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Electric charge in the stochastic electric field
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The influence of electric stochastic fields on the relativistic charged particles is investigated in the gauge

invariant path integral formalism. Using the cumulant expansion one finds the exponential relaxation of the

charge Green’s function both for spinless and Dirac charges.

1.

Stochastic electromagnetic fields and specifically

stochastic electric fields play important role in many ar-

eas of physics and technology, from extragalactic fields

and cosmology [1, 2], to molecular physics [3] medicine

(e.g. tomography), accelerator physics [4]; for a gen-

eral theory see [5]. Very intensive electric and magnetic

fields occur in the heavy ion collisions [6] with possible

stochastic component.

The treatment of the dynamics of the system in a

stochastic field can be done on the general grounds in

the formalism of the (world-line) path integrals [7, 8],

which is applicable to any system and in principle, to

any field, see [9] for a recent development. In particular

it was shown in [7, 10, 11], that stochastic colorelectric

fields give rise to the basic phenomenon of confinement.

In this derivation it was essential, that the correlation

length λ of stochasticity is much smaller, than other

ranges in the theory, e.g. the radius of orbital motion

etc. Another important feature was the Euclidean char-

acter of colorelectric fields, which ensures the real con-

fining potential.

In this paper we apply the path integral approach to

the relativistic field theory in the external real electric

fields, and discuss the simplest situation, when the cor-

relation length λ (correlation time τ) is much smaller

than other lengths (periods) in the problem, denoted

by Λ, i.e. the free path (time interval) of the charge be-

tween collisions, the range of constant potential (period

of orbital motion) on the atomic or molecular level.

In this case the effect of stochasticity enters as an

additional term in the total Hamiltonian; it is imagi-

nary for stochastic electric fields. In the opposite case,

λ > Λ, the stochastic fields are acting on the defined

motion of the particle, and the formalism becomes more

complicated.
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2.

We start with the Green’s function of one spinless

charged relativistic particle in the external electromag-

netic field, which will be treated as stochastic in the

cumulant formalism [12]. To this end we write down

the path integral form for the Green’s function, given

by the Fock–Feynman–Schwinger (FFS) path integral

[7, 8]

G(x, y) = (m2 −D2
µ)

−1
xy =

∫

∞

0

dsD4ze−KΦ(x, y), (1)

where

Φ(x, y) = exp(ie

∫ x

y

Aµ(z)dzµ), (2)

K =

∫ s

0

[m2 +
1

4

(

dzµ

dτ

)2

]dτ. (3)

Aµ(z) can include both stochastic and nonstochas-

tic (e.g. Coulombic) components, but we shall start for

simplicity with the stochastic part only. It is conve-

nient to work out the final expressions in the Euclidean

space-time, and then go over to the Minkovskian space-

time, however finally, all time fluctuations and the fields

should considered in the real (Minkovskian) time.

Choosing the virtual energy ω instead of the proper

time s as a variable, s = T
2ω , T = x4 − y4, one has

∫

∞

0

ds(D4z)Φ(x, y)e−K = T

∫

∞

0

dω

2ω2
(D3z)xye

−K(ω)Φ(x, y)

(4)

where

K(ω) =

∫ T

0

dtE

(

ω

2
+

m2

2ω
+

ω

2

(

dz

dtE

)2
)

(5)

To define stochastic fields in a gauge-invariant way

as averages of field strengths one considers any trajec-

tory among the integral paths and combine it with a

fixed shadow trajectory, which is needed to complete
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the closed contour C. This helps to express the vector

potential Aµ(z) in terms of the field strength, e.g. via

the representation [13]

Aµ(z) =

∫ z

0

Fνµ(u)α(u)duν , (6)

and Φ(x, y), which is now a part of the Wilson loop

C(x, y),including the charge trajectory in Φ(x, y) and

the shadow trajectory, can be rewritten in the form

W (x, y) = exp

(

∫

C(x,y)

ieAµ(z)dzµ

)

=

exp(ie

∫

dsµν(u)Fµν(u)), (7)

where dsµν is the surface element in the area inside

C(x, y), dsµ4 = duµdz4, and dz4 is the Euclidean time

element dz4 = idz0 ,

At this point it is important to define the stochas-

tic process [5, 12], namely, to take into account, that

Φ(x, y) → W (x, y) enters as an average value in the av-

eraging procedure, which is characterized by the gauge

invariant correlators of the field strengths, e.g.

e2〈Fµν(x)Fλσ(y)〉 =

1

2

(

∂

∂wµ
(wλD

(2)(w))δνσ +
∂

∂wν
(wσD

(2)(w)δµλ)

)

(8)

and similarly for the third and higher powers of Fµν .

Here wλ = xλ − yλ, and D(2) is a scalar function of its

arguments, D(2)(w) → D(2)(w2
i +w2

4) = D(2)(w2
i −w2

0).

One can now express the average value 〈W 〉 in terms

of cumulants of field correlators [9, 12], assuming that

〈Fµν〉 ≡ 0,

〈W (x, y)〉 =

exp
∑ (ie)n

n

∫

dsµ1ν1(1)...dsµnνn(n)〈〈Fµ1ν1(1)...Fµnνn(n)〉〉

(9)

where 〈〈F...F 〉〉 are cumulants, defined as follows

〈〈Fµν1 (1)Fµ2ν2(2)〉〉 ≡ 〈Fµ1ν1(1)Fµ2ν2(2)〉 (10)

〈〈Fµ1ν1(1)Fµ2ν2(2)Fµ3ν3(3)Fµ4ν4(4)〉〉 =

〈F (1)F (2)F (3)F (4)〉 − 〈F (1)F (2)〉〈F (3)F (4)〉−

〈F (1)F (3)〉〈F (2)F (4)〉 − 〈F (1)F (4)〉〈F (2)F (3)〉. (11)

see [12] for more details.

In principle, as it was shown in [9], one can ex-

press QED or QCD dynamics in terms of correlators

, e.g. for the Coulomb interaction (the field correlator

of the photon exchange) the corresponding correlator is

D(Coul)(w),

D(2)(Coul)(w) =
4α

π(w2
i + w2

4)
2
, (12)

and its contribution to 〈W 〉 is

〈W (x, y)〉 = exp

(

i

∫

e2dz0

r(z0)

)

(13)

where r(z0) is the distance between the point z(z0) on

the trajectory of the particle, and the point Z(z0) on

the shadow trajectory, which can refer to the opposite

charge companion of our particle. In the case when one

can neglect the Coulomb interaction of the particle with

all neighbors, the correlator (12) is absent, and we as-

sume, that all stochastic correlators are fast decreasing,

both in time and in space variables, so that the aver-

age 〈W 〉 factorizes into a product of averages separately

for a given charge trajectory and a shadow trajectory,

which will not be of interest to us.

As a result the average 〈W 〉 in (9) contains integra-

tions dsµiνi in the vicinity of the trajectory zµ(τ) →

zµ(t).

Keeping only the term n = 2 in (9), one obtains in

the exponent of (9)

ΓET4 =
e2

2

∫

dsµ1ν1(u)dsµ2ν2(v)〈Fµ1ν1(u)Fµ2ν2(v)〉 =

1

4

∫

dsµ1ν1(u)dsµ2ν2(v)

(

∂

∂wµ1

(wµ2
D(2)(w))δν1ν2+

∂

∂wν1

(wν2D
(2)(w))δµ1µ2

)

. (14)

For the stochastic electric fields Fµ14, Fµ24 =

iEµ1
, iEµ2

one obtains, assuming that the sur-

face in the loop C(x, y) lies in the x1, x4 plane,

0 ≤ u1, v1 ≤ R; 0 ≤ u4, v4 ≤ T4

ΓE =
1

2

∫ R

0

du1

∫ R

0

dv1

∫ T4

−T4

dw0

(

∂

∂w1
(w1D

(2))+

∂

∂w0
(w0D

(2))

)

. (15)

We assume, that D(2) falls off fast for large |w4| = |w0|,

so that the last factor in (15) vanishes, while the first

term yields for the charge trajectory (a similar answer

results for the background one)

ΓE =

∫ T0

−T0

dw0

∫ R

0

dx · xD(2)(x,w0). (16)
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Note, that D(2)(0, 0) ≥ 0 for real electric fields. As

a result the leading quadratic correlator leads to the

following result for 〈W 〉

〈W (x, y)〉 = exp(−ΓET0), T0 = x0 − y0 > 0. (17)

Note, that we have used in (15) both temporal and

spacial stochastic correlations, present in the correlator

D(2) in (16).

Inserting (17) into (4) in the place of

Φ(x, y), 〈Φ(x, y)〉 → 〈W (x, y)〉, one obtains

(T4 ≡ T = iT0)

〈G(x, y)〉A =

√

T4

8π

∫

∞

0

dω

ω3/2
(D3z)xye

−K(ω)+iΓET4 .

(18)

Doing the (D3z) integration as in [9], one introduces

the Hamiltonian H(ω)

〈G(x, y)〉A =

√

T4

8π

∫

dω

ω3/2
〈x|e−(H(ω)−iΓE)T4 |y〉, (19)

where H(ω) is,

H(ω) =
p2 +m2

2ω
+

ω

2
+ VZ(r) (20)

and we have included the potential VZ(r) in the case,

when our particle is inside an atom or a hadron.

Integrating over dω by the stationary point method

as in [9], one arrives at the final form,

〈GZ(x, y)〉 =
1

2m

∑

n

ϕ∗

n(x)ε
−iεnT0−ΓET0ϕn(y), (21)

where ϕn(x) is atomic bound wave function, while

εn = MZ +m

√

1−
(Zα)2

n2
. (22)

So far the spinless particles were considered. Now,

for particles with the spin 1/2 one should add in the

exponent of (7) the term (see [7, 8]),

ie

∫

σµνFµν
dt4

2ω
; σµνFµν =

(

σH iσE

iσE σH

)

. (23)

Keeping only Gaussian (quadratic) correlator of

E(x, t), and going to the Minkovskian time, one obtains

in the exponent of (14) for the spinor case

ΓE → ΓE +Γσ
E 1̂,Γ

σ
E =

1

8m2

∫

〈Ei(z0)Ei(z
′

0)〉d(z0− z′0).

(24)

Here 1̂ is the unit 4 × 4 Dirac matrix. Thus one can

see, that spin-dependent forces, bring about additional

relaxation of the Green’s function.

3.

We have shown above, that high-frequency stochas-

tic electric fields with the correlation length (time)

smaller than other periods of time in the particle

motion, create the relaxation of the particle signal.

The relaxation widths ΓE ,Γ
σ
E are proportional to the

quadratic cumulant of the field strength. One can check,

that higher correlators do not change qualitatively the

situation. It is clear, that the weakening of the signal

of the given total energy (momentum) is caused by the

redestribution of energies (momenta) in the combined

collective signal as can be seen by expanding fluctuat-

ing field Ei(x, t) in the Fourier series, and this should be

described in the framework of the general stochstic ap-

proach [2, 5]. One example where these processes may

be important, is the behavior of the stochastic quark-

gluon ensemble in the process of heavy ion collisions,

where occur electric and magnetic fields of high inten-

sity [6].

Consider now any macroscopic current J(x, t), which

is a statistical or coherent sum of elementary cur-

rents with the Green’s functions given by Eq.(1).It is

clear,that the correlator of the currents 〈J(x, t)J(x′, t′)〉

will be proportional to exp(−ΓE |t − t′|), implying

that the high-frequency stochastic background cre-

ates the universal relaxation of the signal,since ΓE in

(16) depends only on the stochastic source characteris-

tics,namely on its high-frequency tail. It is remarcable

from the general physical point that the same stochasic

process with Euclidean colorelectric fileds in QCD cre-

ates confinement and hence all our world,while in QED

an analogous stochastic process simply yields a univer-

sal damping of any signal.
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