetry used to compute the anomaly

must be exact. Only an exactly conserved current can be gauged, as in the ’t Hooft argument, and

exact conservation is needed to get the δ(q2) in the absorptive part. Also, the global symmetry

must still involve only massless preons after the BEH mechanism gives some preons masses, since

the Dolgov–Zakharov calculation of a delta function in the absorptive part requires a limit of

massless fermions.

Turning to the analysis of global symmetries in Sec. 3, we see that after the BEH mechanism

gives masses to the Rarita-Schwinger fermions in the 8 representation, only the charge Q2 and

its associated current obey the twin requirements of exact conservation and couplings solely to

massless fermions. Note that after breaking of SU(3) × Sp(4) to SU(3) × SU(2) × SU(2) there
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are many approximate global symmetries when couplings to the gauge fields that acquire masses

through the BEH mechanism are neglected, but these do not correspond to exactly conserved

currents, so do not give rise to anomaly matching constraints.

To summarize, the only anomaly matching condition to be tested is the one coming from the

Q2 −Q2 −Q2 triangle graph. From Eq. (15), we have

8×Anomaly(Q3
2) = 8Anomaly(N3

56)− 125Anomaly(N3
28⊥

) . (43)

We then have an exercise in counting. For the preonic anomaly, we have

Preonic Anomaly(N3
56) =56, Preonic Anomaly(N3

28⊥
) = 28,

8× Preonic Anomaly(Q3
2) =− 3052 .

(44)

For the composite anomaly, we have

Composite Anomaly(N3
56) =

∑

composite k

mc(k)
∑

j∈56

N(k, j)3 ,

Composite Anomaly(N3
28⊥

) =
∑

composite k

mc(k)
∑

j∈28⊥

N(k, j)3 ,

8× Composite Anomaly(Q3
2) =8Composite Anomaly(N3

56)− 125Composite Anomaly(N3
28⊥

) .

(45)

In Eq. (45), mc(k) = NSU(3)(k)NSU(2)EW
(k)NSU(2)TC

(k) is the multiplicity of composite k, with

the Ns the representation multiplicities in the first three columns of Tables XIII and XIV (so mc(k)

is 6 for quarks and 2 for leptons), and N(k, j) is the number of times the preon j appears in the

composite k. The computation time is greatly reduced by noting that the inner sums over j for

fixed composite label k take a number of values versus k far less than the number of candidates in

Tables XIII and XIV, so it is necessary only to search for a match over the tables of these inner

sum values, rather than over the much larger number of composite quark and lepton three family

candidates. The result after a search of close to 109 possibilities, which took less than 10 seconds of

computer time, is that there is no three family match; the closest value of the composite anomaly

found was 8× Composite Anomaly(Q3
2) = −3060.

This result means that the model can give rise to three composite families of quarks and leptons

only if it saturates the anomaly matching condition by also generating a Goldstone boson B

contribution, indicating that at some stage of symmetry breaking, the chiral symmetry generated
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by Q2 is spontaneously broken. Since B contributes to the triangle through a matrix element

〈0|Q2|B〉..., with ... indicating the propagator and coupling of B to the rest of the triangle, the

quantum numbers of B must match those of Q2. Since Q2 is a gauge singlet with electric charge

Q = 0, the boson B must be a singlet with Q = 0. Also, since B must be a scalar composite formed

from left-handed chiral fields (the simplest is of the form ΨT
L1iγ

0ΨL2), it must be chiral, that is, a

scalar-pseudoscalar mixture. When radiative corrections give masses to the composite quarks and

leptons, they will also be expected to give a mass to the Goldstone boson B, which then becomes

a pseudo-Goldstone boson, with possibly a very light mass.9 Interestingly, very light mass gauge

singlet charge zero scalars are currently under active consideration [29] as dark matter candidates.

VIII. DISCUSSION, NEXT STEPS, AND EXPERIMENTAL CONSEQUENCES

In the proceeding paper (I) and this one we have started the analysis of the symmetry breaking

chain in a new type of grand unified theory [1],[2]. The underlying motivation for a new attempt at

grand unification is the fact that after over forty years of effort, an accepted unification model that

agrees with all experimental constraints has not been achieved. This suggests that some essential

ingredient in building a successful theory has been overlooked, and that the rules for constructing

unification models should be broadened. The SU(8) theory suggested in [1] incorporates a number

of novel features. It substitutes a principle of balance between boson and fermion degrees of freedom

for a requirement of full supersymmetry, and it allows spin-32 gauged Rarita-Schwinger fermions

to play a role in anomaly cancellation, instead of insisting that gauge anomalies cancel among the

spin-12 fermions. The only scalar field in the model, a complex third rank antisymmetric tensor, is

forbidden by group theoretic considerations from having Yukawa couplings to the spin-12 fermions

of the model, a prerequisite [30] for the model to give rise to a calculable low energy effective

theory.

There are a number of indications that the model of [1] may be the correct one to explain

observed standard model physics. (1) As discussed in this paper, it contains a natural mechanism

to remove the spin-32 particles from the low energy spectrum. (2) The model does not employ a

Higgs potential with parameters that have to be chosen to give the observed symmetry breaking

pattern. Symmetry breaking is initiated by the Coleman-Weinberg mechanism for the scalar field,

9 The boson B could be the axion [13] associated with the Peccei-Quinn mechanism for solving the strong CP
problem if the condensate that breaks the chiral symmetry generated by Q2 also breaks chiral symmetry generated
by the global U(1) that couples to the SU(8) instanton.
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and the pattern of symmetry breaking is determined by the kinematics of the gauge boson mass

matrix. (3) As noted in (I), symmetry breaking by a third rank antisymmetric tensor gives a

natural mechanism for emergence of SU(3) as the color group, since a rank three antisymmetric

tensor provides an SU(3) invariant. (4) As observed in this paper, the co-running of the SU(3) and

Sp(4) running couplings that emerges naturally after SU(8) symmetry breaking is a prerequisite

for realistic dynamical symmetry breaking at lower energies. (5) As discussed in detail in this

paper, the model has a possible symmetry breaking chain leading to the particles and forces of the

standard model.

Many open questions remain. In this paper we have focused on qualitative kinematic aspects

of symmetry breaking that can addressed by group theory, one-loop running coupling analysis,

enumeration of composite candidates, and anomaly counting. To answer more detailed quantitative

questions such as the mass scales associated with the various stages of symmetry breaking, the

binding of composites, and the generation of fermion masses, will require computation of higher

order radiative corrections, a task for the future. The most pressing issues are (1) seeing whether

radiative corrections to the Coleman-Weinberg potential for the scalar field lead to a transition

at a scale MSp(4) to a phase with asymmetric breaking of Sp(4) into SU(2)TC × SU(2)EW , and

(2) seeing whether radiative corrections to the vector meson mass matrix place the theory within

a “conformal window”, so that the model evolves in the infrared to a fixed point at a scale MU ,

below which there is an extra U(1) symmetry with generator G. Both of these requirements are

needed for the model to give rise to the standard model as its low energy effective field theory.

However, based on the analysis of this paper, one can already state some experimental conse-

quences should the SU(8) model prove theoretically viable:

1. Composite structure The model implies that quarks and leptons are composites formed from

more fundamental preons. However, unlike earlier preon models, such as the ones reviewed

by Fritzsch [23] and Wesenberg [24], where the aim is to have a small number of preons,

our model starts from a grand unified framework with large 56 and 28 multiplets of preons.

Because our model is based on grand unification of the gauge forces, the weak bosons are

elementary gauge bosons rather than composites as in [23] and [24], with only the Higgs and

possibly a very light scalar boson appearing as composites.

Experimentally, composite quarks and leptons are a viable possibility at an energy scale well

above that attainable at the LHC. A generic feature of compositeness is that the distinction

between the strong and electroweak interactions gets blurred as the compositeness scale is
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approached. In this regard, it is interesting that the Auger experiment [31] has reported an

excess of muons produced at center of mass energies of order 100-170 TeV, which could be

indicative of changes in the particle forces at energies well above the LHC range.

2. Proton stability The composite quarks and leptons in the model have different internal struc-

ture: leptons are three preon composites, and quarks are five preon composites. Thus proton

decay into a single lepton plus mesons involves a large change in preon number. We have

seen that in low energy processes, Q2 = N56 − (5/2)N28⊥ and Q̃1 = N28∆λ − (3/5)N56 are

conserved, which implies that the changes δ(N56), δ(N28⊥), and δ(N28∆λ) in a decay are

related by

δ(N56) =
5

3
δ(N28∆λ) ,

δ(N28⊥) =
2

3
δ(N28∆λ) .

(46)

In general these forbid the preon number changes required in proton decay, so the proton in

our model is stable against decay into a single lepton plus mesons.

3. Higgs field The Higgs field in the model can be an SU(2)TC singlet, which is the favored

possibility for binding, but not an SU(2)TC × SU(2)EW bi-doublet.

4. Dark matter The model requires that the three standard model families of fermions be

accompanied by one or more scalar pseudo-Goldstone bosons to satisfy the anomaly matching

condition. This favors a very light boson explanation of cosmological dark matter, such as

that discussed in [29].
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Appendix A: U(1) matching relation

To derive the matching relation of Eq. (40), we start from the coupling term

gTCATCT3TC + gUAUG , (A1)

with ATC and AU the time components of the respective gauge fields, both of which have standard

kinetic energy normalization. Since Y = T3TC + G, we look for a rotated set of gauge fields for

which Eq. (A1) takes the form

g′(ATC cos θ +AU sin θ)(T3TC +G) + (−ATC sin θ +AU cos θ)(uT3TC + vG) , (A2)

with g′, θ, u, and v determined by matching Eq. (A2) to Eq. (A1). The matching conidtions are

g′ cos θ − v sin θ =0 ,

g′ sin θ + u cos θ =0 ,

g′ cos θ − u sin θ =gTC ,

g′ sin θ + v cos θ =gU .

(A3)

Solving these gives

g′ =gTC cos θ = gU sin θ ,

u =− gTC sin θ , v = gU cos θ ,

tan θ =gTC/gU ,

(A4)

from which we get

1

g′ 2
=

1

g2TC

(1 + tan2 θ) =
1

g2TC

+
1

g2U
. (A5)
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