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In this article we investigate a conformal extension of the standard model in which

the scalar sector consists of a standard model Higgs doublet, a real gauge singlet and

a real SU(2)L triplet. Focusing on the scenario where the Higgs boson found at the

LHC is identified as the pseudo-Nambu-Goldstone boson of broken scale invariance,

various theoretical and phenomenological features of the model are discussed. In

particular, we analyze the decay pattern of the new scalar resonance. We also show

that when the mass of this new scalar resonance is far below the WW threshold, the

natural regions of the parameter space are reduced by a constraint associated with

the symmetry enhancement due to the decoupling of the singlet scalar from the rest

of the system.
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I. INTRODUCTION

The gauge hierarchy problem is one of the most serious conundrums in particle physics.

In the standard model (SM) the electroweak symmetry breaking is triggered by the negative

mass-squared term in the scalar potential. However, radiative corrections to the self-energy

of the Higgs boson in the SM are quadratically sensitive to the new physics scale. If the

new physics scale is significantly above the electroweak scale, which seems to be a possi-

bility hinted by the current LHC data, an unnatural fine-tuning is required to render the

electroweak scale stable. So far experimental searches at the LHC have shown no signs of

supersymmetry or extra dimensions [1], which are ideas proposed by theorists for a natural

solution to the gauge hierarchy problem. The stability of the electroweak scale thus remains

a mystery to date.

An alternative solution to the gauge hierarchy problem was proposed by Bardeen [2].

Noticing that the SM Lagrangian without the Higgs mass term is conformally invariant at

the classical level, Bardeen argued that once the classical conformal invariance is imposed on

the SM, the quadratic divergences appearing in the quantum corrections to the Higgs mass

can be removed at the UV cutoff scale as a boundary condition of the underlying theory in

which the scale invariance would protect the Higgs mass from large radiative corrections,

and so physical observables will no longer depend on them. In this approach, since there

is no dimensionful parameter in the original Lagrangian, electroweak symmetry breaking

is dynamically induced via the Coleman-Weinberg mechanism [3] and physical scales are

generated by dimensional transmutation. However, within the SM particle content, the

Coleman-Weinberg mechanism does not work due to the large negative contribution from

the top-quark loop that keeps the effective potential from developing a minimum. Thus the

extension of the bosonic sector is necessary to realize Bardeen’s idea.

Following this line of thought, many models along this direction have been constructed

and various related issues have been studied [4–28]. A recent analysis in [29] has shown

that without changing the gauge sector of the SM, the minimal conformal extension of the

SM that enables radiative symmetry breaking and generates no Landau poles or vacuum

instabilities below the Planck scale in the renormalization-group evolution needs two real

scale gauge singlets to enlarge the scalar sector of the SM, and at least one of them should

develop a nonzero vacuum expectation value.



3

In this paper, we investigate a modified version of the conformal SM in which the en-

larged scalar sector consists of a SM Higgs doublet, a real gauge singlet and a real SU(2)L

triplet. In [29], it has already been pointed out that replacing a real gauge singlet by a

higher-dimensional real SU(2)L multiplet will cause possible Landau poles to appear at

higher scales, and hence we will not analyze the stability of the running coupling constants

any further. Instead, we restrict our attention on other theoretical and phenomenological

consequences of the model. In Sec. II, after introducing the model we want to investigate, we

work out the scalar mass spectrum after spontaneous symmetry breaking via the Coleman-

Weinberg mechanism and discuss several distinct features of the model. In particular, we

focus on the scenario where the Higgs boson discovered at the LHC is identified as the

pseudo-Nambu-Goldstone boson of broken scale invariance. We then proceed to study the

decay pattern of the new scalar degrees of freedom in the theory. In Sec. III, we consider the

situation where two hierarchically separated scales are generated in the broken-symmetry

phase and clarify that scale symmetry alone cannot protect the stability of the light scale.

This fact would further constrain the parameter space of the model. Our conclusions are

given in Sec. IV. In Appendix A, we analyze the case where all neutral components of the

scalars in the theory have nonzero vacuum expectation values.

II. THE MODEL

Assume that the gauge group of the SM remains unchanged. The model we will investi-

gate in this work is the extension of the SM in which the scalar sector is composed of the

usual complex Higgs doublet Φ = (φ+ φ0)T that transforms as (1, 2, 1
2
) under the gauge

group SU(3)C ×SU(2)L ×U(1)Y , a real triplet Σ transforming as (1, 3, 0) and a real singlet

χ transforming as (1, 1, 0). The real triplet Σ can be expressed as

Σ =
1

2





Σ0
√
2Σ+

√
2Σ− −Σ0



 . (1)

By imposing scale invariance1, the Lagrangian of the scalar sector is

Ls = (DµΦ)
† (DµΦ) + Tr (DµΣ)

† (DµΣ) +
1

2
∂µχ∂

µχ− V (Φ,Σ, χ), (2)

1 It is believed that a unitary Poincare-invariant interacting field theory that is scale-invariant is also

conformally invariant. [30–32]
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where the covariant derivative of Φ and that of Σ are given, respectively, by

DµΦ =
(

∂µ − ig2W
a
µT

a − i
g1

2
Xµ

)

Φ (3)

and

DµΣ = ∂µΣ− ig2[W
a
µT

a,Σ]. (4)

Here W a
µ , a = 1, 2, 3, and Xµ are the gauge bosons for the gauge groups SU(2)L and U(1)Y ,

respectively, g2 and g1 are the corresponding gauge coupling constants, and T a are the

generators of the gauge group SU(2)L. The scalar potential V (Φ,Σ, χ) reads

V (Φ,Σ, χ) = λ1(Φ
†Φ)2+λ2χ

4+λ3TrΣ
4+λ4(Φ

†Φ)χ2+λ5(Φ
†Φ)TrΣ2+λ6χ

2TrΣ2+gχΦ†ΣΦ,

(5)

where all coupling constants are dimensionless. Note that (TrΣ2)2 = 2TrΣ4 and Φ†Σ2Φ =

1

2
(Φ†Φ)TrΣ2. The potential (5) is thus the most general renormalizable one. In addition,

it is useful to know that without the last term, the above scalar potential possesses an

accidental global symmetry O(4)Φ × O(3)Σ. Hence a small value of g is natural.

In general, the electrically neutral component of each scalar can radiatively develop a

nonzero vacuum expectation value, breaking the conformal invariance and possibly part

of the electroweak gauge symmetry. Let us parametrize the neutral scalar fields as φ0 =

vφ +
1√
2
(h+ iδ), χ = vχ+ η and Σ0 = vΣ +σ, with vi being the vacuum expectation value of

the scalar i. In order to be consistent with phenomenology, we know that vφ 6= 0 is required.

Also, the possibility that neither χ nor Σ0 acquires a nonzero vacuum expectation value is

ruled out due to the appearing of Landau poles below the Planck scale [29]. Thus, we are

left with the following two cases2:

(i) vφvχ 6= 0 and vΣ = 0; (ii) vφvΣ 6= 0 and vχ = 0.

Before we proceed, let us note that either case (i) or case (ii) is possible only when g = 0 at

the symmetry breaking scale. This fact can be easily seen from the minimization conditions

2 As shown in Appendix A, the case in which vφvχvΣ 6= 0 leads to a tree-level correction to the ρ-parameter:

ρ = 1 + 2

(

vΣ

vφ

)2

. (6)

From the global fit to electroweak precision data, this case is not phenomenologically favorable compared

to the one with vΣ = 0.
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∂V
∂vΣ

= 0 and ∂V
∂vΣ

= 0, respectively, for each case. In the case where vΣ = 0, without

symmetry breaking at other scales, the O(3)Σ symmetry will keep the value of the coupling

constant g vanishing at all scales. Similarly, in the case where vχ = 0, the value of g remains

zero at all scales due to the symmetry under χ −→ −χ unless the field χ develops a nonzero

vacuum expectation value at some other scale.

For the case (ii), it is easy to show that there are four massless charged scalars. Two of

them are the would-be Nambu-Goldstone bosons. The other two massless charged scalars Σ±

are the Nambu-Goldstone bosons associated with the breaking of the globalO(3)Σ symmetry.

From the kinetic term Tr(DµΣ)
†(DµΣ), one can further show that the couplings of the scalars

Σ± to the gauge bosons W a
µ are not suppressed. Thus, apart from affecting the ρ-parameter,

this feature also makes the case (ii) phenomenologically unviable. In what follows, we will

concentrate on the case (i) and neglect the last term in (5).

A. mass spectrum

Particles acquire their masses through spontaneous symmetry breaking. Instead of cal-

culating explicitly the full one-loop effective potential and then minimizing it, another way

to obtain the nonzero vacuum expectation values is by using the elegant method developed

by Gildener and Weinberg [33]. In this approach, one first uses the minimization conditions

for the tree-level potential to find certain relations between coupling constants at the sym-

metry breaking scale, denoted by ΛGW . These relations specify a line of degenerate minima

passing through the origin of field space. Then the one-loop effective potential along this

flat direction will determine the real vacuum state. Adopting the notation of Ref.[29] by

writing

vφ = sinα〈φ〉, (7)

vχ = cosα〈φ〉, (8)

it is straightforward to show that a flat direction exists when α is defined by the following

relation at the scale ΛGW :

tan2 α = − λ4

2λ1

= −2λ2

λ4

. (9)

This relation tells us that λ1λ2 > 0 and λ1,2λ4 < 0. Here, we should note that the above

relation holds only at ΛGW . The dominant running behavior of the coupling constants λ1,
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λ2, and λ4 is governed by the one-loop β functions, given by

βλ1
=

dλ1(µ)

d lnµ
=

1

16π2

(

24λ2
1 + 2λ2

4 +
3

2
λ2
5 +

(

−3λ1(g
2
1 + 3g22) +

3

8
(g41 + 3g42 + 2g21g

2
2)

)

(10)

+6(2λ1 − y2t )y
2
t

)

, (11)

βλ2
=

dλ2(µ)

d lnµ
=

1

16π2

(

72λ2
2 + 2λ2

4 +
3

2
λ2
6

)

, (12)

βλ4
=

dλ4(µ)

d lnµ
=

1

16π2

(

8λ4(
3

2
λ1 + 3λ2 + λ4) + 3λ5λ6 −

3

2
λ4(g

2
1 + 3g22) + 6λ4y

2
t

)

, (13)

where yt is the top-quark Yukawa coupling constant.

The tree-level masses of the scalars can be obtained from the scalar potential (5) with

g = 0. There are eight scalar degrees of freedom in the model. Among them, the massless

fields δ, φ± are would-be Goldstone bosons that will be eaten, respectively, by the Z0 and

W± upon electroweak symmetry breaking. The squared masses of the scalars Σ± and Σ0

are degenerate, and given by

m2
Σ± = m2

Σ0 = λ5v
2
φ + λ6v

2
χ. (14)

The unbroken O(3)Σ symmetry insures that this degeneracy is preserved.

The tree-level mass terms for the CP -even neutral scalars (h, η) are given by

V (Φ,Σ, χ) ⊃ 1

2
(h η)M2





h

η



 , (15)

where the mass matrix M2 at the scale ΛGW takes the form

M2 =





4λ1v
2
φ 2

√
2λ4vφvχ

2
√
2λ4vφvχ −4λ4v

2
φ



 . (16)

The minimization conditions and the relation (9) have been used to obtain the above ex-

pression. One can see that the Higgs portal coupling constant λ4 causes the mixing between

h and η. The eigenvalues of this mass matrix are the tree-level squared masses of physical

scalars, denoted by h1 and h2. Define the mixing angle θ to be the angle that comes out in

the change of basis from (h, η) to the physical one (h1, h2):





h1

h2



 =





cos θ − sin θ

sin θ cos θ









h

η



 . (17)
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Without loss of generality, we choose | tan θ| < 1, so that h1 is mainly composed of the

doubletlike neutral scalar h, and hence is identified as the Higgs boson discovered at the

LHC. It is then easy to show that

tan θ =







√
2 tanα for θ > 0,

− 1√
2 tanα

for θ < 0.
(18)

Assume that vχ < vφ, so that θ < 0. With this choice, we find that the dynamically

generated masses along the flat direction are given by

m2
h1

= 0, (19)

m2
h2

= 4(λ1 − λ4)v
2
φ. (20)

Note that the physical scalar h1 is the pseudo-Nambu-Goldstone boson of broken scale

invariance, and is massless only at tree-level3. The radiative mass for h1 induced by the

one-loop effective potential, when identified with the Higgs boson mass measured at the

LHC, would provide a constraint on the parameters of the model4. Since the result is not

illuminating, we will not include it here.

Before we proceed, let us remark some features of the model. First note that the Yukawa

Lagrangian for the fermion sector is the same as the one in the SM. Thus, similar to the

gauge boson masses, the tree-level fermion masses depend only on the vacuum expectation

value vφ, whereas we have seen that the tree-level masses of the scalars might depend also

on vχ. Secondly, as shown clearly in (6), the ρ-parameter does not deviate from 1 at tree-

level for vΣ = 0. This is a phenomenologically encouraging fact. Thirdly, due to the exact

O(3)Σ symmetry, there are no light particles into which Σ0 and Σ± can decay. The stable

electrically neutral particle Σ0 thus makes an attrictive candidate for the dark matter [34].

3 Recently, a detailed phenomenological study of dilaton interactions is presented in [35], where current

data are used to analyze the signatures and the bounds on a possible dilaton state at the LHC. However,

we should note that different from the scenario in our work, the LHC Higgs boson is not identified as the

dilaton there.
4 The current experimental bound on the mixing angle θ is | tan θ| < 0.4 [36]. This tells us that if the

Higgs boson found at the LHC does not correspond to the pseudo-Nambu-Goldstone boson, we must find

vχ > vφ.
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B. h2 decay

We now investigate the decay modes of the neutral scalar h2. The decay pattern depends

on the values of parameters. First, note that for the scalars h1, h2, Σ
0, Σ± to be physical

particles, the relation (9) and the mass formulae (14) and (20) tell us that the following

inequalities should be satisfied at the symmetry-breaking scale:

λ1 > 0, λ2 > 0, λ4 < 0, λ5λ4 < 2λ1λ6. (21)

The last inequality implied that λ5 and λ6 cannot both be negative.

In general, the decay branching ratios for h2 are different from those of the SM Higgs boson

(h1). Exploring the decay phenomenology of h2, if existing, is crucial to the reconstruction

of the scalar potential, which in turn will give us further insights into the precise realization

of the Higgs mechanism.

When 1

2
mh1

< mh2
< 2mW , the h2 and h1 branching ratios will be identical, with h2

being a narrower resonance provided that the condition vχ < vφ is met. When 2mZ <

mh2
< 2mh1

, other than the same decay modes as those of the SM Higgs boson, decay

channels h2 → W+W−, ZZ are permitted, with the tree-level partial widths given by

Γh2→W+W− =
1

32π

m2
h2

v2φ
sin2 θ

(

1− 4
m2

W

m2
h2

+ 12
m4

W

m4
h2

)

(

m2
h2

− 4m2
W

)1/2
, (22)

and

Γh2→ZZ =
1

2
Γh2→W+W−(mW → mZ). (23)

We note in passing that in this model hW+W− and hZZ couplings are the only cubic

interactions between two gauge bosons and one scalar at tree-level. In the case where the

mass of h2 is above the h1h1 threshold, the Higgs splitting mode h2 → h1h1 is also allowed.

It is straightforward to work out from the cubic terms of the scalar potential (5), rewriting

in the basis of mass eigenstates (h1, h2), that

V ⊃ 3
√
2vφ sin θ

(

λ1 cos
2 θ − 4λ2 sin

2 θ − λ4 cos 2θ
)

h2h1h1, (24)

and hence the tree-level partial width of the Higgs splitting mode is given by

Γh2→h1h1
=

9

4π

v2φ

m2
h2

sin2 θ[λ1 cos
2 θ − 4λ2 sin

2 θ − λ4 cos 2θ]
2
(

m2
h2

− 4m2
h1

)1/2
. (25)
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Notice that the quantity in brackets vanishes at the symmetry-breaking scale ΛGW . This

can be easily checked by using (9). Its value at any other scale is given by the solutions to

the renormalization group equations (11), (12) and (13).

A modification of the above discussion is required when the following inequality among

the parameters is satisfied:

λ1(λ4 + 2λ6) < λ4(λ4 + λ5). (26)

In this circumstance, mh2
> 2mΣ is guaranteed. Thus, except decaying into the SM particles,

h2 can also decay into Σ particles. Again, from the scalar potential we easily find

V ⊃
√
2vφ sin θ

(

λ5

2
− λ6

)

h2(Σ
0Σ0 + 2Σ+Σ−), (27)

and it follows that

Γh2→Σ0Σ0 =
1

2
Γh2→Σ+Σ− =

1

4π

v2φ

m2
h2

sin2 θ

(

λ5

2
− λ6

)2
(

m2
h2

− 4m2
Σ

)1/2
. (28)

III. NATURALNESS

A theory possessing a hierarchical structure is usually unnatural. The primary motiva-

tion for exploring the extension of the SM with conformal invariance is to avoid the gauge

hierarchy problem without any unnatural fine-tuning. However, when the absolute value

of the mixing angle θ is very small, that is, when λ1 ≪ −λ4 ≪ λ2, the relation (9) indi-

cates that the model contains two hierarchically separated scales vχ ≪ vφ. In this case, the

fine-tuning issue reappears.

To be more explicit, let us assume that the coupling constants λ2, λ5, λ6 are all of order

1. Then from the tree-level mass formulae (14) and (20), we know that the masses of the

scalars Σ0 and Σ± are of order vφ, while the dynamically induced mass of the pseudo-Nambu-

Goldstone boson h1 is suppressed by a loop factor compared to the Σ mass. On the other

hand, using the relation (9), we find that the tree-level mass of the scalar h2 is of order vχ,

which is very light compared to the masses of other bosons in the model. This corresponds

to the situation in which the mass of φ2 is far below the WW threshold and is an extremely

narrow resonance5.

5 When the condition mh2
< 1

2
mh1

is satisfied, the model predicts a nonstandard decay mode h1 → h2h2
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Now, let us consider the quantum effects. It is not difficult to verify that due to the

coupling of the singlet scalars χ to the heavy scalars Σ, the radiative correction receiving

from the Σ loop to the mass-squared for h2, denoted by δm2
h2
, is6

δm2
h2

∼ λ6v
2
φ ≫ v2χ (30)

for λ6 ∼ O(1). Thus, the presence of the light physical scale is unnatural, unless the values

of λ6 and λ4 are of the same order, that is,

|λ6| ∼ |λ4| ≪ 1. (31)

Once the above restriction on λ6 is satisfied, the light physical mass will no longer be sensitive

to the heavy scale in the theory, and is technically natural. From this analysis we conclude

that naturalness imposes an additional constraint on the parameters of the the model.

Notice that in the limit of vanishing λ4 and λ6, the χ sector decouples from the rest of

the system. In this limit, the theory enjoys an extended Poincare symmetry, meaning that

performing independent Poincare transformations on the χ sector and the rest of the system

leaves each part invariant individually. As was emphasized in Ref.[37], scale invariance alone

does not necessarily secure the stability of the light scale and in this case it is the emerging

extended Poincare symmetry that protects the light scale from large radiative corrections

and guarantees its naturalness.

IV. CONCLUSION

The fact that no new physics has been observed so far at the LHC machine drives us

to sharpen our understanding of the stability of electroweak symmetry-breaking scale. In

this paper, we have investigated a specific extension of the conformal SM in which masses

of particles are generated dynamically through the dimensional transmutation, presumably

stable against the corrections. Keeping in mind that the model can remain stable under

for the observed Higgs boson, with the partial width being given by

Γh1→h2h2
≃

λ2
4v

2

φ

πm2

h1

(m2

h1
+ 16λ4v

2

φ)
1/2. (29)

6 When vχ ≪ vφ, the neutral scalar h2 is composed almost entirely of the singlet scalar η.
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renormalization group translations below the Planck scale and restricting our attention to

the scalar sector, we have discussed several characteristic features of the model. Also, we have

analyzed the decay pattern of new scalar resonances, which is controlled by the parameters

of the theory.

On the other hand, although the primary motivation for this approach is to avoid the

gauge hierarchy problem, we have demonstrated that when the mixing between the SM-like

and the singlet-like scalars in the model is negligible, the stability of the hierarchical structure

is actually protected not by scale symmetry, but by the enhanced spacetime symmetry in the

decoupling limit described in Sec. III. The data of precision Higgs boson measurements and

the outcome of experimental search for additional scalars in the near future will definitely

give further insights that will help us realize if this approach is accurate.
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Appendix A: The case vφvχvΣ 6= 0

Here we consider the case where every neutral component of the scalars in (5) develops a

nonzero vacuum expectation value from the spontaneous symmetry breaking. It is straight-

forward to obtain the tree-level gauge boson masses from the kinetic energy terms of Φ and

Σ. We find

m2
W = g22

(

1

2
v2φ + v2Σ

)

, m2
Z =

1

2
v2φ
(

g22 + g21
)

, (A1)

and hence the tree-level ρ-parameter is

ρ ≡ m2
W

m2
Z cos2 θW

= 1 + 2

(

vΣ

vφ

)2

, (A2)

where θW ≡ tan−1( g1
g2
) is the usual weak mixing angle. From the global fit [1], we obtain an

upper bound on the ratio of vacuum expectation values:

vΣ

vφ
< 0.02. (A3)
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The mass terms for the charged scalars (Σ±, φ±) come from the expansion of the poten-

tial (5) about the vacuum states. After some algebra, we obtain

V (Φ,Σ, χ) ⊃
(

Σ− φ−)





1

2
g
vχv2φ
vΣ

1√
2
gvχvφ

1√
2
gvχvφ gvχvΣ









Σ+

φ+



 , (A4)

where the minimization conditions for the potential has been used to obtain the above

expression. The eigenvalues of the above tree-level mass matrix are 0 and 1

2
ρg

vχv2φ
vΣ

, with ρ

given in (A2). Notice that when g = 0, all eigenstates are massless. In this case, besides

the two would-be Nambu-Goldstone bosons φ±, the other two massless eigenstates Σ± are

the Nambu-Goldstone bosons arising through the spontaneous breaking of the global O(3)Σ

symmetry.

Similarly, the mass terms for the CP -even neutral scalars in the basis (h, η, σ) are given

by

V (Φ,Σ, χ) ⊃ 1

2
(h η σ) M̃2











h

η

σ











, (A5)

where the symmetric mass matrix M̃2 takes the form

M̃2 =











4λ1v
2
φ −

√
2vχ
vφ
(4λ2v

2
χ + λ6v

2
Σ) −

√
2vΣ
vφ
(λ3

2
v2Σ + λ6v

2
χ)

−
√
2vχ
vφ
(4λ2v

2
χ + λ6v

2
Σ) 8λ2v

2
χ +

1

2
g
vΣv

2
φ

vχ
2λ6vχvΣ − g

2
v2φ

−
√
2vΣ
vφ
(λ3

2
v2Σ + λ6v

2
χ) 2λ6vχvΣ − g

2
v2φ λ3v

2
Σ + g

2

vχv2φ
vΣ











. (A6)

Again, we have used the minimization conditions on the potential to obtain the above result.

It is easy to check that the determinant of M̃2 vanishes, meaning that at least one of the

mass eigenvalues is zero. To be more explicit, the first row plus the second row multiplied by

vχ√
2vφ

plus the third row multiplied by vΣ√
2vφ

gives a row that is all zeros. This is exactly what

we would expect from the fact that a massless field arises through spontaneous symmetry

breaking of scale invariance. The other two eigenvalues of the mass matrix M̃2 are given by

m2
± =

1

2



TrM̃2 ±
(

(TrM̃2)2 − 4
3
∑

i=1

mii

)1/2


 , (A7)

where mii is the minor of the diagonal element (M̃2)ii.

We would like to emphasize that without O(3)Σ symmetry, the phenomenology of the

scalars in the model can be drastically different from the one in the case vΣ = 0. For
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example, in the situation when vΣ 6= 0, the masses of the charged and neutral components

of the triplet Σ are no longer degenerate. Also, all three neutral physical scalars can generally

decay into the light SM particles, and we no longer have a dark matter candidate in the

model.
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