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1 Introduction

Baryons with single heavy quarks receive a lot of attention in the high energy physics
community. This is due particularly to the development of the heavy quark effective theory
and its application to this baryonic system.

Despite considerable development on the theoretical side, noticeable progress has only
recently been made on the experimental side. Lately, all hadrons containing single heavy
quark with positive parity, except €2}, as well as several heavy baryons possessing negative
parity have been discovered in experiments (for a review, see [1]).

Baryons containing only a single heavy quark are usually described in terms of SU(3)
multiplets, which can be represented as a subgroup of the larger SU(4) group including
all baryons with zero, one two or three charmed quarks. In this case baryon multiplet
structures appear in the form 4 ® 4 ® 4 = 20 ¢ 20 ¢ 20 & 4. The symmetric subgroup 20
contains the decuplet with positive parity, the mixed—symmetric subgroup 20 contains the
octets of the lowest level with positive parity, and the antisymmetric subgroup 4 contains
=2, A, Ef and A. Note that the singlet A has the quantum number J” = 7. Similar
construction takes place for the baryons containing single b quark.

After experimental observation of the negative parity heavy baryons, the next step
is the study of their electromagnetic, weak and strong decays. In this sense the study
of electromagnetic decays plays exceptional role, which provide us information about the
internal structure of negative parity baryons, as well as about the nonperturbative aspects
of QCD.

The radiative decays between positive parity baryons in framework of the relativistic
quark model [2], in heavy baryon chiral perturbation theory [3], in the formalism that
incorporates both heavy quark symmetry and chiral symmetry [4], in static quark model
[5], in bag model [6], in light cone QCD sum rules incorporated with the heavy quark
effective theory [7], etc. The analysis of similar decays for the negative parity baryons
has recently started. Therefore the study of radiative decays of negative parity baryons
represent proves to be very useful in order to get information about their properties.

In the present work we study the radiative decays ¥ — Agy and = — Zv between
negative parity heavy baryons in framework of the light cone QCD sum rules method.
Note that the same transitions for the positive parity baryons have been studied in the
same method in [8].

The paper is organized as follows. In section 2, the light cone QCD sum rules for the
electromagnetic form factors responsible for the ¥ — Agy and =, — =~ transitions are
derived. The results numerical analysis of the sum rules for the form factors is presented
in Section 3. Using the values of these form factors at evaluated Q% = 0 which corresponds
to the real photon emission, the corresponding decay widths are calculated.

2 Sum rules for the transition form factors between
negative parity heavy baryons

In this section we shall construct the light cone QCD sum rules for the ¥y — Agy and
E’Q — Zv transition form factors between negative parity heavy baryons. For this purpose



we consider the following correlation function,

M,(p,q) = - / I / dtye ) (0T {ng, (0)J (y)iia ()} 0) | 1)

where 79, and 7¢, are the interpolating currents of the initial and final heavy baryons which
interact simultaneously with both positive and negative parity baryons, jﬁl = €qqVuq +
eq@v,@Q is the electromagnetic current with, and e, and e are the electric charges for the
light and heavy quarks, respectively.

The radiated photon can be absorbed into the electromagnetic background field which

is defined as F),, = i(,q, — €,q,)€e"”. The correlation function then can be written as,

M,(p, q)c" = i / d42e (0T {1g, (z) 710, (0)}] 00, . 2)

where the subscript F' means that vacuum expectation values of the corresponding operators
are evaluated in the presence of the background field. Here we note that, Eq. (1) can be
obtained by expanding the correlation function in powers of F),,, and keeping only terms
linear in F),, which corresponds to the single photon emission (more about the background
field method and its applications can be found in [9] and [10]).

It follows from Eq. (2) that, in order to calculate the correlation function, the expres-
sions of the interpolating currents of heavy baryons are needed. The general form of the
interpolating currents of the spin—1/2 heavy baryons entering into the symmetric sextet
and antisymmetric antitriplet representations are [11],

1
) = — e @ 0Qsa5 — (QT O + Bai Cr5Q")as5 — BQT Crsdd)as |
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NG
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where [ is the arbitrary auxiliary parameter. The light quark contents of the heavy baryons
in sextet and antitriplet representations are presented in Table 1.

+(++) 0(+) —(0) [ =/—(0) | =/0(+) | =—(0) | =0(+) 0(+)
Eb(c) Eb(c) Eb(c) —b(c) —b(c) “b(e) | ~b(e) Ab(c)
q1 U U d d U d U U
Q2 U d d s s s s d

Table 1: Light quark contents of the heavy spin—1/2baryons.

According to the general strategy of QCD sum rules method, the correlation function
(2) should be evaluated in two different kinematical domains. On the one side Eq. (2)
should be dominated by the decays ¥q — Agy and Z; — Zv if the virtualities p? and
(p+ q)* are close to the heavy baryon masses, i.e., p* ~ m%;, ., (p+ q)* ~ mZ .. On the
other side, it can be calculated in the kinematical domain p* < 0 and (p + ¢)* < 0 as an
expansion in terms of the photon distribution amplitudes with increasing twist.
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We proceed now calculating the correlation function from the hadronic part. For this
aim the complete set of hadrons carrying the same quantum numbers as the interpolating
current are inserted. At this point it is useful noting that the interpolating current can
interact both with positive and negative parity baryons. Taking this fact into account, and
calculating the correlation function from the hadronic side, we get

(0]nQ,|Bai(p, 5)) el (Bu(p+q,8)|16,10)
IL,(p,q)e" = &t E Boi(p, s)|75'| By , 4

i=t,—
j=+.—

where +(—) means positive(negative) parity baryon.
The matrix element entering into Eq. (4) is defined as,

(0[ng,|Bai (p, s)) = AT (p, q)
-

L ,
‘e =1 qq a Lo qu al ra. g
(Boi(p, 8)|j|Bui(p+ ¢, 5)) = @ [(7 q—;)fl - mfz r*uw’(p+gq,s), (5)

where

re _ I, for the + — +, and — — — transitions ,
| 7, for the + = —, and — — + transitions .

Using the equation of motion, the matrix element (5) can be written as,
‘e —1 qq «
(Batp o) ! 1B+ 0.5 =] (3 - 22

Vo [257"113' + 2m2i] —2(p+q)p — 2pp

+
2(mys +mai)

s }Fauj (p+a.s), (6)

where

8= +1, for the + — +, — — — transitions ,
| —1, for the + - —, — — + transitions .

Imposing the conservation of the electromagnetic current, it can easily be shown that the
radiative decays under consideration is described by the form factor f, . Using the condition
ge = 0, we see from Eq. (6) that only the structure p, is needed for the estimation of the
form factor f5 .

Using Eqgs. (5) and (6), and performing summation over spins of the initial and final
states of heavy baryons we obtain the following expression of the correlation function from
the hadronic side,

ILe" = —A(pe)(Pa + ma+ ) (P1 + ma+)
+ B(pe)(#2 — ma-)(# — m1-)
+ C(pe) (B2 — ma-) (Y1 + my+)
+ D(pe)(#o + ma+ ) (1 — =) + -+, (7)



where dots represent contributions of higher states and continuum. A, B C, and D in Eq.
(7) are given as,

. 21+ Ag+ f2+
my+ +mar (P —ma)[(p+q)? —mi ]’

20— Ag- fy
Comy- 4+ mo- (PP —m2)(p+q)?—mi]’

o Pk f7
my+ +my- (p? —m3 )[(p+¢)? —mi.]’

D 2X1- Ao+ fT

mi- +mar (PP —mi)[(p+¢)* —mi ]

It follows from Eq. (7) that the correlation function contains four different contributions
coming from + - +, — — — 4+ — —, and — — + transitions. As has already been
mentioned the radiative decay between the negative parity baryons under consideration is
described only by the form factor f, . Therefore, the unwanted contributions coming from
three transitions should be eliminated. This can be achieved by solving the set of four
equations that result from four different Lorentz structures (pe)#@d, (pe)¥, (pe)d, and (pe)l.

In order to construct sum rules for the form factor f, calculation of the correlation
function from the QCD side is needed. The correlation function given i Eq. (2) can
be calculated from the QCD side using the operator product expansion (OPE) over the
twist of he nonlocal operators. The expansion of the nonlocal operators up to twist—4 is
calculated in [12], which gets contribution from the two-particle gq, three—particle gGg,
and four—particle gG?q, qqgq nonlocal operators. In the present work we take into account
the contributions coming only from two— and three—particle nonlocal operators. Indeed,
taking higher Fock—space component into account demands simultaneous calculations of
the corrections with conformal spin j = 5 to both two— and three—particle distribution
amplitudes. The contributions of higher conformal spin terms should be small. For this
reason, neglecting contributions of the four—particle nonlocal operators is justified on the
basis of an expansion in conformal spin (for more details see [12]). The long distance
contributions are taken into account by introducing the matrix elements of the two— or
three—particle nonlocal operators between the vacuum and one particle states. These matrix
elements are determined with the help of the photon distribution amplitudes (DAs). The
parametrization of the aforementioned matrix elements in terms of the photon DAs are
given as,

16
- 1
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where ¢, (u) is the leading twist-2, ¥"(u), ¢¥*(u), A and V are the twist-3, and h.(u), A,
Ti (i =1, 2, 3, 4) are the twist-4 photon DAs, and x is the magnetic susceptibility. The
measure Dq; is defined as

1 1 1
/Dai = / daq/ daq/ dagd(l — o5 —ay — ay) .
0 0 0

Calculating the correlation function from the QCD side, and separating the coefficients

of the Lorentz structures (pe) p 4, (pe) p, (pe) 4, and (pe)l from both hadronic and QCD
side, we get the following four equations for determination of the form factor f,,

~A+B+C+ D=1
—mgt (A — D) —my-(B+C) =114 |
—(m1+ + m2+)A — (mlf —+ mg—)B



+(m1+ — mgf)C — (ml— — m2+)D = th s
— Mo+ (m1+ + m2+)A + Mo-— (ml— + Mo— )B

—Mo— (m1+ — m27)C — Mo+ (mlf — m2+)D = Ht4h . (9)

Solving Eq. (9) for the form factor f;, and performing the Borel transformation over
the variables —p? and —(p + ¢)? using

1 2 2 2 2
B{ } N 6—m1/M1 —m3/Mj ,
(Pt = mP)(p2 — m3)

in order to suppress higher states and continuum contributions, we finally get the following
sum rules for the form factor f, at the point —¢* = Q* = 0,

-2 M- + My- _m2/M2_m2/M2{ 1 [
=-0))= —— = 1/ 2/ M3
f2 (@ ) 21— Ao ¢ (m1- 4+ mq+)(ma— + mo+) (

— Mg 115 — (mys — my- )15 — Hf] } + /dsldsgph(sl, sq)e /M =s2/ME - (10)

mi+ — Mo- )m2+ HIB

The last term in Eq. (10) represents the contributions of the higher states, as well
as continuum. This contribution is usually estimated by using the quark—hadron duality
ansatz, which states that above some threshold in the (si, s9) plane the hadronic spectral
density p"(sy, s2) is equal to the spectral density calculated from the QCD side.

The explicit expressions of I1Z for the Xgo — Agy and Ep — Zq7 transitions are
presented in Appendix.

Few words about the continuum subtraction procedure are in order. This procedure is
explained in detail in [13], where use has been made of the quark—hadron duality. In the
case M? = M2 = 2M?, and ug = 1/2 the subtraction can be carried out with the help of
the formula,

1 50

m

from which for the leading twist terms we have,
M2emm*/M* _y 2 (e‘m2/M2 — 6_30/M2> ,

where m is the heavy quark mass.

In the present work the subtraction procedure is not performed for the higher order
twist terms which are proportional to the zeroth or negative powers of M2, since non of
these contributions are small (see for example [13]). It should be emphasized here that,
in principle, single and double dispersion integrals coming from subtraction procedure can
appear. But such terms disappear after the double Borel transformations.

The residues of the negative parity are calculated in [14]. In the transitions under

consideration, the masses of the initial and final state heavy baryons are very close to each
other, and hence we set M7 = M3 = 2M?.



After carrying out the numerical analysis for the form factor f; the decay widths of the
transitions under consideration can easily be calculated, whose expression is given as,

dalq? — 12
I'(B;- - By-y) = ——— 0)|°, 11
(Bi- = Bya) = ——-L— |7 0) (1)
where « is the fine structure constant, and
m2. —m2_
g =
mq-

is the magnitude of the photon momentum.

3 Numerical analysis

Present section is devoted to the numerical analysis of the sum rules for the form fac-
tor fy (0). The main nonperturbative input parameters in the sum rules are the photon
DAs, whose expressions are given in [9]. In addition to the photon DAs the sum rules
contain other input parameters such as, the quark condensate (Gq), vacuum expectation
value of the dimension—5 operator mZ(gq), magnetic susceptibility x of the quark fields. In
our analysis we shall use the following values these parameters: (iwu)|; gov = (dd)|y 4o =
—(0.243)* GeV3, (58)|1 gev = 0.8{uu)|1 gev, m3 = (0.8 £0.2) GeV? (the value of m is de-
termined from the analysis of the two point sum rules for baryons, as well as from the B, B*
system) [15-17], f3, = —0.0039 GeV? [9]. The magnetic susceptibility is calculated in nu-
merous works [18-20], and in our numerical calculations we use x(1 GeV') = —0.2.85 GeV 72,

Having determined the input parameters we can now perform the numerical analysis of
the sum rule for the form factor f; (0). The sum rule includes three auxiliary parameters,
namely, the continuum threshold sy, Borel mass parameter M?, and the arbitrary auxiliary
parameter [ in the expression of the interpolating currents. Obviously, the measurable
quantity f, (0) should be independent of these parameters. Therefore we need to find such
regions for all these parameters where the form factor f; (0) is practically independent of
them. This program can be implemented in the following way. As far as the continuum
threshold is concerned, analysis of various sum rules shows that the difference /sy — m,
where m is the ground state mass, varies in the region 0.3 GeV < /so—m < 0.8 GeV/, and
in our calculations we use the average value \/sg —m = 0.5 GeV. In determination of the
domain for the Borel mass parameter M?, we demand that the following two conditions
must be satisfied: a) The upper bound is obtained by requiring that the higher states
and continuum contributions constitute at most 40% of the contributions coming from the
perturbative parts. The lower bound is determined by imposing the requirement that the
higher twist contributions are less than the leading twist contributions. The analysis of
the sum rules for the negative parity heavy baryons which is studied in [14], leads to the
following working regions for M?2,

2.5 GeV? < M? < 4.0 GeV?, for %, 2., A, Z.,
4.5 GeV? < M? < 7.0 GeV?, for %y, Zp, Ay, Zp .



Finally, the domain for the auxiliary parameter [ is determined by requesting that the
form factor f; (0) shows good stability with respect to its variation in this region. As an
example, in Figs. (1) and (2) we present the dependence of the form factor f, (0) for the
¥, — A, transition, on cos@, where 8 = tanf, at so = 42 GeV? and sy = 44 GeV?, and at
several fixed values of M?. We observe from these figures that, in the region —1.0 < cosf <
—0.7, the form factor f, (0) seems to be practically independent to the variation in cos6,
and also it is insensitive to the different choices of the values of sy and M?2. Performing
similar analysis for all remaining transition channels, we get the following values for the
form factor f; (0) which are summarized in the following table:

( (1.2+0.3) for XF — AJW :
(0.8+£0.2) for = ’+ — = = Ty,
[0 = (F0030=0.008) for = =0 =0,
2 (1.4+0.2) for EO — Ab7 ,
(1.2 + 0.2; for JO — ubv :

(—0.18 £0.03) for =~ — =, 7.

The uncertainties coming from the errors of input parameters are taken into account
quadratically.

Using these values of the form factors f; (0), and Eq. (11), we estimate the decay widths
of the decays under consideration whose values are given as,

Dyt at, = 12 (LO£0.5) keV
Do zr, = 0.7 (LO£0.5) keV
Tzo_,z0, = 0.002 x (1.00 £ 0.5) keV/ |
5o a0, = 1.4 % (LO£0.3) keV
ez, = 0.6 x (1LO£0.3) keV
=y = 0.018 X (1.0 £0.3) kel

The predictions presented for the transition form factors, as well as decay widths con-
stitute the main objective of the present work. It follows from these results that the decay
widths of 7 — Afy, XY — Advy, EF — =Fvand Z — =)y transitions are quite large
and can be measured in the near future; while the widths of Z° — =24, and Z; — Z, v
transitions are very small.

In conclusion, we employ light cone QCD sum rules in calculating the form factor f; (0)
for the magnetic—dipole transition M1 between the negative parity heavy spin—1/2 baryons.
Using the values of the form factors f; (0) for the transitions under consideration, we also
estimate thelr decay widths. Our results predict that 7 — Afy, 2 — Ady, JO — =),

and =" — =1+ decays have large widths and can be measured in future experiments.



Appendix

1) Coefficient of the (pe)pq structure
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~ Gorzvaamo L T AV alasGimom (eu(5s) e, () [2(3 + )1 (") + B (uo)]
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e—mZ/M2
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+ [@= BT — 2+ (14 AmiT)ia(Te )}

+ VAL~ e — e

o (1= BT [B(1+ 8)(e, = e+ 4(1 = B)r(en(59) = ewin) e o)
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+ 96mym (ea(ss) — (@) 71 (67) + eufsy [ (14 B){g2G?) + 968mum? (55)

= oy | (14 B)(g2G?) + 96 8mym™ (7)) |4 (o)}
1
© 512/3r
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(1)
2) Coefficient of the (pe)y structure
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T 102 gymd
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3) Coefficient of the (pe)¢ structure
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— 8f3,((92G%) — 6mEm)r® [4(2 + B)J1 (") — ¥ (uo) — 269" (uo) | }
e_mZ/M2

_ m(l — B){g2G?Ymy (e (5s) — eu<au>){3(1 + B)A(uo) + 4(1 — B)is(S, 1)

+ 4(1 = B)is(S, 1) + 6ia(T1, 1) + 4is(Ta, 1) — 6ia(T5, 1) — 4is(Ta, 1) — 4is(S, v) — 12i5(T5,v)
—+ 1222(7},, 'U) + 26 [322(7‘1, 1) — 2@2(75, 1) — 322(75, 1) + 222(72, 1) + 2'&2(§, 'U) — 2@2(75, U)

¥ 6in(Ts, 0) — 42'2(7;,@)] }
e—m%/M2

b ST i (22 B = GG ea(5s) — el S, 0
+ (1= 8) [ 1441+ B) foymimin® (eu(ss) — e, (i) i (4")
— 2(3+ A)(g2G)m}(en(55) = ewl@mu))falh,) + (eu(ss) — eufi)) (2 + B){g2G%)m]

= 2(1+28)(g2G)mi — 36(1+ B) fmimir®™(uo) ) | }

—mZ2 /M?

e B ) o )
+ m(l — B)(es(Ss) — ey (uu)) [(1 — ﬁ)(g§G2> +18(7 — ﬁ)mge /M (T mgll)
— 18(5 + 5)mgem§/M2Ign] [ig(s, 1) — i2(’72’ 1)]

e—mg/M2

+ m(l — B)(es(8s) — ey {uu)) [(1 —B) <g§G2> F18(1 - 7B)m§em§/M2 (Ty - mgL)
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+ 18(1 + 58)m2ems/M n] [i2(§>1) + ia(72, 1)}

e_mb/M

_l’_ -
768+/372my,
— 86m3e T, (T 1) — [(626%) + 36mien i, i (T, 1))

—mZ2 /M?

(1= B%)(es(55) — ew(au)){ | (42G2) + T2m3ems M (Z, — miTy)

e
1152/37%m,

x {2(2 + B)ia(S,v) +ia(S,v) + 3ia(T, v) — 3ia(Ts,v) — [z'z([si v) — is(Ts, )
+ 30(Ts,0) — 21’2(7;,@)]}

(1= B)(es(55) — eul@u)) [( 2G2) + 36m2e™ /M (T, — mgzl)]

e~y /M?

~ 1608 fﬁz( s = €u) fay {( B)2(g2G?) — 72 /M {2(1 + B4 B3I — (1 - B)’mpTy

= (1448 + B)miT| = 216(1 + B)*mie™ M Ty, Lig (V)

4(;;):\;‘_4 ;( s = e)fin{ (1= BYG2G?) + 72" [(1 48 + BTy + (1 = B)miZy
—2(1+ 6+ 6% mé‘L] +216(1 4 B)>mie™s /M Ign}lg(A v)
_ m( + 6+ 5%)(es — eu){mz_g —m} [481_2 —72mT_; + ({(g°G?) + 4gmg)zo] }
- 32\}%2 (1= B)my, [(7 +2B)es((3s) — (au)) — B(3e.(5s) — 3ey <au>)]zo
e VB(L = Bma(ex(55)) — e (0) (o) Ty
+ 768\1/%4%{ — (14 8+ B%)(es — ew)mp((g2G?) + 12my)

= 3(1 = B)es[(5+ B)mi — 24(3 + B)ymiw*((3s) — (wu))

+ 48(1 — B)*min?(eu(5s) — es{uu)) — 18(1 — B2)ymin* (e (5s) — eu@u))A(uo)}Il
1

3844372

+ 12(2 4 8)(es + eu)m?:] (55) — [(2 + B)es(97G?) — 3mym (3 + 28)e, — 3mimi (7 + 58)e;

+12(2+ B)(es + es)mg] (Hu>}I2

1 _ _
ey (1= B)(5+ B)eyms((5s) — (wu))Zen

—m2/M?

(1= Byma [(2+ Bleu(92G?) — 3m3mi(3 + 2B)e, — 3mimE(7 + 58)e,

+ m{4(1 - ﬁ)mbﬂ'2(eu<§8> - es@u)) [(4 + 5ﬁ) <g§G2> . 18(1 i 2ﬁ)mgmg]

+ 3(1 = B2)(g2G*)ymym?(es(5s) — ey (uu))A(uo)
+ 36e™ M (14 B+ %) (es — ) [21_3 — 92Ty + 18miT_, — 11mlT, + 6mgIgn] }
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€_m§/M2

+ Wﬁwmb(? — B — B%)(eu(ss) — es(au))ji(v")
_mg/MZ 2 /072 ~
+5%7%%;&—m@+ﬁmd%%wwmﬂhﬁﬁﬂﬁ%%mwﬁ%—mﬁﬂhww
- m(l — B%)(es(5s) — €u<ﬂu>)X{2<9§G2>Io +3m; |122_1 — ((¢2G?) + 12m§)zl}
+ 72mgzgn}%(uo)
e—mg/MQ 1 9 2 = = a

- T\/gfzwmb( + 8 = 28%)(eu(5s) — es(uu))y*(uo)

b (1+ 8+ %) (es —en)f {<92G2> — 36e™/M? | T, — 2m?T, +m4z}}
1]_52\/371‘4 s u)J 3y s -1 =0 b+1

X |G(07) = v (w)| -

(3)
4) Coefficient of the (pe)I structure
I’ =
€_m§/M2
* SasevaE — B2) fay (G2 G2 ymEmi (e (55) — eq(iu)) i (uo)
_mlz)/Mz
- 1;287\/3]\46(1 — %) f3, (g2G*YmEm? (e, (55) — eq(Tu) )y (uo)
—m2 /M?
+ m(l — BNG2G*Ymi (e (3s) — es(uu))|3(2 4+ B)mE — 8(1 + 5)f377T2w”(u0)]
_ml27/ 2
+ ;\/—73]\]\22(1 — B?) faymimi (e, (5s) — es(au))v® (ug)
‘é;é%%g“‘ﬁﬂ“+ﬁﬁﬂ@@—ﬁw»+4@+5x%@$—@@m»

— 12(e(ss) — ew(au)) i (hy) | 75

1 ) B B )
+ 16\/§7r2(1 — B)ymy [(7 + 38)ep((5s) — (uu)) — (34 B)(es — ey) faympth (Uo)]Ien
+ 32\}%2 (1-75) [(5 + 3B)ep((58) — (au)) + 6(2 + B)(eu(5s) — es(au))

— 18(ey(35) = eufi))ji(hy) = (3+ B)(es — eu) foymuts* (o) | T4
+ 38%\/37@(1 — ﬁ)mb{b’mb [ﬁeumg +4(2+ B)(ep + eu)mg] (8s)

— Gy [ Beumd +A(2+ ) (en + e, () — T2mi(e(55) — e (i) s (1)
+ (34 B)(es — ea) f3 ((62G?) + 12m§)w”(u0)}21
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_ mu = B){9ms e (3 + 28)md + (17 + 98)m? ) ((55) — (@w))

+ ((4 +38)mE +12(2 + 5)mg) (eu(Bs) — es(au)) — 36m2(e,(5s) — eu<ﬂu))31(h,y)]

+ for |3 B)(es — €)(g2G?) — 48(1 + B)eymyn(ss) + 48(1 + B)e,mym ()| 47 (o) }To
e~mi/M?

+ Srovaem B){9e 1 (1 + Ben((55) — () +4(2 + B)(ealss) — e, ()
— 12(es(5s) — e (@) )i ()| (T2 — 2y + miTo) +m} [3{g2G?) (e.(5) — ew () (h,)
— (eufss) = eufam) (2 + B)(g2G2) = 21+ B) foymin®y* (o) )| |

The functions i, (n = 1,2), and j;(f(u)) are defined as:
io(o, f( /DaZ/ dvgp(ag, ag, o) f(v)(k — u)0(k — up) ,
0. f(0) = [ Dy / Ao (0, g, ) F(0)6(k — o)
(6. 00) = [ Do [ dustans g ) 010~ ).
i3(o, f( /DaZ/ dvd(ag, ag, o) f(0)' (k — u)
(0. f0)) = [ Do / A (g, g, g F(0)8"(k = )
) = [ durw),
R7() = [ =)0,

—S/M2
/ ds
m2
b

e’} 2
Ly = ds e/ g
m3 s
where
M? M2 M?
k=a,+a,, =1 M? = 12
Qa7 % A VR VP M? + M2
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Figure captions

Fig. (1) The dependence of the of the form factor f; on cos@ at six fixed values of the
Borel mass parameter M2, and at the fixed value so = 42 GeV'? of the continuum threshold
for the ¥Y — Ay transition.

Fig. (2) The same as Fig. (1), but at the fixed value sy = 44 GeV? of the continuum
threshold.
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