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Abstract

We examine the current state-of-the-art in nonperturbative calculations done with Hamilto-
nians constructed in light-front quantization of various field theories. The language of light-front
quantization is introduced, and important (numerical) techniques, such as Pauli–Villars regulariza-
tion, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster
method, the renormalization group procedure for effective particles, sector-dependent renormaliza-
tion, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for
quenched scalar Yukawa theory, φ4 theory, ordinary Yukawa theory, supersymmetric Yang–Mills
theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an
introduction to these methods for anyone interested in doing such calculations and as a rallying
point for those who wish to solve quantum chromodynamics in terms of wave functions rather than
random samplings of Euclidean field configurations.

1 Introduction

After many years in gestation, light-front quantization [1, 2, 3, 4, 5] is now poised as a viable tool for
the nonperturbative solution of quantum chromodynamics (QCD) [6]. This will establish an approach
complementary to lattice gauge theory [7], one where wave functions return to their usual central
role. Observables can then be computed as expectation values. In addition, the method is formulated
in Minkowski space-time, rather than the Euclidean space-time of lattice theory, making time-like
quantities more readily accessible. In comparison with equal-time quantization, use of the light-front
affords boost-invariant wave functions without spurious vacuum contributions.

The purpose here is not to review the historical development of light-front methods; this is done
quite nicely elsewhere [2]. The purpose is instead to summarize the state of the art in nonperturbative
light-front calculations, in particular those aspects applicable to QCD, and thereby provide the impetus
and the foundation for the massive computational effort required to complete the task. The effort is
massive but then so was the development of lattice gauge theory.

Other methods are also candidates for calculations in QCD. Among them are Dyson–Schwinger
equations [8], which is also a Euclidean method; the truncated conformal space approach [9]; and the
transverse lattice [10], which combines a lattice in transverse coordinates with two-dimensional light-
front quantization for longitudinal space and time. These are quite adequately addressed elsewhere.
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Perturbative calculations can also benefit from a light-front approach; however, these are also outside
the scope of the present review. Instead, the recent review by Cruz-Santiago, Kotko, and Staśto [11]
provides an excellent introduction to light-front calculations of scattering amplitudes.

The focus here is on light-front Hamiltonian methods for nonperturbative bound-state problems.
The methods are, at least loosely, based on Fock-state expansions of the eigenstates. The Fock states
are eigenstates of momentum, particle number, and fundamental quantum numbers associated with any
symmetries or charges. The wave functions appear as the coefficients of the Fock states in the expansion;
they are functions of (relative) momenta1 and are indexed by the particle count and quantum numbers.
The Hamiltonian eigenvalue problem is then transformed into a coupled set of integral equations for
these wave functions, with the invariant mass of the eigenstate as the eigenvalue. As such, the approach
lends itself well to numerical solution by discretization [12, 2] and by basis-function expansions [13, 14].

The light-front Fock vacuum is an eigenstate of the full Hamiltonian, including interactions, provided
that zero modes are excluded [2]. The solution of the eigenvalue problem for the light-front Hamiltonian
can then focus on the massive states, unlike equal-time quantization where the vacuum state itself must
be computed as well. This is a significant advantage for light-front quantization. As is the added
characteristic that vacuum contributions are absent from the Fock-state expansions of the massive
states. The Fock-state wave functions can then be interpreted as defining the massive state itself.

However, this is a much weaker statement about the vacuum than to claim that the light-front
Fock vacuum is the physical vacuum. The latter is not empty, and any physics that, in equal-time
quantization flows from the structure of the physical vacuum is typically difficult to reproduce in light-
front quantization. One exception to this is a light-front derivation of the Casimir effect [15], but
quantities such as critical couplings and exponents in φ4 theory remain elusive.

To solve the infinite system of equations for the masses and wave functions requires some form
of truncation. This is usually done as a truncation in Fock space to maximum numbers of particle
types. However, such a truncation causes uncanceled divergences because cancellations between con-
tributions to a particular process frequently require contributions from (disallowed) intermediate states
with additional particles. Two solutions to this difficulty have been proposed. One is sector-dependent
renormalization [16, 17, 18, 19], where bare parameters of the Lagrangian are allowed to depend on the
Fock sector or sectors on which the particular interaction term acts. The uncanceled divergences are
absorbed into renormalization of the couplings. This can lead to inconsistencies in the interpretation
of the wave functions [20]. The other solution is the light-front coupled-cluster (LFCC) method [21],
in which the truncation is in the way that higher Fock-state wave functions are related to the lower
wave functions, with no Fock-space truncation. In either case, the bare parameters are fixed by fitting
observables.

For theories beyond two dimensions, the integral operators of the integral equations are associated
with divergences even without Fock-space truncation. These are the usual divergences of quantum field
theory, and they require regularization. Various schemes have been proposed, particularly momentum
cutoffs, in the transverse momenta for UV divergences and in the longitudinal momenta for IR diver-
gences. Modifications of this include use of a cutoff on the invariant mass of the Fock state and on
the change in the invariant mass across each interaction event. Such cutoffs violate Lorentz and gauge
invariance and require counterterms for the restoration of the symmetries.

An alternative that avoids breaking these symmetries, and which has proven quite useful, is Pauli–
Villars (PV) regularization [22]. In the present context of nonperturbative calculations, this is imple-
mented by inclusion of massive PV fields with negative metric in the Lagrangian and, consequently, the
Fock space. Modification of loops in individual diagrams, as is frequently done in perturbation theory,
is not an option here.2

1Unlike equal-time coordinates, light-front coordinates admit a separation of external and relative momenta.
2Similarly, dimensional regularization [23] is also not an option, because the integrals to be modified are only implicit

in the nonperturbative action of the Hamiltonian.
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The regulating PV fields are removed in the limit of infinite mass. This opens a third possibility for
coping with uncanceled divergences in Fock-space truncation. One can seek plateaus in the PV-mass
dependence and remain at finite values for one or more of the regulating masses [24].

The introduction of PV particles to the Lagrangian leads to a non-Hermitian Hamiltonian and a
loss of unitarity. These effects are caused by the negative metric assigned to some or all of the PV
fields, in order to arrange the minus signs needed to achieve the necessary subtractions. This introduces
unphysical features that are to be minimized by keeping the PV masses large, if not taken all the way
to infinity. In practice, matrix representations of the Hamiltonian in numerical calculations are then
also non-Hermitian,3 and subsequently there are unphysical, negatively normed eigenvectors, as well
as negatively normed contributions to the Fock-state expansions of physical eigenvectors. Numerical
results must be carefully vetted for spurious eigenvectors. Also, variational methods are of limited
utility, because the lowest states in the spectrum are frequently unphysical.

As compensation for the computational load and memory requirements associated with the addi-
tional Fock states containing PV particles, the PV interactions can be arranged to cancel the instanta-
neous fermion interactions [2]. These interactions are characteristic of light-front quantization, where
part of a Dirac fermion field is constrained rather than dynamical. When the constrained components
are eliminated from the Lagrangian, additional interactions are induced for the remaining dynamical
components. They are four-point interactions and as such they significantly reduce the sparseness of
any matrix representation of the Hamiltonian and greatly increase the time required for computation of
nonzero matrix elements. Given that sparseness is very important for numerical calculations, because
the matrices are much too large to be stored in full and must be stored in compressed form, a matrix
representation that includes the PV Fock states can be an advantage because it is more sparse even
though larger.

The physics of the instantaneous interactions is, however, not missing. When PV regularization is
properly introduced, these interactions are factorized into two three-point interactions that involve an
intermediate PV fermion. The precise form of the original four-point interactions is recovered in the
infinite PV-mass limit. This is critical because, as is known from perturbation theory, the instanta-
neous fermion interactions play important roles in the cancellation of singularities and restoration of
covariance [25].

Light-front Hamiltonian methods for gauge theories necessarily require a choice of gauge. The tradi-
tional choice is light-cone gauge [2], which has two advantages: a directly soluble constraint equation for
Dirac fermions and no need for unphysical degrees of freedom such as ghosts. Unfortunately, working
with a single fixed gauge makes impossible any check of gauge invariance and blocks the use of BRST
invariance [26] for any attempt at a proof of renormalizability. The broken symmetry also makes a
calculation vulnerable to dependence on its regularization parameters, and any results will be suspect.
Although not a serious problem for calculations in QED, any attempt at a non-Abelian theory, such as
QCD, is at a serious disadvantage without gauge invariance. Both lattice QCD and perturbative QCD
are done in ways that respect gauge invariance as much as possible, and light-front calculations must
do the same.

A major theme of this review is that the use of PV regularization allows the choice of a family
of covariant gauges. Gauge invariance within this family can be checked by varying the gauge fixing
parameter. This was first done for PV-regulated QED [27], and, although PV regularization was
traditionally considered inapplicable to non-Abelian theories, a new formulation has been constructed
for PV-regulated Yang–Mills theories to include a BRST invariance with ghost and anti-ghost fields [28].
As emphasized above, the presence of such symmetries provides an important check on any calculation;
conversely, the violation of such symmetries frequently leads to a strong dependence on the regularization

3As discussed in Sec. 3.3, a special form of the Lanczos diagonalization algorithm has been developed to handle such
matrices.

3



parameters. Hence, the preservation of symmetries is more important than the extra effort associated
with additional degrees of freedom. If instead, avoidance of ghosts was paramount over gauge invariance,
most covariant perturbative QCD calculations would be done in Coulomb gauge, which is not the case.

Regularization can also be provided by the numerical approximation to the integral equations for
the wave functions. For example, a basis-function expansion [14] for the wave functions is truncated,
to establish a finite matrix representation of the original integral equations. The truncation provides a
regularization which is removed in the limit of infinite basis size. This, however, entangles the renormal-
ization process with the numerics, making control of the numerical approximation more difficult, and
may lead to a net increase in difficulty, even though the numerical regularization itself may be simple.

The work on PV regularization has emphasized the philosophy that the regularization and numerics
should be kept separate. The numerical approximation is of a finite theory, with relatively clear goals
for numerical convergence. The renormalization of the bare parameters is investigated only in the
continuum limit.

The Fock space need not be constructed directly in terms of bare particles, but can instead be
made from effective particles, as is done specifically in the renormalization group procedure for effective
particles (RGPEP) [29]. More generically, one can carry out renormalization-group analyses [30, 31, 32]
to construct effective Hamiltonians that may be better suited for use in nonperturbative calculations.

The remainder of this review is broken into three main sections and a brief summary of questions to
pursue. Section 2 presents the basic ideas and notation of light-front quantization. These include the
coordinates; the free-field quantizations for scalars, fermions, and vector bosons; Fock-state expansions;
and the calculation of observables. This is followed by Sec. 3 on the various methods used for light-front
calculations, from the original discretized light-cone quantization (DLCQ) [12], including its supersym-
metric extension, SDLCQ [33], to function expansion methods [14, 34], the LFCC method [21], and the
effective particle approach [29]. The third main section, Sec. 4, is reserved for illustrative applications
to various field theories: quenched scalar Yukawa theory, φ4 theory in two dimensions, Yukawa theory,
supersymmetric Yang–Mills theory, QED, and QCD.

2 Light-Front Quantization

This section sets the basic notation and provides the foundation for the remaining sections. As such, it
does not contain anything new but does keep the review self-contained.

2.1 Light-Front Coordinates

Light-front coordinates [1] are defined by

x± ≡ x0 ± z, (1)

with x+ as the light-front time and with the transverse coordinates ~x⊥ ≡ (x, y) unchanged. Figure 1
depicts the relationship between x± and the equal-time coordinates z and t. In two dimensions, the origin
of the name light-cone coordinates, which was used more frequently in the past, is readily apparent. In
more than two dimensions, light fronts in the x+ direction are tangential to the light cone; hence the
name light-front coordinates, which is now the more common usage. Some work is done with definitions
of x± that differ by a factor of

√
2. This shifts factors of 2 and 1/2 in what follows.

Spatial four-vectors are written as xµ = (x+, x−, ~x⊥) and light-front three-vectors as x = (x−, ~x⊥).
The conjugate four-momentum is pµ = (p−, p+, ~p⊥), with p

− ≡ E − pz the light-front energy and p+ ≡
E+pz the longitudinal light-front momentum. The light-front three-momentum is denoted p = (p+, ~p⊥).
The dot product of a coordinate vector and a momentum vector is p · x = 1

2
(p−x+ + p+x−)− ~p⊥ · ~x⊥,

4
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Figure 1: Light-front coordinates. The light wave along the x− axis is everywhere at one light-front
time x+.

hence the designations of p− and p+ as light-front energy and momentum, conjugate to x+ and x−,
respectively. The four-vector dot product implies the following spacetime metric

gµν =




0 1/2 0 0
1/2 0 0 0
0 0 −1 0
0 0 0 −1


 . (2)

A dot product for light-front three-vectors is defined as p ·x = 1
2
p+x−−~p⊥ ·~x⊥. The mass-shell condition

p2 = m2 becomes p− = (m2 + p2⊥)/p
+.

Spatial derivatives are defined by

∂± ≡ ∂

∂x±
=

1

2

(
∂

∂t
± ∂

∂z

)
, ~∂⊥ ≡ ~∇⊥ =

(
∂

∂x
,
∂

∂y

)
. (3)

The factor of 1
2
comes from the inversion, t = 1

2
(x+ + x−), z = 1

2
(x+ − x−).

For a system of n particles, with pi the momentum of the ith particle and M the invariant mass, we
define the total momentum P with components P+ =

∑
i p

+
i , ~P⊥ =

∑
i ~pi⊥, and P

− = (M2 + P 2
⊥)/P

+.
Notice, however, that, except for free particles, P− is not equal to

∑
i p

−
i ; the momentum is not on the

light-front energy shell.
It is convenient to define relative momenta for the constituents, as a longitudinal momentum fraction

xi ≡ p+i /P
+ and a relative transverse momentum ~ki⊥ ≡ ~pi⊥ − xi ~P⊥. Clearly, the xi sum to unity and

the ~ki⊥ sum to zero. Also, if the total transverse momentum ~P⊥ is zero, the relative transverse momenta
are just the transverse momenta, making this a convenient and frequent choice of frame.

Any two frames of reference can be connected by a combination of longitudinal boosts along z and
light-front transverse boosts that combine a transverse boost and a rotation. A longitudinal boost in
equal-time coordinates is defined as

E ′ = γ(E − βpz), p′z = γ(pz − βE), ~p′⊥ = ~p⊥, (4)

with β the relative velocity and γ = 1/
√
1− β2. In terms of light-front coordinates, this boost is

p′− = E ′ − p′z =

√
1 + β

1− β
p−, p′+ = E ′ + p′z =

√
1− β

1 + β
p+, ~p′⊥ = ~p⊥, (5)

5



The light-front transverse boost is

p′− = p− + 2~p⊥ · ~β⊥ + β2p+, p′+ = p+, ~p′⊥ = ~p⊥ + p+~β⊥, (6)

where ~β⊥ = (βx, βy) is again the relative velocity. The relative momenta of constituents, xi and ~ki⊥
are invariant with respect to these boosts. Therefore, wave functions constructed in terms of these
variables will themselves be invariant. This separation of internal (relative) momenta and the external
momentum is responsible for much of the utility of light-front quantization.

One disadvantage of light-front coordinates is the loss of explicit rotational symmetry. Except
for rotations about the z axis, rotations are associated with dynamical operators that include the
interaction. This means that Fock states cannot be eigenstates of total angular momentum; the rotation
operator changes the particle count. For some discussion of the restoration of rotational invariance, see
[35].

2.2 Free Fields

2.2.1 scalar field

The Lagrangian for a free neutral scalar field φ of mass m is

L =
1

2
(∂µφ)

2 − 1

2
m2φ2 =

1

2
∂−φ∂+φ− 1

2
(~∂⊥φ)

2 − 1

2
m2φ2. (7)

From this Lagrangian, we obtain the field equation as the Klein–Gordon equation, ∂µ∂µφ+m
2φ = 0, and

the conjugate momentum π ≡ δL/δ(∂+φ) = 1
2
∂−φ. Therefore, the Hamiltonian density for translations

in light-front time x+ is

H ≡ π∂+φ−L =
1

2
(~∂⊥φ)

2 +
1

2
m2φ2. (8)

The light-front Hamiltonian P− is just the integral of this density (normal ordered) over the light-front
spatial volume at x+ = 0: P− =

∫
dx : H(x+ = 0) :, with dx = dx−d2x⊥.

The field equation is solved by the Fourier decomposition4

φ(x) =
∫

p+≥0

dp+√
4πp+

d2p⊥
2π

[
a(p)e−ip·x + a†(p)eip·x

]
, (9)

with p2 = m2. The range of integration is restricted to p+ ≥ 0 because p+ =
√
m2 + p2z + ~p2⊥ + pz is

always nonnegative. The p+ and ~p⊥ integration factors are written separately, to make easy identification
of the parts applicable to 1+1 and 3+1 dimensional theories. The creation and annihilation operators
satisfy commutation relations

[a(p), a(p′)] = 0, [a†(p), a†(p′)] = 0, [a(p), a†(p′)] = δ(p− p′) ≡ δ(p+ − p′+)δ(~p⊥ − ~p′⊥). (10)

With use of the identity
∫
dx− exp[i(k+ − q+)x−/2] = 4πδ(k+ − q+), the light-front Hamiltonian can be

reduced to

P− =
∫
dp
m2 + ~p2⊥
p+

a†(p)a(p). (11)

Clearly, this operator sums up the p− contributions identified by the number operator a†(p)a(p) and
therefore represents the light-front kinetic energy of the free field.

4A common alternative notation is to normalize φ with 16π3p+ in place of
√
16π3p+ and with a compensating nonzero

commutation relation of [a(p), a†(p′)] = 16π3p+δ(p− p′).
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The case of the charged scalar is a slight generalization of the neutral case. The Lagrangian is

L = ∂µφ
∗∂µφ−m2|φ|2. (12)

The field equation is again the Klein–Gordon equation. The Hamiltonian density is

H = |~∂⊥φ|2 +m2|φ|2. (13)

The field equation is solved by the Fourier decomposition

φ(x) =
∫
dp+d2p⊥√
16π3p+

[
c+(p)e

−ip·x + c†−(p)e
ip·x
]
. (14)

The nonzero commutation relations of the creation and annihilation operators are

[c±(p), c
†
±(p

′)] = δ(p− p′). (15)

The normal-ordered light-front Hamiltonian can be reduced to

P− =
∫
dp
m2 + ~p2⊥
p+

[
c†+(p)c+(p) + c†−(p)c−(p)

]
. (16)

2.2.2 fermion field

The Lagrangian for a free fermion field is

L = ψ(iγ · ∂ −m)ψ, (17)

where the γµ = (γ0, ~γ) = (β, β~α) are the Dirac matrices. One useful representation of these matrices is

β = γ0 =

(
I 0
0 −I

)
, ~α =

(
0 ~σ
~σ 0

)
, ~γ =

(
0 ~σ
−~σ 0

)
, (18)

with I the 2× 2 identity matrix and ~σ the Pauli matrices.
The field equation is the Dirac equation

(iγ · ∂ −m)ψ = 0 (19)

The light-front gamma matrices are γ± ≡ γ0 ± γ3 = (γ∓)†. They obey the usual anticommutation
relation {γµ, γν} = 2gµν , with gµν the light-front metric. The Dirac equation can then be written as

(i
1

2
γ0γ+∂+ + i

1

2
γ0γ−∂− + i~α⊥ · ~∂⊥ − βm)ψ = 0. (20)

With use of the projections Λ± ≡ 1
2
γ0γ±, which satisfy

Λ2
± = Λ±, Λ±Λ∓ = 0, Λ+ + Λ− = 1, (21)

the Dirac equation separates into a dynamical equation for ψ+ ≡ Λ+ψ

i∂+ψ+ − (−i~α⊥ · ~∂⊥ + βm)ψ− = 0 (22)

and a constraint equation for ψ− ≡ Λ−ψ

i∂−ψ− − (−i~α⊥ · ~∂⊥ + βm)ψ+ = 0. (23)
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Plane-wave solutions are readily found. Let ψ±(x) = w±(p)e
−ip·x, where Λ±w± = w±. Then the

dynamical and constraint equations become

p+w− − (~α⊥ · ~p⊥ + βm)w+ = 0, p−w+ − (~α⊥ · ~p⊥ + βm)w− = 0. (24)

The constraint equation is solved, to yield w− = 1
p+
(~α⊥ · ~p⊥+βm)w+. Substitution of this solution into

the dynamical equation, combined with reduction of Dirac matrix products, leaves

p−w+ − m2 + ~p2⊥
p+

w+ = 0 (25)

which is immediately satisfied by p on the mass shell. The only condition that remains to be satisfied
is Λ+w+ = w+. In other words, w+ must be an eigenvector of the projection with eigenvalue 1.

In the Dirac representation of the γ-matrices, the projection matrix has the form

Λ+ =
1

2




1 0 1 0
0 1 0 −1
1 0 1 0
0 −1 0 1


 . (26)

This matrix has two eigenvectors, both with eigenvalue +1,

χ+ 1

2
=

1√
2




1
0
1
0


 , χ− 1

2
=

1√
2




0
1
0
−1


 . (27)

These can be used as a spinor basis for the Fourier expansion of the field ψ+.
The solution of the Dirac equation for the dynamical field can then be written as

ψ+(x) =
∫ dp√

16π3

∑

s=±1/2

[
bs(p)χse

−ip·x + d†s(p)χ−se
ip·x
]
. (28)

The nonzero anticommutators are

{bs(p), b†s′(p′)} = δss′δ(p− p′), {ds(p), d†s′(p′)} = δss′δ(p− p′). (29)

The expansion for the constrained field ψ− is obtained by applying (~α⊥ · ~p⊥+ βm)/p+ to the expansion
for ψ+. The complete fermion field ψ = ψ+ + ψ− can then be simplified to

ψ(x) =
∫ dp√

16π3p+

∑

s=±1/2

[
bs(p)us(p)e

−ip·x + d†s(p)vs(p)e
ip·x
]
, (30)

with

us(p) ≡
1√
p+

[
p+ + ~α⊥ · ~p⊥ + βm

]
χs, vs(p) ≡

1√
p+

[
p+ + ~α⊥ · ~p⊥ − βm

]
χ−s. (31)

The index s is the light-front helicity, sometimes loosely called the spin (projection) and not to be
confused with the ordinary (Jacob–Wick) helicity, the latter being the projection onto the equal-time
three-momentum. The light-front helicity is left invariant by boosts that the leave the light front itself
invariant.

In terms of the dynamical field, the Lagrangian is

L = iψ†
+∂+ψ+ − ψ†

+(i~α⊥ · ~∂⊥ − βm)
1

i∂−
(i~α⊥ · ~∂⊥ − βm)ψ+, (32)
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where 1
i∂−

appears as part of a formal solution of the constraint equation that eliminates ψ−. The
Hamiltonian density is

H = ψ†
+(i~α⊥ · ~∂⊥ − βm)

1

i∂−
(i~α⊥ · ~∂⊥ − βm)ψ+, (33)

and the normal-ordered light-front Hamiltonian is

P− =
∫
dp
m2 + ~p2⊥
p+

∑

s

[
b†s(p)bs(p) + d†s(p)ds(p)

]
. (34)

2.2.3 vector field

The Lagrangian of a free massive vector field is

L = −1

4
F 2 +

1

2
µA2 − 1

2
ζ(∂ · A)2, (35)

where ζ is the gauge-fixing parameter and F µν = ∂µAν −∂νAµ is the field-strength tensor. The Lorentz
gauge condition ∂ · A = 0 is to be satisfied by a projection of states onto a physical subspace.

An alternative gauge choice [2] is light-cone gauge A+ = 0. The A− component is then a constrained

field and only the transverse components ~A⊥ are dynamical. Thus, the quantization has the advantage
of requiring only physical fields with positive metric. However, there is the disadvantage that there is
no gauge parameter with respect to which one might check gauge invariance (in the massless limit).

The Euler–Lagrange field equation for the Lorentz-gauge Lagrangian is

(✷+ µ2)Aµ − (1− ζ)∂µ(∂ · A) = 0. (36)

The solution as a Fourier expansion can be constructed by the light-front analog [27] of a method due
to Stueckelberg [36]. With the introduction of a four-momentum k̃ associated with a different mass
µ̃ ≡ µ/

√
ζ, defined by

k̃ = k, k̃− = (k2⊥ + µ̃2)/k+, (37)

the expansion can be written as

Aµ(x) =
∫

dk√
16π3k+

{
3∑

λ=1

e(λ)µ (k)
[
aλ(k)e

−ik·x + a†λ(k)e
ik·x
]
+ e(0)µ (k)

[
a0(k)e

−ik̃·x + a†0(k)e
ik̃·x
]}
, (38)

with polarization vectors defined by

e(1,2)(k) = (0, 2ê1,2 · ~k⊥/k+, ê1,2), e(3)(k) = ((k2⊥ − µ2)/k+, k+, ~k⊥)/µ, e(0)(k) = k̃/µ. (39)

The ê1,2 are transverse unit vectors. These polarizations satisfy k · e(λ) = 0 and e(λ) · e(λ′) = −δλλ′

for λ, λ′ = 1, 2, 3. The first term in Aµ satisfies both (✷ + µ2)Aµ = 0 and ∂ · A = 0 separately. The
λ = 0 term violates each, but the violations cancel in the sum, which is the field equation. The nonzero
commutators are

[aλ(k), a
†
λ′(k′)] = ǫλδλλ′δ(k − k′), (40)

with ǫλ = (−1, 1, 1, 1) the metric of each field component.
The light-front Hamiltonian density is

H =
1

2

3∑

µ=0

ǫµ
[
(∂⊥A

µ)2 + µ2(Aµ)2
]
+

1

2
(1− ζ)(∂ · A)(∂ · A− 2∂−A

− − 2∂⊥ · ~A⊥). (41)
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The first term is obviously the Feynman-gauge (ζ = 1) piece. The light-front Hamiltonian for the free
massive vector field is then found to be

P− =
∫
dk
∑

λ

ǫλ
k2⊥ + µ2

λ

k+
a†λ(k)aλ(k), (42)

with µλ = µ for λ = 1, 2, 3, but µ0 = µ̃. Thus, the Hamiltonian for the free vector field takes the usual
form except that the mass of the fourth polarization is different and gauge dependent and that the
metric of this polarization is opposite that of the other polarizations. In Feynman gauge, this reduces
to the usual Gupta–Bleuler quantization [37] with µ̃ = µ.

2.3 Wave Functions

The light-front Hamiltonian eigenvalue problem is

P−|ψ(P )〉 = M2 + P 2
⊥

P+
|ψ(P )〉, P|ψ(P )〉 = P |ψ(P )〉. (43)

The second equation is solved explicitly by expanding the eigenstate |ψ(P )〉 in Fock states with n

constituents with relative momenta xi and ~ki⊥

|xi, ~ki⊥, P , n〉 =
1√
n!

n∏

i=1

a†(xiP
+, ~ki⊥ + xi ~P⊥)|0〉. (44)

Here the construction is for scalar constituents of a single type, but the form is easily generalized.
The empty Fock vacuum |0〉 is an eigenstate of P−,5 even in the presence of interactions, with

the possible exception of contributions from modes of zero p+. This is because the longitudinal light-
front momentum p+ cannot be negative, and no interaction can create particles from the vacuum
without violating momentum conservation. For practical calculations, this is an advantage of light-
front quantization, in that massive eigenstates can be computed without first computing the vacuum
state, and any Fock-state expansion for a massive state does not have spurious vacuum contributions.
The latter aspect makes the Fock-state wave functions unambiguous as probability amplitudes for
constituent momentum distributions. This does leave open the question of the connection with the
equal-time vacuum and properties such as symmetry breaking that are usually associated with the
vacuum [38, 39]; however, these considerations are beyond the scope of this review.

The Fock-state expansion for the eigenstate is

|ψ(P )〉 =
∑

n

(P+)
n−1

2

∫ n∏

i

dxid
2ki⊥δ(1−

n∑

i

xi)δ(
n∑

i

~ki⊥)ψn(xi, ~ki⊥)|xi, ~ki⊥, P , n〉. (45)

The ψn are the Fock-state momentum-space wave functions for n constituents. Substitution into the first
equation of the eigenvalue problem yields a coupled set of integral equations for these wave functions,
with the total mass M as the eigenvalue. These equations and the wave functions are independent of
the total momentum P .

The normalization of the wave functions is determined by the requirement 〈ψ(P ′)|ψ(P )〉 = δ(P ′−P ).
Once the contractions of the creation and annihilation operators are carried out, this reduces to

1 =
∑

n

∫ n∏

i

dxid
2ki⊥δ(1−

n∑

i

xi)δ(
n∑

i

~ki⊥)|ψn(xi, ~ki⊥)|2. (46)

5For an in-depth discussion of the light-front vacuum, see [38].
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The individual terms in the sum over n provide the probabilities for each Fock sector. The wave
functions and their normalization are independent of P+ because the factor of (P+)

n−1

2 in (45) has been
arranged to cancel the factors of 1/P+ that come from the contractions

[a(x′i′P
′+, ~k′i′⊥ + x′i′

~P ′⊥), a
†(xiP

+, ~ki⊥ + xi ~P⊥)] = δ(x′i′P
′+ − xiP

+)δ( ~k′i′⊥ + x′i′
~P ′⊥ − ~ki⊥ − xi ~P⊥) (47)

when integrated with respect to xi.

For the free scalar, the equations decouple as simply

[
∑

i

m2 + k2i⊥
xi

]
ψn(xi, ~ki⊥) =M2ψn(xi, ~ki⊥). (48)

This happens because

∑

i

m2 + (~ki⊥ + xi ~P⊥)
2

xiP+
=

1

P+

∑

i



m
2 + k2i⊥ + 2xi~ki⊥ · ~P⊥ + x2iP

2
⊥

xi



 (49)

=
1

P+

[
∑

i

m2 + k2i⊥
xi

+ 2

(
∑

i

~ki⊥

)
· ~P⊥ +

(
∑

i

xi

)
P 2
⊥

]

=
1

P+

[
∑

i

m2 + k2i⊥
xi

+ P 2
⊥

]
.

The last step follows from the momentum-conservation constraints
∑

i
~ki⊥ = 0 and

∑
i xi = 1.

To make a connection with nonrelativistic quantum mechanics, consider the invariant mass
∑

i(m
2+

k2i⊥)/xi in the center of mass frame, where P+ =M and ~P⊥ = 0. In this frame, xi = (
√
m2 + ~k2i +kiz)/M

and

∑

i

m2 + k2i⊥
xi

= = M
∑

i

m2 + ~k2i − k2iz√
m2 + ~k2i + kiz

= mM
∑

i

1 + ~k2i /m
2 − k2iz/m

2

√
1 + ~k2i /m

2 − kiz/m

≃ mM



n−
∑

i

kiz
m

+
∑

i

~k2i
2m2



 =M



nm+
∑

i

~k2i
2m



 . (50)

Thus, the equation for the n-body wave function ψn is approximately

∑

i

~k2i
2m

ψn = (M − nm)ψn. (51)

2.4 Observables

As in ordinary quantum mechanics, physical observables can be computed from matrix elements of
appropriate operators with respect to chosen eigenstates. For example, the anomalous magnetic moment
of the electron can be computed from the spin-flip matrix element of the electromagnetic current [40].
This is most conveniently done in the Drell–Yan frame [41], where the photon transfers zero longitudinal
momentum. The electron itself is represented by a Fock-state expansion that includes dressing by
photons and electron-positron pairs, as obtained from solving the Hamiltonian eigenvalue problem in
QED. For the extension to generalized parton distributions [42], see the recent work of Chakrabarti et
al. [43].
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In general, the transition amplitude for absorption of a photon of momentum q by a dressed electron
is given by [44]6

16π3〈ψσ(P + q)|J+(0)|ψ±(P )〉 = ūσ(P + q)
[
F1(q

2) + i
σµνqν
2M

F2(q
2)
]
u±(p), (52)

where F1 and F2 are the usual Dirac and Pauli form factors and |ψσ(P )〉 is the dressed electron state

with light-front helicity σ. With ~P⊥ = 0, q+ = 0, and q− = 2q ·P/P+, the form factors can be obtained
from [40]

F1(q
2) =

16π3

2
〈ψσ(P + q)|J+(0)|ψσ(P )〉 (53)

and

−
(
qx − iqy
2M

)
F2(q

2) =
16π3

4σ
〈ψσ(P + q)|J+(0)|ψ−σ(P )〉. (54)

Note that the factor of 1/2 comes from the normalization of the helicity spinors: ūγ+u = 2p+. The plus
component is used because, unlike the other components, it is not renormalized when the Fock space
is truncated [44, 45]. The truncation destroys covariance, and the calculation of the other components
requires great care [46].

The normal-ordered current operator J+ is

J+(0) =: ψ(0)†γ0γ+ψ(0) := 2 : ψ(0)†Λ+ψ(0) := 2 : ψ+(0)
†ψ+(0) :, (55)

which, on use of the mode expansion for ψ+, simplifies to

J+(0) =
∫ dp′√

16π3

∑

s′=±1/2

∫ dp√
16π3

∑

s=±1/2

:
[
b†s′(p

′)χ†
s′ + ds′(p

′)χ†
−s

] [
bs(p)χs + d†s(p)χ−s

]
: (56)

=
∫ dpdp′

16π3

∑

s=±1/2

[
b†s(p

′)bs(p) + b†s(p
′)d†−s(p)− d†s(p)ds(p

′) + d−s(p
′)bs(p)

]
. (57)

The last step required use of the orthonormality of χs. With the current in this form, the utility of the
q+ = 0 frame becomes apparent; with no change in the longitudinal momentum, the pair creation and
annihilation terms do not contribute and the current is diagonal in particle number.7

Substitution of the final expression for the current and of the Fock-state expansion for the electron
eigenstate into the matrix elements for the form factors leads to [40]

F1(q
2) =

∑

n

∑

j

ej

∫
δ(1−

∑

i

xi)
∏

i

dxiδ(
∑

i

~ki⊥)
∏

i

d2ki⊥ψ
σ∗
n (xi, ~k

′
i⊥)ψ

σ
n(xi,

~ki⊥) (58)

and

−
(
qx − iqy
2M

)
F2(q

2) =
∑

n

∑

j

ej

∫
δ(1−

∑

i

xi)
∏

i

dxiδ(
∑

i

~ki⊥)
∏

i

d2ki⊥ψ
1/2∗
n (xi, ~k

′
i⊥)ψ

−1/2
n (xi, ~k

′
i⊥). (59)

Here ψσ
n is the n-body Fock-state wave function for the eigenstate with light-front helicity σ, ej is the

fractional charge of the struck constituent, and ~k′i⊥ is

~k′i⊥ =

{
~ki⊥ − xi~q⊥, i 6= j
~kj⊥ + (1− xj)~q⊥, i = j.

(60)

6Factors of 16π3 and P+ are different from the expressions in [44] and [40] because here states are normalized by
〈ψ(P ′)|ψ(P )〉 = δ(P ′ − P ) rather than 〈ψ(P ′)|ψ(P )〉 = 16π3P+δ(P ′ − P ).

7However, there can be zero-mode contributions [47].
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As can be easily seen, the normalization of the eigenstate is equivalent to F1(0) = 1.
The anomalous moment is ae = F2(0), which requires the taking of the limit to zero momentum

transfer. As shown in [40], this limit can be expressed as

ae = ∓M
∑

n

∑

j

ej

∫
δ(1−

∑

i

xi)δ(
∑

i

~ki⊥)

(
∏

i

dxid
2ki⊥

)
(61)

×ψ±∗
n (xi, ~ki⊥)




∑

i 6=j

xi

(
∂

∂kix
± i

∂

∂kiy

)

ψ∓
n (xi,

~ki⊥).

Thus, the anomalous moment can be computed given the solution to the coupled equations for the wave
functions.

The Dirac form factor, or more specifically its slope at zero momentum transfer, can be used to

measure the average radius of the eigenstate as R =
√
−6F ′

1(0). The slope is obtained from the

derivative of the expression for F1(q
2), which can be simplified to

F ′
1(0) =

∑

n

∑

j

ej
2

∫
δ(1−

∑

i

xi)
∏

i

dxiδ(
∑

i

~ki⊥)
∏

i

d2ki⊥
∑

i 6=j

|xi ~∇i⊥ψ
σ
n(xi,

~ki⊥)|2. (62)

The finite temperature properties of a theory can computed from the partition function Z = e−E/T .
One does not use the light-front analog e−P−/TLF because it does not correspond to a heat bath at
rest [48]. Other examples of where this choice matters can be found in the variational analysis of φ4

theory [49] and the light-front derivation of the Casimir effect [15, 50, 51]. This is not to say that
light-front quantization cannot be used; the physics should be the same in any coordinate system.

To compute the partition function, one needs the spectrum of the theory, which is what nonpertur-
bative light-front methods can yield. Each mass eigenstate contributes according to its ordinary energy
E. For bosonic states of mass Mn in one space dimension this yields a free-energy contribution of [52]

FB =
V T

π

∞∑

n=1

∫ ∞

Mn

dp0
p0√

p20 −M2
n

ln
(
1− e−p0/T

)
(63)

in a volume V . For fermions the contribution is

FF = −V T
π

∞∑

n=1

∫ ∞

Mn

dp0
p0√

p20 −M2
n

ln
(
1 + e−p0/T

)
. (64)

In supersymmetric theories, the bosonic and fermionic mass spectra are the same, and we can readily
combine these expressions to obtain the total free energy

F (T, V ) = −(K − 1)πV T 2 − 2V T

π

∞∑

n=1

∞∑

l=0

Mn

K1

(
(2l + 1)Mn

T

)

(2l + 1)
. (65)

Here the logarithms have been expanded, the integral over p0 performed, and the contribution of K− 1
zero-mass states separated explicitly. The sum over l is well approximated by the first few terms. The
sum over n can be represented by an integral over a density of states

∫
ρ(M)dM . The density can be

approximated by a continuous function that is fit to the numerical spectrum, and the integral
∫
dM

computed by standard numerical techniques.
Additional work on finite-temperature physics on the light front has been done by Beyer and Strauss.

They studied both two-dimensional QED [53] and the Nambu-Jona-Lasinio model [54].
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3 Methods of Calculation

3.1 Discretized Light-Cone Quantization

One very systematic approach to solving a quantum field theory nonperturbatively is that of discretized
light-cone quantization (DLCQ) [12, 55]. It has had particular utility in two dimensions. This includes
calculations of eigenstates in supersymmetric Yang–Mills theories [56] and φ4 theory [57, 58, 59, 60, 61],
as well as the early applications to Yukawa theory [12], φ3 and φ4 theories [62, 63, 64], QED [65], and
QCD [66].

Although DLCQ is in a sense a trapezoidal approximation to the coupled integral equations for
the wave functions, it is based on quantization in a discrete basis obtained by placing the system in a
light-front box

− L < x− < L , −L⊥ < x, y < L⊥. (66)

For bosons, periodic boundary conditions are used and for fermions, antiperiodic, leading to discrete
momenta

p+ → π

L
n , ~p⊥ → (

π

L⊥
nx,

π

L⊥
ny) , (67)

with n even for bosons and odd for fermions. Integrals are then replaced by discrete sums obtained as
trapezoidal approximations on the grid of momentum values. For a generic integral, this takes the form

∫
dp+

∫
d2p⊥f(p

+, ~p⊥) ≃
2π

L

(
π

L⊥

)2∑

n

N⊥∑

nx,ny=−N⊥

f(nπ/L, ~n⊥π/L⊥). (68)

The sum on n is restricted by the integer resolution [12]

K ≡ L

π
P+, (69)

with K even for a boson eigenstate and odd for a fermion. The index n can be no larger than this
because all longitudinal momenta are positive, and the maximum individual momentum can then be no
more than the total. The sums on nx and ny have been truncated at ±N⊥, with N⊥ typically determined
by a cutoff on the transverse momentum, either directly or as a cutoff on the invariant mass.

The longitudinal momentum fractions xi become ratios of integers ni/K. Because the ni are all
positive, DLCQ automatically limits the number of particles to be no more than ∼K/2. An explicit
truncation in particle number, the light-front equivalent of the Tamm–Dancoff approximation [67], can
also be made.

The limit L → ∞ can be exchanged for the limit K → ∞. This is because the combination of
momentum components that defines P− is simply proportional to L, so that the combination P+P−,
which has eigenvalues in the form M2 + P 2

⊥, is independent of L. As K is increased, the longitudinal
momentum is sampled at higher resolution.

The mode expansion for the quantum field is also approximated by a discrete sum. For example,
the neutral scalar field becomes

φ(x+ = 0) =
π

L⊥

∑

n

1√
8π3n

[
a(n)e−iπnx−/2L+iπ~n⊥·~x⊥/L⊥ + a†(n)eiπnx

−/2L−iπ~n⊥·~x⊥/L⊥

]
, (70)

with n = (n, nx, ny) and the creation operator for discrete momenta defined by

a†(n) =
π

L⊥

√
2π

L
a†(p). (71)
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It then satisfies a simple commutation relation
[
a(n), a†(n′)

]
= δn′,n ≡ δn′nδn′

xnx
δn′

yny
, (72)

which follows from the continuum commutation relation and the discrete delta-function representation

δ(p− p′) =
L

2π

(
L⊥
π

)2

δn′,n . (73)

The discrete approximation of the eigenstate, with P+ = Kπ/L, ~P⊥ = 0, and K ≡ (K,~0⊥), is then

|ψ(K)〉 =
∑

n

n∏

i

∑

ni

δK,
∑

i
ni
ψn(ni)|ni, n〉, (74)

where the discrete Fock states are

|ni, n〉 =
1√
n!

n∏

i=1

a†(ni)|0〉 (75)

and the discrete wave functions are related to the continuum wave functions by

ψn(ni) =

(
K

2

π2

L2
⊥

)(n−1)/2

ψn(ni/K,~n⊥π/L⊥). (76)

The discrete eigenstate is normalized as 〈ψ(K)|ψ(K)〉 = 1, and the wave functions as

1 =
∑

n

n∏

i

∑

ni

δK,
∑

i
ni
|ψn(ni)|2. (77)

Although the Fock basis is a natural way to write the eigenstate, a more convenient basis for a nu-
merical calculation is the number basis, which eliminates summations over states that differ only by
rearrangement of bosons of the same type.

There are zero modes, modes with zero longitudinal momentum. In DLCQ these are not dynamical
but instead constrained by the spatial average of the Euler–Lagrange field equation [55, 68, 69]. These
zero modes are usually either neglected or excluded by the choice of antiperiodic boundary conditions.
This neglect does, however, slow convergence of the numerical solution, because contributions of order
1/K have been dropped; these are to be compared with the nominal 1/K2 errors associated with
the trapezoidal approximation. For theories with symmetry breaking, the neglect can have serious
consequences for the understanding of vacuum effects [68, 69, 70, 71, 72]. When included, zero modes
generate effective interactions in the DLCQ Hamiltonian [73, 74, 75]. These effective interactions are
typically due to end-point corrections where, although the wave function goes to zero as xi goes to zero,
it does so slowly enough that the integral has a nonzero contribution which is missed by DLCQ’s neglect
of the xi = 0 points in its trapezoidal approximation. They can be computed by solving the constraint
equation, either nonperturbatively [71] or as an expansion in powers of 1/K [75]. There can also be
quantum corrections to the constraint equation, such as contributions from zero-mode loops [76, 77].

If the transverse cutoff, such as an invariant-mass cutoff, creates a domain of integration that
is not commensurate with the transverse DLCQ grid, there are errors generated if the basic DLCQ
approximation is used. There is a truncation error, where the edge of the domain is not properly
included, and there can be a loss of rotational symmetry. These can make the dependence on K
and N⊥ very erratic and delay numerical convergence. However, these difficulties can be overcome by
improvements on the trapezoidal approximation at the edge of the integration [78]. This idea also opens
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the possibility of using integration schemes that are more accurate than a trapezoidal rule for the entire
domain; Simpson’s rule can be particularly helpful.

In general, any quadrature scheme that uses equally spaced points can be introduced. These will
place unequal weighting factors inside the discrete sums. For the trapezoidal rule, the weighting factors
are all the same (except for the neglected end points) and did not need to be considered beyond an
overall factor of 1/K. The unequal weights will destroy the symmetry of the matrix representing the
action of P−; however, this symmetry can be restored by a simple rescaling. An eigenvalue problem of
the form

∑
j Aijwjuj = ξui can be rewritten as

∑

j

√
wiwjAij

√
wjuj = ξ

√
wiui, (78)

with
√
wiwjAij the new symmetric matrix.

The term ‘DLCQ’ is sometimes extended to include quadratures that use unequally spaced points to
approximate the coupled integral equations. This is at odds with the full intent of the DLCQ method,
which discretizes before quantization, a process that would not admit unequally spaced points without
spoiling momentum conservation for processes with more than two particles. Thus, the interaction terms
of the DLCQ Hamiltonian could not be resolved into products of discrete creation and annihilation
operators.

Nevertheless, quadratures with unequally spaced points can be a powerful tool [79, 80, 81, 82], even
though their utility is limited to two-body equations. This is because the integral equations truncated
at three-body contributions can usually be reduced to an effective equation in the two-body sector,
sometimes without approximation and certainly when interactions are ignored in the three-body sector.
The one-body and three-body wave functions are simply eliminated in favor of expressions relating
them to the two-body wave function, which are then substituted into the original two-body equation.
The use of unequally spaced quadratures for truncations beyond three constituents is best done by first
introducing basis-function expansions, as discussed below in Sec. 3.4.

Quadratures with unequally spaced points can be particularly important when PV regularization is
used, because the structure of the integrands in the effective equations can be such as to require very
high resolution near the endpoints, inversely proportional to the PV mass squared [81]. In DLCQ such
resolution would necessitate extremely large values of K, making the calculation intractable.

3.2 Supersymmetric Discretized Light-Cone Quantization

The supersymmetric form of DLCQ (SDLCQ) [33] is specifically designed to maintain supersymmetry
in the discrete approximation. Ordinary DLCQ violates supersymmetry by terms that do not survive
the continuum limit [83]. The SDLCQ construction discretizes the supercharge Q− and defines the
Hamiltonian P− by the superalgebra relation P− = {Q−, Q−}/2

√
2. The range of transverse momentum

is limited by a simple cutoff in the momentum value. The effects of zero modes cancel between bosonic
and fermionic contributions, which enter with opposite signs [84].

The work done with SDLCQ typically uses the slightly different definition of light-front coordinates,
with division by

√
2. The time coordinate is x+ = (t + z)/

√
2, and the space coordinate is x− ≡

(t − z)/
√
2. The conjugate variables are the light-front energy p− = (E − pz)/

√
2 and momentum

p+ ≡ (E + pz)/
√
2. The mass-shell condition p2 = m2 then yields p− =

m2+p2
⊥

2p+
; notice the factor of 2 in

the denominator.
For example, consider supersymmetric QCD (SQCD) with a Chern–Simons (CS) term in the large-

Nc approximation [85]. The action is

S =
∫
d3xTr

{
−1

4
FµνF

µν +Dµξ
†Dµξ + iΨ̄DµΓ

µΨ
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−g
[
Ψ̄Λξ + ξ†Λ̄Ψ

]
+
i

2
Λ̄ΓµDµΛ +

κ

2
ǫµνλ

[
Aµ∂νAλ +

2i

3
gAµAνAλ

]
+ κΛ̄Λ

}
. (79)

The adjoint fields are the gauge boson Aµ (gluons) and a Majorana fermion Λ (gluinos); the fundamental
fields are the Dirac fermion Ψ (quarks) and a complex scalar ξ (squarks). The CS coupling κ induces
a mass for the adjoint fields without breaking the supersymmetry; this inhibits formation of the long
strings characteristic of super Yang–Mills theory. The covariant derivatives are

DµΛ = ∂µΛ+ ig[Aµ,Λ] , Dµξ = ∂µξ + igAµξ, DµΨ = ∂µΨ+ igAµΨ. (80)

The action is invariant under the following supersymmetry transformations, which are parameterized
by a two-component Majorana fermion ε:

δAµ =
i

2
ε̄ΓµΛ, δΛ =

1

4
FµνΓ

µνε, δξ =
i

2
ε̄Ψ, δΨ = −1

2
ΓµεDµξ. (81)

The supercharge associated with the corresponding Noether current is

ε̄Q =
∫
dx−dx2

(
i

4
ε̄ΓαβΓ+tr (ΛFαβ) +

i

2
D−ξ

† ε̄Ψ+
i

2
ξ†ε̄Γ+νDνΨ

− i

2
Ψ̄εD+ξ +

i

2
DνΨ̄Γ+νεξ

)
. (82)

In order that the Majorana fermion Λ can be chosen real, the following representation is used for
the Dirac matrices in three dimensions:

γ0 = σ2, γ1 = iσ1, γ2 = iσ3, (83)

The fermionic spinor fields and the supercharge in terms of components are

Λ =
(
λ, λ̃

)T
, Ψ =

(
ψ, ψ̃

)T
, Q =

(
Q+, Q−

)T
. (84)

The superalgebra has the form

{Q+, Q+} = 2
√
2P+ , {Q−, Q−} = 2

√
2P− , {Q+, Q−} = −4P⊥ . (85)

The supercharge Q− is then discretized, and P− is constructed from the superalgebra relation.
The eigenstates of P− are of two types: meson-like states

f̄ †
i1(k1)a

†
i1i2(k2) . . . b

†
inin+1

(kn−1) . . . f
†
ip(kn)|0〉, (86)

where f † = creates a quark or squark, a† creates a gluon, and b† creates a gluino; and glueball states

Tr[a†i1i2(k1) . . . b
†
inin+1

(kn)]|0〉. (87)

Because of the supersymmetry, either could be a boson or a fermion. In the large-Nc limit, there is no
mixing between these states, and they are composed of single traces. This simplifies the calculation,
particularly with respect to the size of the matrices that need to be diagonalized. In general, states
could be formed from multiple traces, such as

Tr[a†i1i2(k1) . . . b
†
inin+1

(kn)]Tr[a
†
j1j2(p1) . . . b

†
jnjn+1

(pn)] · · · |0〉, (88)

which would lead to much larger SDLCQ matrix representations.
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In addition to calculations of spectra, the SDLCQ approach can be used to calculate matrix elements,
including correlators. Consider the (1+1)-dimensional stress-energy correlation function

F (x−, x+) ≡ 〈T++(x)T++(0)〉, (89)

where T µν is the stress-energy tensor. For the string theory corresponding to two-dimensional N=(8,8)
SYM theory, F can be calculated on the string-theory side in a weak-coupling super-gravity approxi-
mation. Its behavior for intermediate separations r ≡

√
2x+x− is [86, 87]

F (x−, x+) =
N

3

2
c

gYMr5
. (90)

In the SDLCQ approximation, this can be computed from SYM theory and compared.
With the total momentum P+ = P− fixed, the Fourier transform can be expressed in a spectral

decomposed form as [86]

F̃ (P−, x
+) =

1

2L
〈T++(P−, x

+)T++(−P−, 0)〉 (91)

=
∑

i

1

2L
〈0|T++(P−, 0)|i〉e−iP i

+
x+〈i|T++(−P−, 0)|0〉.

The position-space form is recovered by the inverse transform, with respect to P− = Kπ/L. The
continuation to Euclidean space is made by taking r to be real. This yields

F (x−, x+) =
∑

i

∣∣∣
L

π
〈0|T++(K)|i〉

∣∣∣
2
(
x+

x−

)2
M4

i K4(Mi

√
2x+x−)

8π2K3
. (92)

The stress-energy operator T++ is

T++(x−, x+) = Tr
[
(∂−X

I)2 +
1

2
(iuα∂−u

α − i(∂−u
α)uα)

]
. (93)

In terms of the discretized creation operators, this becomes

T++(−K)|0〉 = π

2L

K−1∑

k=1

[
−
√
k(K − k)a†Iij(K − k)a†Iji(k) +

(
K

2
− k

)
b†αij(K − k)b†αji(k)

]
|0〉, (94)

with sums over i and j implied. Thus (L/π)〈0|T++(K)|i〉 is independent of L. Also, only one symmetry
sector contributes.

The correlator behaves like 1/r4 at small r, as can be seen by taking the limit to obtain

(
x−

x+

)2

F (x−, x+) ∼ N2
c (2nb + nf )

4π2r4
(1− 1/K). (95)

To simplify the appearance of this behavior, F can be rescaled by defining

f ≡ 〈T++(x)T++(0)〉
(
x−

x+

)2
4π2r4

N2
c (2nb + nf)

. (96)

Then f is just (1− 1/K) for small r.
The function f can be computed numerically for small matrix representations by obtaining the

entire spectrum and for large representations by using Lanczos iterations. The Lanczos technique [88]
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(see Sec. 3.3) generates an approximate tridiagonal representation of the Hamiltonian which captures
the important contributions after only a few iterations and which is easily diagonalized to compute
the sum over eigenstates. For the correlator, this sum is weighted by the square of the projection
〈i|T++(−K)|0〉. The Lanczos diagonalization algorithm will naturally generate the states with nonzero
projection if T++(−K)|0〉 is used as the initial vector for the iterations.8

3.3 Lanczos Algorithm

The matrix approximations to the coupled integral equations for the wave functions are typically quite
large and sparse. Standard diagonalization algorithms do not apply, because they require storage of the
entire matrix, zeros and all, which is well beyond the capacity of current memory technology. However,
there exist alternative algorithms that rely upon only an ability to multiply the matrix with a vector,
something which can be done with relative ease for a matrix stored in a compressed form that strips
away the zeros [90]. These algorithms generate better and better approximations to eigenvalues and
eigenvectors by iteration, typically converging first to the largest and smallest eigenvalues. The best
known of these algorithms is the Lanczos algorithm [88], which actually predates the current standard
algorithms.9

The basic Lanczos algorithm for the matrix eigenvalue problem A~ψλ = λ~ψλ, with A Hermitian,
is as follows. Set ~u1 to some normalized initial guess and set b0 = 0. Then construct a sequence of
normalized vectors ~un according to the iteration

bn~un+1 = A~un − an~un − bn−1~un−1, (97)

with an = ~u∗n · A~un and bn chosen to normalize ~un+1. The ~un form an orthonormal basis with respect
to which A is tridiagonal

A→ T ≡




a1 b1 0 0 0 . . .
b1 a2 b2 0 0 . . .
0 b2 a3 b3 0 . . .
0 0 b3 . . . . .
0 0 0 . . . . .
. . . . . . . .




. (98)

The real symmetric matrix T is easily diagonalized by ordinary means. The eigenvalues λk of T
approximate the eigenvalues of A, and the eigenvectors ~ck of T can be used to construct approximate
eigenvectors of A

~ψλk
=
∑

n

ckn~un. (99)

The only use of A is in the multiplication of A times ~un. Generating a complete basis by iteration can
yield the exact answer; however, doing many fewer iterations, even 20, can be sufficient to capture the
extreme eigenvalues. If ~un+1 is zero, the process terminates naturally, with T an exact representation
of A in the subspace spanned by the eigenvectors with nonzero projection on ~u1.

A slightly altered form of the algorithm minimizes the storage requirements

~vn+1 = A~un − bn−1~un−1, an = ~v∗n+1 · ~un, ~v ′
n+1 = ~vn+1 − an~un, (100)

bn =
√
~v ′∗
n+1 · ~v ′

n+1, ~un+1 = ~v ′
n+1/bn. (101)

In this form, the vectors ~un−1, ~vn+1, ~v
′
n+1, and ~un+1 can all be stored in the same array. Therefore,

storage is required for only two vectors at a time, this sequence of overwritten vectors and ~un. To be

8Such an approach is related to applications of the Lanczos algorithm to computation of matrix elements of resol-
vents [89].

9The Lanczos algorithm was temporarily abandoned due to stability issues.
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able to construct the eigenvectors of A, the vectors ~un do need to be saved for all n, written temporarily
to disk and retrieved later, or the Lanczos algorithm can be run a second time, after the diagonalization
of T , to accumulate the desired eigenvectors as each ~un is regenerated. During the second pass of the
algorithm, the an and bn are already known and do not need to be recalculated.

As simple as this all seems, there are limitations. Because all of the vectors ~un are generated
by applying powers of A to ~u1, only those eigenvectors with nonzero projections on ~u1 should appear.
Depending on the application, this may actually be an advantage; however, for a generic diagonalization,
it may be necessary to generate the initial guess with random components and/or run the algorithm
more than once with different initial vectors.

Another limitation, which can be quite severe, is that round-off errors will eventually destroy the
orthogonality of the Lanczos vectors ~un. This will allow additional copies of the eigenvectors of A to
creep into the calculation. The eigenvalues of T then include multiple copies of eigenvalues of A, a false
degeneracy.

Various strategies have been developed to overcome this limitation. One is to re-orthogonalize the
vectors as they are generated; however, this consumes time and storage. Another is to simply accept
the copies; the eigenvalues are not wrong, but their degeneracy is unknown. This is not as bad as it
sounds, since a correct estimate of any degeneracy is difficult in any case, because any symmetry in the
initial vector will suppress degenerate eigenvectors with different symmetry, and multiple initial vectors
will be needed to determine the degeneracy. A third approach is to restart the algorithm after a few
iterations, using the best found estimate of the target eigenvector as the initial guess for the next set of
iterations. A fourth strategy is to continue the iterations without re-orthogonalization but then detect
and ignore the ‘ghost’ copies. The ghost copies can be detected by comparing the eigenvalues of the
matrix obtained from T by deleting the first row and first column [91]; any eigenvalue that appears in
both lists is spurious.

Convergence of the algorithm can be monitored by measuring directly the convergence of the desired
eigenvalue and by checking an estimate of the error in the eigenvalue, given by [91] |bnckn|, where n is
the number of Lanczos iterations and k is the index of the desired eigenvalue of T . If the error estimate
begins to grow, the iterations should be restarted from the last best approximation to the eigenvector.

When PV regularization is used, the matrix representation has an indefinite metric. This could be
handled with the biorthogonal version of the Lanczos algorithm [92]; however, a specialized form is
much more efficient. Let η represent the metric signature, so that numerical dot products are written as
~φ ′∗ · η~φ. The Hamiltonian matrix A is not Hermitian but is self-adjoint with respect to this metric [93]
η−1A†η = A. The Lanczos algorithm for the diagonalization of H then takes the form [94]

αj = νj~q
∗
j · ηH~qj, ~rj = H~qj − γj−1~qj−1 − αj~qj , βj = +

√
|~r ∗

j · η~rj |, (102)

~qj+1 = ~rj/βj, νj+1 = sign(~r ∗
j · η~rj), ν1 = sign(~q ∗

1 · η~q1), γj = νj+1νjβj , (103)

where ~q1 is chosen as a normalized initial guess and γ0 = 0. Just as for the ordinary Lanczos algorithm,
the original matrix A acquires a tridiagonal matrix representation T with respect to the basis formed
by the vectors ~qj :

A→ T ≡




α1 β1 0 0 0 . . .
γ1 α2 β2 0 0 . . .
0 γ2 α3 β3 0 . . .
0 0 γ3 . . . . .
0 0 0 . . . . .
. . . . . . . .




. (104)

By construction, the elements of T are real. The new matrix is not symmetric but is self-adjoint, with
respect to an induced metric ν = {ν1, ν2, . . .}. The eigenvalues of T approximate some of the eigenvalues
of A, even after only a few iterations. Approximate eigenvectors of A are constructed from the right
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eigenvectors ~ck of T as ~φk =
∑

j ckj~qj . The process will fail if βj is zero for nonzero ~rj, which can happen
in principle, given the indefinite metric, but does not seem to happen in practice [91].

A useful extension of the Lanczos algorithm is a method for the estimation of densities of states
without first computing the complete spectrum [52]. For two-dimensional theories, the density can be
written as the following trace over the evolution operator e−iP−x+

:

ρ(M2) =
1

4πP+

∫ ∞

−∞
eiM

2x+/2P+

Tre−iP−x+

dx+. (105)

The trace can be approximated by an average over a random sample of vectors [95]

ρ(M2) ≃ 1

S

S∑

s=1

ρs(M
2), (106)

with ρs a local density for a single vector |s〉, defined by

ρs(M
2) =

1

4πP+

∫ ∞

−∞
eiM

2x+/2P+〈s|e−iP−x+|s〉dx+. (107)

The sample vectors |s〉 can be chosen as random phase vectors [96]; the coefficient of each Fock state
in the basis is a random number of modulus one.

The matrix element 〈s|e−iP−x+|s〉 can be approximated by Lanczos iterations [97]. Let D be the
length of |s〉, and define |u1〉 = 1√

D
|s〉 as the initial Lanczos vector. The matrix element 〈u1|e−iP−x+|u1〉

can be approximated by the (1, 1) element of the exponentiation of the Lanczos tridiagonalization of
P−.

Let P−
s be the tridiagonal Lanczos matrix and ~c sj its eigenvectors, so that

P−
s ~c

s
j =

M2
sj

2P+
~c sj . (108)

The matrix can then be factorized as P−
s = UΛU−1, with Uij = (csj)i and Λij ≡ δij

M2
sj

2P+ . The (1, 1)
element is given by (

e−iP−
s x+

)

11
=
∑

j

|(csj)1|2e−iM2
sj
x+/2P+

. (109)

The local density can now be estimated by

ρs(M
2) ≃

∑

j

wsjδ(M
2 −M2

sj), (110)

where wsj ≡ D|(csj)1|2 is the weight of each Lanczos eigenvalue. Only the extreme Lanczos eigenvalues
are good approximations to eigenvalues of the original P−; however, the other Lanczos eigenvalues
provide a smeared representation of the full spectrum. For construction of the full density of states,
twenty sample local densities can be sufficient; however, the number of Lanczos iterations needs to be
on the order of 1000 per sample [52].

3.4 Function Expansions

3.4.1 generic approach

To avoid the restriction to equally spaced quadrature points, as imposed by momentum conservation,
without limiting a calculation to two-body equations, the Fock-state wave functions ψn(xi, ~ki⊥) can be

expanded in a set of basis functions f
(n)
k (xi, ~ki⊥)

ψn(xi, ~ki⊥) =
∑

k

c
(n)
k f

(n)
k (xi, ~ki⊥). (111)
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The overlap integrals

B
(n)
kl ≡

∫ ∏

i

dxid
2ki⊥δ(1−

∑

i

xi)δ(
∑

i

~ki⊥)f
(n)∗
k (xi, ~ki⊥)f

(n)
l (xi, ~ki⊥) (112)

and the matrix elements of the basis functions for the kinetic energy

T
(n)
kl ≡

∫ ∏

i

dxid
2ki⊥δ(1−

∑

i

xi)δ(
∑

i

~ki⊥)f
(n)∗
k (xi, ~ki⊥)

[
∑

i

m2 + k2i⊥
xi

]
f
(n)
l (xi, ~ki⊥) (113)

and the interaction10 between Fock sectors n and m

V
(n,m)
kl ≡

∫ ∏

i

dxid
2ki⊥δ(1−

∑

i

xi)δ(
∑

i

~ki⊥)f
(n)∗
k (xi, ~ki⊥)V (xi, ~ki⊥)f

(m)
l (xi, ~ki⊥), (114)

can then be computed in various ways, perhaps analytically or at least numerically with whatever
quadrature is appropriate. For an orthonormal basis, the overlap integrals form just the identity matrix,
i.e. B

(n)
kl = δkl; though preferred, this may not be the most convenient choice. A choice of basis where

the kinetic energy matrix T is diagonal may also be possible and certainly useful.
If the basis is introduced for the mode expansion of the quantum fields, this defines a new discretized

quantization that is discrete with respect to the sum over basis states. There will then be creation
and annihilation operators associated with each basis function. DLCQ is of this type, with periodic
plane waves as the basis set. The two approaches can be combined, with function expansions used for
transverse momenta and DLCQ for the longitudinal momenta. An example of this is discussed in the
next subsection.

In general, given a complete set of orthonormal functions fnlm(p), discrete creation operators can
be defined for neutral scalars by

a†nlm =
∫
dpfnlm(p)a

†(p). (115)

The original creation operator is then expanded as

a†(p) =
∑

nlm

f ∗
nlm(p)a

†
nlm. (116)

The nonzero commutator of the discrete operators is

[anlm, a
†
n′l′m′ ] =

∫
dpdp′f ∗

nlm(p)fn′l′m′(p′)[a(p), a†(p′)] =
∫
dpf ∗

nlm(p)fn′l′m′(p) = δnn′δll′δmm′ , (117)

which, given the assumed completeness of the basis, guarantees that

[a(p), a†(p′)] =
∑

nlm

f ∗
nlm(p

′)fnlm(p) = δ(p− p′). (118)

The field operator is then simply

φ(x) =
∑

nlm

[
f̃nlm(x)anlm + f̃ ∗

nlm(x)a
†
nlm

]
, (119)

with

f̃nlm(x) ≡
∫ dp√

16π3p+
e−ip·xfnlm(p). (120)

10Here the interaction matrix element is written in a generic form. In general, with the change in particle number, one
basis function will depend on fewer momenta that are sums of individual momenta.
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The extension to other types of fields is straightforward. The discrete expansions can then be used to
construct P− and Fock-state expansions in terms of the discrete operators, which will lead to a discrete
matrix representation for the eigenvalue problem. However, the longitudinal momentum P+ will no
longer be diagonal; therefore, such discretizations are most useful when other quantum numbers, such
as angular momentum, are of particular importance.

The key approximation made in the use of function expansions, besides truncations in Fock space, is
a truncation of the basis set. Convergence as the basis set is increased must then be studied. If the basis-
set truncation provides the regularization as well as the finiteness of the matrix representation, then the
convergence is more than just numerical convergence and must include some form of renormalization.

The matrix representation of the eigenvalue problem will take the form

∑

l

T
(n)
kl c

(n)
l +

∑

m,l

V
(n,m)
kl c

(m)
l =

M2 + P 2
⊥

P+

∑

l

B
(n)
kl c

n
l . (121)

Obviously, this is a generalized eigenvalue problem, written more compactly as H~c = λB~c, which can
be solved in various ways. Usually B is factorized in terms of lower and upper triangular matrices L
and U and the problem converted to an ordinary one, H ′~c ′ = λ~c ′, with B = LU , H ′ = L−1HU−1, and
~c = U−1~c ′. The upper and lower triangular matrices are easily inverted implicitly through the solution of
the associated linear equations U~x = ~y and L~x = ~y by backward or forward substitution. An alternative
factorization, which is more robust, follows from the singular value decomposition B = UDUT , where
the columns of the unitary matrix U are the eigenvectors of B and D is a diagonal matrix of the
eigenvalues of B. Now the definitions ofH ′ and ~c ′ areH ′ = D−1/2UTHUD−1/2 and ~c ′ = D1/2UT~c. There
is also a Lanczos algorithm for the generalized eigenvalue problem that avoids the factorization [98].

3.4.2 basis light-front quantization

The basis light-front quantization (BLFQ) approach [14, 99, 100, 101] is a hybrid method which uses
discretization in the longitudinal direction combined with products of single-particle basis functions
in the transverse. It is an adaptation of ab initio no-core methods developed for problems in nuclear
structure [102]. The use of single-particle functions sacrifices strict conservation of transverse momentum
for the flexibility of easily formed products that satisfy symmetries of the many-body wave functions.
The desired transverse momentum eigenstates are then identified by a Lagrangian multiplier method
that shifts eigenstates with excited center of mass motion to high energies, as is commonly done in
nuclear many-body calculations [102].

The transverse basis functions are two-dimensional oscillator functions, as given in [101]

Ψnm(~q⊥) =
1

b

√
4πn!

(n+ |m|)!e
imφρ|m|e−ρ2L|m|

n (ρ2), (122)

with ~q⊥ = ~p⊥/
√
x, ρ = |~q⊥|/b, φ = tan−1(qy/qx), and b =

√
P+Ω. Here xP+ and ~p⊥ are the longitudinal

and transverse momenta of the individual particle, the Lm
n are associated Laguerre polynomials, and

Ω is the oscillator angular frequency. The single particle energies are Enm = (2n + |m| + 1)Ω, with
n and m the radial and azimuthal quantum numbers. The basis is truncated by limiting the total of
single-particle energies with the constraint

∑

i

(2ni + |mi|+ 1) ≤ Nmax (123)

Convergence in the Nmax → ∞ limit is then to be studied.
The particular choice of coordinates is made in order that the wave functions factorize into center-

of-momentum and internal components [103]. The c.m. motion is removed from the lower part of the
spectrum by a Lagrange-multiplier technique [104].
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The basis states are combined to form an eigenstate of the total angular momentum projection MJ .
This is guaranteed by forming only products for which MJ =

∑
i(mi + si), where si is the fermion

spin projection. However, the product states are not eigenstates of the total angular momentum J ;
diagonalization of the Hamiltonian yields states with a range of total J ≥MJ .

The choice of oscillator basis functions is convenient for several reasons. It is the natural basis
for states trapped in cavities maintained by magnetic fields. The coordinate-space wave functions
can be obtained exactly by Fourier transform and take the same functional form. Matrix elements
of the Hamiltonian are well converged in the ultraviolet; thus the regularization is provided by the
basis functions and the truncation of the basis set, rather than by use of a PV regularization or a
cutoff. Perhaps most important, transverse oscillator functions have a close connection to the successful
AdS/QCD-based quark models [105].

Of course, the convergence of matrix elements does not guarantee finiteness in the continuum limit.
As the number of basis functions is taken to infinity, there can and will be divergences in general. For
example, in QED the wave functions of the dressed electron are known to fall off too slowly to be
normalizable [24], but in the BLFQ approach the approximate wave functions are normalizable; the
normalization becomes infinite only in the limit of infinite Nmax. This then requires some care in the
regularization of the original Hamiltonian and in the process of taking the continuum limit. For QCD,
where quarks are confined, this is less of a concern, and harmonic oscillator functions have a long history
of utility.

The BLFQ method has been extended to include time-dependent processes [106]. The light-front
time evolution of a state is determined by

i
∂

∂x+
|ψ(x+)〉 = 1

2
P−(x+)|ψ(x+)〉. (124)

The light-front Hamiltonian is split as P− = P−
0 + V , to isolate the interaction of interest V (perhaps

with an external field). In the interaction picture, the time evolution is then

i
∂

∂x+
|ψ(x+)〉I =

1

2
VI(x

+)|ψ(x+)〉I , (125)

with the formal solution

|ψ(x+)〉I = T+e
− i

2

∫ x+

0
dx′+VI (x

′+)|ψ(0)〉I . (126)

Here T+ is the light-front time-ordering operator. The initial state is expanded in terms of eigenstates
|n〉 of P−

0 with coefficients chosen to match the particular physical situation. The eigenstates are approx-
imated by time-independent BLFQ in a truncated Fock space, and the time evolution is approximated
by a sequence of discrete time steps x+i = iδx+ as

T+e
− i

2

∫ x+

0
dx′+VI(x

′+) ≃
n∏

i=1

[
1− i

2
VI(x

+
i )δx

+
]
. (127)

This approach has been applied to photon emission from an electron in a background laser field [106]
and should be useful for the analysis of particle production in the chromodynamic fields of high-energy
heavy-ion collisions.

3.4.3 symmetric multivariate polynomials

For two-dimensional theories, there exists a basis of symmetric multivariate polynomials [34] P
(n)
ki (xi).

The subscript k is the order, and i differentiates the various possibilities at that order. They are fully
symmetric with respect to interchange of the n momenta xi and yet respect the momentum conservation
constraint

∑
i xi = 1. For n = 2 constituents there is only one possibility at each order, but for n > 2
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there can be more than one. For example, for three constituents there are two sixth-order polynomials,
P

(3)
61 = (x1x2x3)

2 and P
(3)
62 = (x1x2 + x1x3 + x2x3)

3. If not for the momentum-conservation constraint,

there would of course be even more possibilities. For example, P
(3)
2 = x1x2 + x1x3 + x2x3 is equivalent

to x21 + x22 + x23, up to a constant, when x3 is replaced by 1− x1 − x2.
The linearly independent symmetric polynomials can be written as products of powers of simpler

polynomials. Define Cm(xi) as a multivariate polynomial of order m that is a sum of simple monomials∏n
j x

mj

j , where mj is 0 or 1,
∑n

j mj = m, and the sum over the monomials ranges over all possible
choices for the mj , making each Cm fully symmetric. As examples of the Cm, consider the general case

of n longitudinal momentum variables. Then C2 is just
∑n

j

(
xj
∑n

k>j xk
)
, Cn−1 is

∑n
j

∏
k 6=j xk, and Cn

is
∏n

k xk. In particular, for n=3, C2 = x1x2 + x1x3 + x2x3 and C3 = x1x2x3.
The full polynomial of order k is then built as

P
(n)
ki = C i2

2 C
i3
3 · · ·C in

n , (128)

with i = (i2, i3, . . . , in), as restricted by k =
∑

j jij . Thus, each way of decomposing k into a sum of
n integers ij > 1 provides a different polynomial of the order k. That this captures all such linearly
independent polynomials can be shown by a simple counting argument [34]. The absence of a first-
order polynomial is a direct consequence of momentum conservation, since the linear fully symmetric
multivariate polynomial is

∑
i xi = 1.

The polynomials in this form are not orthonormal. A Gram–Schmidt process or a factorization of the
overlap matrix will produce the orthonormal combinations [34]. However, if these combinations cannot
be computed in exact arithmetic, round-off errors can spoil the orthogonality and make computation
of matrix elements actually less reliable when large orders are reached.

For antisymmetric polynomials, potentially useful for fermion wave functions, there is no known
closed form. However, the constraints of momentum conservation and antisymmetry can be used to
determine a set of linear equations for the polynomial coefficients [34]. These would allow construction
of the polynomials order by order.

3.5 Regularization

3.5.1 general considerations

For all but two-dimensional theories, there are infinities in the integrals of the equations for the wave
functions. These need to be regulated in some controlled way, such that when the regulators are
removed, the theory is predictive. In other words, the regularization must provide for renormalizability.
For nonperturbative calculations, renormalization is done by fixing bare parameters with fits to data.
For model theories, the ‘data’ would be values of observables that would have a physical interpretation
for a real-world theory. Such an observable might be a mass, a mass ratio, an average radius, or a
magnetic moment.

Obviously, the dependence on the regulator needs to disappear, and regularizations with a strong
dependence require some form of adjustment, which is typically the addition of counterterms to the
Hamiltonian. These terms are removed as the regulator is removed but cancel the worst of the regulator
dependence before it is removed. As is known from perturbation theory, a regularization that breaks
some symmetry of the theory is likely to induce a strong dependence on the regulator, and counterterms
should be chosen to restore the symmetry. A nonperturbative example of this can be found in the
restoration of chiral symmetry in QED [45, 82].

A distinction needs to be made between cutoffs that are made for a numerical calculation, to make the
calculation finite in size, and cutoffs that are made for a regularization. If the numerical approximation
is made to a finite theory, one that is already regulated, then the removal of any (additional) cutoff
made for numerical reasons is strictly a matter for numerical convergence; any renormalization is done
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after the numerical cutoff is removed and numerical convergence has been achieved. If, however, the
numerical cutoff is also the regulator, then investigation of numerical convergence must be combined
with the renormalization. Given the additional complications, a preferred approach is to apply numerical
approximations to an already regulated theory.

The simplest ultra-violet (UV) regulator is a transverse momentum cutoff. However, this breaks
Lorentz invariance as well as gauge invariance. A cutoff on the invariant mass of the Fock state,∑

i(m
2
i + k2i⊥)/xi, is better, but still not ideal. Of course, dimensional regularization [23] has been a

well-received method, particularly because Lorentz and gauge symmetries are preserved, but it is tied
to modifications of integrals for which the integrand is known (as they arise in perturbation theory);
here the integrands involve unknown wave functions and unknown pole structures.

A much more workable method, which also preserves Lorentz and gauge symmetries, is Pauli–Villars
(PV) regularization [22], though it is not used in the way it frequently is in perturbation theory. Instead
of modifying loops in the individual integrals associated with each Feynman diagram, the heavy PV
fields are added to the Lagrangian. This is equivalent to the modification of propagators in individual
integrals, because the additional terms in the Lagrangian generate diagrams where each field is replaced
by its PV partners.11 All that is needed is for at least some of the PV partners to have a negative
metric, so that the contraction associated with a line in a diagram will have the opposite sign and cause
a subtraction between diagrams. The required number of PV fields and their metrics are determined
by the number of subtractions needed and any need for symmetry restoration [45].12 Details of PV
regularization for Abelian and non-Abelian gauge theories are given in the next two subsections.

3.5.2 quantum electrodynamics

To see how this form of PV regularization works, consider QED. The basic Lagrangian is

L = −1

4
F µνFµνψ̄(iγ

µ∂µ −m)ψ − eψ̄γµψAµ. (129)

The nondynamical part of the fermion field must satisfy the constraint equation

i∂−ψ− + eA−ψ− = (iγ0γ⊥) [∂⊥ψ+ − ieA⊥ψ+]−mγ0ψ+. (130)

Unlike the free case, ψ− is coupled to the photon field. The coupling to A⊥ induces instantaneous-
fermion interactions in the light-front Hamiltonian [2], where a fermion is coupled to two photons with
an intermediate ‘instantaneous’ fermion in between the photon couplings. The presence of A− = A+

makes explicit inversion impossible; hence, the nominal choice of light-cone gauge, where A− = 0. In
light-cone gauge, the A− component is also nondynamical, and the solution of its constraint equation
generates instantaneous-photon interactions where fermions exchange an ‘instantaneous’ photon [2].

A PV-regulated QED Lagrangian takes the form

L =
∑

k

rk

[
−1

4
F µν
k Fk,µν +

1

2
µ2
kA

µ
kAkµ −

1

2
ζ (∂µAkµ)

2
]

(131)

+
∑

i

siψ̄i(iγ
µ∂µ −mi)ψi − e

∑

ijk

βiψ̄iγ
µβjψjξkAkµ,

with Fk,µν = ∂µAkν − ∂νAkµ. The PV indices i, j, and k each take the value of zero for a physical field.
The metric signatures of the PV photons and PV fermions are rk and si, which are equal to ±1. The

11This is equivalent to higher covariant derivatives in the kinetic energy [107].
12Supersymmetry provides this kind of regularization quite naturally and has been exploited in SDLCQ calculations [33];

however, the superpartners are of the same mass and cannot correspond to known physics until the supersymmetry is
broken, a nontrivial task.
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photon mass is µk, with µ0 as an infrared regulator to be taken to zero. A gauge-fixing term has been
included, with gauge parameter ζ . The interaction term involves the following combinations:

ψ =
∑

i

βiψi, Aµ =
∑

k

ξkAkµ, (132)

which include the coupling coefficients βi and ξk, to be chosen to enforce the necessary subtractions.
To keep e as the charge of the physical fermion, the physical coefficients and metric signatures are set
to unity, β0 = 1, ξ0 = 1, s0 = 1, r0 = 1.

The meaning of the metric is in the (anti)commutation relations for the creation and annihilation
operators for the photon and fermion fields. The nonzero relations become

[akλ(k), a
†
k′λ′(k

′)] = rkδkk′ǫ
λδλλ′δ(k − k′) (133)

and
{bis(k), b†i′s′(k′)} = siδii′δss′δ(k − k′), {dis(k), d†i′s′(k′)} = siδii′δss′δ(k − k′). (134)

The factors of rk and si carry the metric.
The interactions between the field combinations ψ and Aµ, defined in (132), are what provide the

PV subtractions that regulate any loop. For a loop with one photon contraction and one fermion
contraction, the interaction vertex implies that the contraction of the kth photon field yields the metric
signature rk and contraction of the ith fermion field, si. The coupling coefficients from the vertices are
ξk and βi. The loop contribution then contains the factors rkξ

2
k and siβ

2
i . By imposing the constraints

∑

k

rkξ
2
k = 0,

∑

i

siβ
2
i = 0, (135)

the loop contribution, when summed over k and i, will contain two subtractions. This extends to
more complicated loops with overlapping divergences, because each internal line is associated with a
subtraction.

These constraints make the combined fields Aµ and ψ null. The creation operators for the combined

fields are a†λ(k) ≡ ∑
k ξkakλ(k), b

†
s(p) ≡ ∑

i βibis(p), and d†s(p) ≡
∑

i βidis(p). They commute with the
annihilation operators, hence the designation as null. More generally, if there are two types of vertices
of the same general form but different coupling coefficients ξk, ξ

′
k, βi, and β

′
i, the loop contribution then

contains the factors rkξkξ
′
k and siβiβ

′
i, and the two subtractions are attained if the field combinations

in the two vertices are mutually null, in the sense that

∑

k

rkξ
′
kξk = 0,

∑

i

siβ
′
iβi = 0. (136)

If there is more than one PV field, the associated coupling coefficient can be chosen by some addi-
tional constraint, perhaps to restore a symmetry. For example, restoration of chiral symmetry in the
limit of zero fermion mass requires a second PV photon [45] and restoration of a zero mass for the
photon eigenstate requires a second PV fermion [108].

Given the interaction between the fermion and vector fields, the constraint equation for the nondy-
namical components of the fermion field is coupled to the vector field. The constraint is

isi∂−ψi− + eA−βi
∑

j

βjψj− = (iγ0γ⊥)



si∂⊥ψi+ − ieA⊥βi
∑

j

βjψj+



− simiγ
0ψi+. (137)

As discussed above, light-cone gauge (A+ = A− = 0) is ordinarily chosen, to make the constraint
explicitly invertible. However, the interaction Lagrangian has been arranged in just such a way that the

27



A-dependent terms can be canceled between the constraints for individual fields [24]. Multiplication by
(−1)i

√
βi and a sum over i yields

i∂−ψ− = (iγ0γ⊥)∂⊥ψ+ − γ0
∑

i

βimiψi+, (138)

as the constraint for the null fermion field that appears in the interaction Lagrangian. This constraint
is the same as the free-fermion constraint, in any gauge, and the interaction Hamiltonian can be con-
structed from the free-field solution.13

Without this cancellation of A-dependent terms, the constraint would generate the four-point inter-
actions between fermion and photon fields, the instantaneous-fermion interactions [2] discussed above.
The addition of the PV-fermion fields has, in effect, factorized these interactions into type-changing
photon emission and absorption three-point vertices. The instantaneous interactions are recovered in
the limit of infinite PV fermion masses, because in the contraction of two three-point vertices the
light-front energy denominator with an intermediate PV fermion cancels the PV-mass factors in the
emission and absorption vertices and the contraction survives the infinite-PV-mass limit. The absence
of instantaneous fermion and instantaneous photon contributions is important for numerical calcula-
tions, where such four-point interactions can greatly increase the computational load and matrix storage
requirements; this is partial compensation for the increase in basis size brought by the PV fields.

The PV-regulated light-front QED Hamiltonian is then [24, 108]

P− =
∑

i,s

si

∫
dp
m2

i + p2⊥
p+

b†i,s(p)bi,s(p) +
∑

i,s

si

∫
dp
m2

i + p2⊥
p+

d†i,s(p)di,s(p) (139)

+
∑

k,µ

rk

∫
dk
µ2
l + k2⊥
k+

ǫµa†kµ(k)akµ(k)

+
∑

i,j,k,s,µ

βiβjξk

∫
dpdq

{
b†i,s(p)

[
bj,s(q)V

µ
ij,2s(p, q)

+ bj,−s(q)U
µ
ij,−2s(p, q)

]
a†kµ(q − p)

+b†i,s(p)
[
d†j,s(q)V̄

µ
ij,2s(p, q) + d†j,−s(q)Ū

µ
ij,−2s(p, q)

]
akµ(q + p)

− d†i,s(p)
[
dj,s(q)Ṽ

µ
ij,2s(p, q) + dj,−s(q)Ũ

µ
ij,−2s(p, q)

]
a†kµ(q − p) +H.c.

}
.

The vertex functions V and U are those given in [24]:

V 0
ij±(p, q) =

e0√
16π3

~p⊥ · ~q⊥ ± i~p⊥ × ~q⊥ +mimj + p+q+

p+q+
√
q+ − p+

, (140)

V 3
ij±(p, q) =

−e0√
16π3

~p⊥ · ~q⊥ ± i~p⊥ × ~q⊥ +mimj − p+q+

p+q+
√
q+ − p+

,

V 1
ij±(p, q) =

e0√
16π3

p+(q1 ± iq2) + q+(p1 ∓ ip2)

p+q+
√
q+ − p+

,

V 2
ij±(p, q) =

e0√
16π3

p+(q2 ∓ iq1) + q+(p2 ± ip1)

p+q+
√
q+ − p+

,

U0
ij±(p, q) =

∓e0√
16π3

mj(p
1 ± ip2)−mi(q

1 ± iq2)

p+q+
√
q+ − p+

,

U3
ij±(p, q) =

±e0√
16π3

mj(p
1 ± ip2)−mi(q

1 ± iq2)

p+q+
√
q+ − p+

,

13The analogous cancellation occurs in Yukawa theory [109], where the individual fermion constraint equations contain
couplings to the scalar field that cancel for the null fermion field.
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U1
ij±(p, q) =

±e0√
16π3

miq
+ −mjp

+

p+q+
√
q+ − p+

,

U2
ij±(p, q) =

ie0√
16π3

miq
+ −mjp

+

p+q+
√
q+ − p+

.

The other four vertex functions are related to these by [108]

V̄ µ
ij,2s(p, q) =

√
q+ − p+

q+ + p+
V µ
ij,2s(p, q)

∣∣∣
mj→−mj

, (141)

Ūµ
ij,2s(p, q) =

√
q+ − p+

q+ + p+
Uµ
ij,2s(p, q)

∣∣∣
mj→−mj

,

Ṽ µ
ij,2s(p, q) =

√
p+ − q+

q+ − p+
V µ
ij,2s(q, p)

∣∣∣
mj→−mj ,mi→−mi

, (142)

Ũµ
ij,2s(p, q) =

√
p+ − q+

q+ − p+
Uµ
ij,2s(q, p)

∣∣∣
mj→−mj ,mi→−mi

.

The factors of rk and si guarantee that the kinetic-energy terms have the correct signatures. For
example, when the number operator b†is(p)bis(p) acts on a Fock state and contracts with b†js′(p

′), the

result is sjb
†
js′(p

′)δijδ(p − p′); the leading factor of sj is canceled by the si in the kinetic energy term,
yielding a positive kinetic-energy contribution for the PV constituent, independent of whether si is
positive or negative.

3.5.3 non-Abelian gauge theories

In order to do nonperturbative calculations with light-front Hamiltonian methods in a non-Abelian
gauge theory such as QCD, we must have a regularization for which renormalizability can be shown.
Proofs of renormalizability for non-Abelian gauge theories14 typically rely on BRST invariance [26],
which is the remnant of gauge invariance after the gauge is fixed. The underlying gauge invariance
requires massless gauge particles, unless some form of spontaneous symmetry breaking is invoked. If
massive Pauli–Villars particles are to be used as the regulators, then their mass and the modification
of interactions to include PV-index-changing currents, both break ordinary gauge invariance.

However, this breaking can be resolved with two modifications [28]. One is a generalization of the
ordinary gauge transformation to include mixing of fields with different PV indices; this re-establishes
the gauge invariance for massless PV gluons and mass-degenerate PV quarks. The other is the intro-
duction of masses for the PV particles through the addition of interactions with auxiliary scalars, in a
non-Abelian extension of a method due to Stueckelberg [111, 112]. A particular gauge-fixing term is also
part of the method, and the appropriate Faddeev–Popov ghost terms [113] can then be computed. The
ghost terms restore the BRST invariance. These steps, while not specifically light-front in character,
yield a Lagrangian from which a light-front Hamiltonian can be constructed in an arbitrary covariant
gauge [28].

A PV-regulated Lagrangian for a non-Abelian gauge theory can be built from four terms

L = Lmassless + Lgluon + Lquark + Lghost. (143)

The first, Lmassless, is a gauge-invariant Lagrangian for massless gluons and quarks; Lgluon is the mass
and gauge-fixing term for gluons and auxiliary scalars; Lquark is the mass term for quarks; and Lghost is
the Faddeev-Popov ghost term. The starting point is the first term, given by

Lmassless = −1

4

∑

k

rkF
µν
ak Fakµν +

∑

i

siψ̄iiγ
µ∂µψi + g

∑

ijk

βiβjξkψ̄iγ
µTaAakµψj , (144)

14For Abelian gauge theories, renormalizability can be shown even when a mass term is added [110].
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where the field tensor is

F µν
ak = ∂µAν

ak − ∂νAµ
ak − rkξkgfabc

∑

lm

ξlξmA
µ
blA

ν
cm. (145)

The indices are k for (PV) gluons and i, j for (PV) quarks; each takes the value of zero for a physical
field. The metric signatures are rk and si are just ±1 (e.g. (−1)k and (−1)i). The extended gauge
transformations are

Aµ
ak −→ Aµ

ak + ∂µΛak + rkξkgfabcΛbA
µ
c , (146)

ψi −→ ψi + igsiβiTaΛaψ, (147)

with Λa ≡
∑

k ξkΛak and [Ta, Tb] = ifabcTc.
The subtractions needed for regularization are provided by the null field combinations

Aµ
a ≡

∑

k

ξkA
µ
ak, ψ ≡

∑

i

βiψi, (148)

with
∑

k rkξ
2
k = 0 and

∑
i siβ

2
i = 0. These make Aµ

a Abelian and ψ gauge invariant. With these
definitions, this first term of the Lagrangian can be written as

Lmassless = −1

4

∑

k

rk(∂
µAν

ak − ∂νAµ
ak)

2 + gfabc∂
µAν

aAbµAcν +
∑

i

siψ̄iiγ
µ∂µψi + gψ̄γµTaAaµψ. (149)

The Lagrangian includes kinetic energy terms for fields with metrics rk and si, and the interaction terms
involve only null fields.

The four-gluon interaction is implicit in the infinite-PV-mass limit through a contraction of two
three-gluon interactions, with the contraction being a PV gluon. This is reminiscent of a method used
to simplify color factors in perturbation theory, by introducing an auxiliary field to two three-gluon
interactions [114].

The gluon mass and gauge-fixing term is constructed from a gauge-invariant piece and a gauge-fixing
piece, each with couplings to an auxiliary set of PV scalar fields φak, in a non-Abelian extension of a
Stueckelberg mechanism [36, 111, 112]

Lgluon =
1

2

∑

k

rk (µkA
µ
ak − ∂µφak)

2 − ζ

2

∑

k

rk

(
∂µA

µ
ak +

µk

ζ
φak

)2

. (150)

The φak obey the gauge transformation

φak −→ φak + µkΛak + µkrkξkgfabc

∫ x

dx′µΛb(x
′)Aµ

c (x
′). (151)

The line integral is needed in order to allow the derivative to transform as

∂µφak −→ ∂µφak + µk∂
µΛak + µkrkξkgfabcΛbA

µ
c . (152)

When the two terms of this part of the Lagrangian are combined, the cross terms form a total derivative
that can be neglected. The remaining terms leave

Lgluon =
1

2

∑

k

rkµ
2
k (A

µ
ak)

2 − ζ

2

∑

k

rk (∂µA
µ
ak)

2
+

1

2

∑

k

rk

[
(∂µφak)

2 − µ2
k

ζ
φ2
ak

]
, (153)

where the gluon acquires the mass µk and the scalar, a mass of µk/
√
ζ. The scalar field also inherits

the metric rk.
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The quark mass term also involves a coupling to the auxiliary scalar:

Lquark = −
∑

i

simi(ψ̄i + ig
siβi
µPV

φ̃aψ̄Ta)(ψi − ig
siβi
µPV

φ̃aTaψ), (154)

with µPV ≡ maxk µk. The combination

φ̃a ≡
∑

k

ξk
µPV

µk
φak (155)

must also be null, which is enforced by the additional constraint
∑

k rk
ξ2
k

µ2
k

= 0. The gauge transformation

of the combination is Abelian:
φ̃a −→ φ̃a + µPVΛa. (156)

In order that all couplings be null, the combination

ψ̃ =
∑

i

βi
mi

mPV
ψi, (157)

with mPV ≡ maximi, can be made null by imposition of the constraint
∑

i sim
2
iβ

2
i = 0 and made

mutually null with ψ by imposition of
∑

i simiβ
2
i = 0. This second constraint also eliminates the

quartic coupling term. With these definitions and constraints, the quark mass term becomes

Lquark = −
∑

i

simiψ̄iψi − ig
mPV

µPV

[
ψ̄Taφ̃aψ̃ − ¯̃

ψTaφ̃aψ
]

(158)

The ghost term [113] is obtained from a standard construction [115]

Lghost =
∑

k

rk∂µc̄ak∂
µcak −

∑

k

rk
µ2
k

ζ
c̄akcak + gfabc

[
∂µc̄acbA

µ
c −

µ2
PV

ζ
¯̃ca

∫ x

dx′µcb(x
′)Aµ

c (x
′)

]
, (159)

for ghosts cak and anti-ghosts c̄ak, with null combinations defined as

ca ≡
∑

k

ξkcak, c̄a ≡
∑

k

ξkc̄ak, ¯̃ca ≡
∑

k

ξk
µ2
k

µ2
PV

c̄ak. (160)

For these to be (mutually) null, the additional constraints
∑

k rkµ
2
kξ

2
k = 0 and

∑
k rkµ

4
kξ

2
k = 0 must be

required.
To summarize the constraints, there are four for the adjoint fields:

∑

k

rkξ
2
k = 0,

∑

k

rk
ξ2k
µ2
k

= 0,
∑

k

rkµ
2
kξ

2
k = 0,

∑

k

rkµ
4
kξ

2
k = 0, (161)

and three for the quark fields:

∑

i

siβ
2
i = 0,

∑

i

sim
2
iβ

2
i = 0,

∑

i

simiβ
2
i = 0. (162)

If the PV masses are to be chosen independently, the constraints require four PV gluons, four PV ghosts
and antighosts, five PV scalars, and three PV quarks. For pure Yang–Mills theory, the number of PV
scalars is reduced to four, because the k = 0 fields can be dropped and the physical gluon mass µ0 set
to zero. The eliminated fields φa0 are needed only to split the masses of the PV quarks. In either case,
the number of PV fields implies that the computational load will necessarily be large.
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The BRST transformations are

δAµ
ak = ǫ∂µcak + ǫrkξkgfabccbA

µ
c , (163)

δψi = iǫgsiβiTacaψ, δψ̄i = −iǫgsiβiψ̄Taca, (164)

δφak = ǫµkcak + ǫrkξkµkgfabc

∫ x

dx′µcb(x
′)Aµ

c (x
′), (165)

δ∂µφak = ǫµk∂
µcak + ǫrkξkµkgfabccbA

µ
c , (166)

δc̄ak = −ζǫ
(
∂µA

µ
ak +

µk

ζ
φak

)
, δcak =

1

2
ǫrkξkgfabccbcc, (167)

with ǫ a real Grassmann constant and ǫ2 = 0. For the various null combinations, the transformations
are

δAµ
a = ǫ∂µca, δφ̃a = ǫµPVca, δca = 0, δψ = 0, δψ̃ = 0. (168)

The full Lagrangian is invariant with respect to these transformations.
The construction of the light-front Hamiltonian from this Lagrangian follows the pattern laid out

for QED. Calculations would then be done for a range of PV masses and the limit of infinite PV
mass studied. This would all be done for a series of values for the gauge-fixing parameter, in order to
investigate the gauge-independence of computed observables.

3.6 Sector Dependent Renormalization

In the usual approach to renormalization of a quantum field theory, one seeks to give meaning to the
bare parameters of the Lagrangian in relation to physical observables. For nonperturbative calculations
in a truncated Fock space, there can be some utility in allowing these bare parameters to be Fock-sector
dependent; this is known as sector-dependent renormalization. This was originally proposed by Perry,
Harindranath, and Wilson [16] and applied to QED by Hiller and Brodsky [17]. More recent work with
this approach has been by Karmanov, Mathiot, and Smirnov [18].

The simplest way to motivate sector-dependent bare parameters is to consider what happens to
self-energy contributions as the edge of the truncation is approached. Clearly, the contributions are
reduced as more and more potential intermediate states are forbidden by the truncation. In particular,
for constituents in the highest Fock sector, there are no self-energy contributions, which suggests that
each bare mass should be equal to the physical mass. Similarly, in a transition between the highest
Fock sector and a sector just below, with one less constituent, there can be no loop corrections and the
only self-energy corrections are on the side of the lower sector; this is illustrated in Fig. 2. This would
suggest that the bare coupling associated with the transition should be renormalized differently than
the bare coupling for a transition of the same type between lower sectors, where loop corrections and
different self-energy corrections are possible. The calculation of the sector-dependent bare parameters
can be done systematically [17, 18] by an iterative procedure, beginning with the most severe truncation
and working up to the desired truncation; at each step, the bare parameters of all but the lowest sector
are held fixed at the values obtained in the previous iteration.

If sector-dependent renormalization is not done, there are uncanceled divergences that arise because
the truncation has eliminated contributions that would otherwise cancel against contributions that are
kept. The distinction between which are kept and which not is the number of constituents required
by intermediate states. This prevents complete removal of the regulators and requires a strategy of
seeking a range of regulation parameters (e.g., the PV masses) within which the physical observables
are insensitive to the regularization [24]. This minimizes the net effect of two sources of error: the
truncation itself, which creates the sensitivity to the regulators, and the presence of PV fields with
finite masses.
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Figure 2: Contributions to the Ward identity in QED. Only the last survives a truncation to one photon
and one fermion.

Sector-dependent bare parameters are chosen to absorb the uncanceled divergences. However, this
leads to some unexpected consequences. In QED, there can be coupling renormalization without vacuum
polarization; normally the Ward identity prevents this, but a Fock-space truncation violates the Ward
identity, as illustrated by Fig. 2. There are also difficulties in removal of regulators, in that Fock-sector
probabilities move outside the range of zero to one and some bare couplings can become imaginary. For
a consistent theory, the regulators may not be completely removed, just as for the standard approach
to renormalization; there may be no uncanceled divergences but Fock-sector probabilities and couplings
may take on unphysical values. Any calculation that uses the sector-dependent approach must check
for this behavior.

As discussed below, the difficulties are associated with the sector-dependent coupling renormaliza-
tion. This suggests a middle ground where only bare masses are sector dependent. Such an arrangement
can be useful in avoiding the difficulties of sector-dependent renormalization and yet making the in-
variant mass of higher Fock states more physically reasonable. The scale of the invariant mass for the
higher Fock states can be important because Fock states with an invariant mass much larger than the
eigenstate mass will not make a significant contribution to the eigenstate. In calculations where the
eigenstate/physical mass is much smaller than the bare mass and where higher Fock states should be
included, sector-dependent masses will allow a better approximation.

Of course, in the limit that the Fock-space truncation is removed, both the standard renormalization
and the sector-dependent renormalization should yield the same result. For the standard case, the limit
simply removes the uncanceled divergences. For the sector-dependent case, the bare parameters become
sector independent.

For a detailed comparison of the two renormalization methods, consider the dressed-electron state
in QED with a truncation to at most one photon [20]. The Fock-state expansion is

|ψ±(P )〉 =
∑

i

zib
†
i±(P )|0〉+

∑

ijsµ

∫
dkCµ±

ijs (k)b
†
is(P − k)a†jµ(k)|0〉. (169)

A second PV fermion flavor plays no role in this sector, so that sums over the PV fermion indices can
be limited to 0 and 1, with β1 = 1. The coupled equations for the one-electron amplitude zi and the
one-electron/one-photon wave function Cµ±

ijs (k) are, with y = k+/P+:

[M2 −m2
i ]zi =

∫
(P+)2dyd2k⊥

∑

j,l,µ

ξlsjrlǫ
µ
[
V µ∗
ji±(P − k, P )Cµ±

jl±(k) + Uµ∗
ji±(P − k, P )Cµ±

jl∓(k)
]
, (170)

and [
M2 − m2

j + k2⊥
1− y

− µ2
l + k2⊥
y

]
Cµ±

jl±(k) = ξl
∑

i′
si′zi′P

+V µ
ji′±(P − k, P ), (171)

[
M2 − m2

j + k2⊥
1− y

− µ2
l + k2⊥
y

]
Cµ±

jl∓(k) = ξl
∑

i′
si′zi′P

+Uµ
ji′±(P − k, P ). (172)
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The indexing is arranged such that an index of i or i′ corresponds to the one-electron sector and j to the
one-electron/one-photon sector. For a sector-dependent approach, the mass mi is chosen to be the bare
mass m0, and mj the physical mass, M = me. In the standard parameterization, all are bare masses.

The coupled equations can be solved analytically [24]. The wave functions Cµ±
ils are

Cµ±
il±(k) = ξl

∑
j sjzjP

+V µ
ij±(P − k, P )

M2 − m2
i
+k2

⊥

1−y
− µ2

l
+k2

⊥

y

, Cµ±
il∓(k) = ξl

∑
j sjzjP

+Uµ
ij±(P − k, P )

M2 − m2
i
+k2

⊥

1−y
− µ2

l
+k2

⊥

y

, (173)

and the one-electron amplitudes satisfy

(M2 −m2
i )zi = 2e20

∑

i′
si′zi′

[
J̄ +mimi′ Ī0 − 2(mi +mi′)Ī1

]
, (174)

with

Īn(M
2) ≡

∫
dydk2⊥
16π2

∑

jl

sjrlξ
2
l

M2 − m2
j
+k2

⊥

1−y
− µ2

l
+k2

⊥

y

mn
j

y(1− y)n
, (175)

J̄(M2) ≡
∫
dydk2⊥
16π2

∑

jl

sjrlξ
2
l

M2 − m2
j
+k2

⊥

1−y
− µ2

l
+k2

⊥

y

m2
j + k2⊥

y(1− y)2
. (176)

These integrals satisfy the identity [45] J̄ =M2Ī0. The coupling coefficient ξ2 is fixed by requiring that
M = 0 when m0 = 0, to retain the chiral symmetry [45]. However, to further simplify the calculation,
the second PV photon will be dropped and ξ1 = 1 for the first.

The analytic solution for the remaining PV amplitude is

z1 =
M ±m0

M ±m1

z0, (177)

with the bare coupling α0 = e20/4π restricted to two possibilities

α0± =
(M ±m0)(M ±m1)

8π(m1 −m0)(2Ī1 ±MĪ0)
. (178)

The lower sign corresponds to the physical answer, because m0 then becomes the physical massM = me

at zero coupling. The amplitude z0 is determined by the normalization.
In this truncation, the limit m1 → ∞ can be taken, to simplify the remaining calculation, leaving

only µ1 as the regulating mass. In this limit, z1 is zero, m1z1 → ±(M −m0)z0, and

α0± = ± M(M ±m0)

8π(2Ī1 ±MĪ0)
. (179)

In the sector-dependent approach, Ī1 and Ī0 are independent of m0. This allows the solution for α0 to
be rearranged as an explicit expression for m0

m0 = ∓M + 8π
α0±
M

(2Ī1 ±MĪ0). (180)

The anomalous magnetic moment can be computed in this one-photon truncation as

ae = me

∑

sµ

∫
dkǫµ

∑

j=0,2

ξ2j




1∑

i′=0

j/2+1∑

k′=j/2

si′rk′

ξk′
Cµ+

i′k′s(k)




∗

(181)

×y
(
∂

∂kx
+ i

∂

∂ky

)


1∑

i=0

j/2+1∑

k=j/2

sirk
ξk

Cµ−
iks (k)


 .
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In the limit where the PV electron mass m1 is infinite, this reduces to

ae =
α0

π
m2

ez
2
0

∫
y2(1− y)dydk2⊥

(
1∑

k=0

rk
ym2

0 + (1− y)µ2
k + k2⊥ −m2

ey(1− y)

)2

. (182)

For the sector-dependent parameterization, the product α0z
2
0 is equal to the physical coupling α, and

the bare mass m0 in the denominator is replaced by the physical mass me.
Even though we do not include the vacuum polarization contribution to the dressed-electron state,

the sector-dependent bare coupling is not equal to the physical coupling. Instead, they are related by
e0 = e/z0, where z0 is the amplitude for the bare-electron Fock state computed without projection onto
the physical subspace.

In general, the bare coupling is given by e0 = Z1e/
√
Z2iZ2fZ3. Here, however, there is no vacuum

polarization and Z3 = 1. Also, there is no vertex correction and Z1 = 1. This leaves the wave-function

renormalization, which has been split [116] between initial and final contributions
√
Z2i and

√
Z2f ; the

split is due to the effects of truncation which limit the contributions to Z2 differently on opposite sides
of the photon interaction. Figure 2 shows how this works. In the one-photon truncation, only the
self-energy loop on one fermion leg can contribute to Z2; the loop on the other leg is eliminated by the

truncation. This leaves
√
Z2iZ2f = z0 and α = α0/z0.

The normalization 〈ψσ′
(P ′)|ψσ(P )〉 = δ(P ′ − P )δσ′σ is what determines the amplitude z0. In the

sector-dependent approach, this reduces to 1 = z20 + e20z
2
0 J̃2, with

J̃2 ≡
1

8π2

∫
y dydk2⊥

1∑

k=0

rk
(y2 + 2y − 2)m2

e + k2⊥
[k2⊥ + (1− y)µ2

k + y2m2
e]

2
. (183)

With the replacement of e0 by e/z0, z0 can be obtained as z0 =
√
1− e2J̃2, which implies e0 =

e/
√
1− e2J̃2. For large µ1, the integral J̃2 behaves as J̃2 ≃ 1

8π2

(
ln

µ1µ2
0

m3
e
+ 9

8

)
. Thus, e0 can become

imaginary and Fock-sector probabilities, which are proportional to |z0|2, can range outside [0, 1] as
µ1 → ∞ and µ0 → 0. Therefore, consistency imposes limits on the UV regulator µ1 and on the infrared
regulator µ0.

In the standard parameterization, the bare amplitude is determined by 1 = z20 + e2z20J2, with

J2 =
1

8π2

∫
y dydk2⊥[m

2
0 − 4m0me(1− y) +m2

e(1− y)2 + k2⊥] (184)

×
(

1∑

k=0

rk
1

[k2⊥ + (1− y)µ2
k + ym2

0 − y(1− y)m2
e]

)2

.

Thus the bare amplitude is z0 = 1/
√
1 + e2J2, and is driven to zero as µ1 → ∞. This causes most

expectation values also to go to zero. Therefore, in this case there is a limit on µ1, but µ0 can be zero.
The anomalous moment in the sector-dependent case is

ae =
α

π
m2

e

∫
y2(1− y)dydk2⊥

1∑

k=0

rk

(
1

ym2
e + (1− y)µ2

k + k2⊥ −m2
ey(1− y)

)2

(185)

In the µ1 → ∞, µ0 → 0 limit, this becomes exactly the Schwinger result [117]

ae =
α

π
m2

e

∫
dydq2⊥/(1− y)

[
m2

e+q2
⊥

1−y
+

q2
⊥

y
−m2

e

]2 =
α

2π
. (186)
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Figure 3: The anomalous moment of the electron in units of the Schwinger term (α/2π) [117] plotted
versus the PV photon mass, µ1, as shown in [20]. The solid line is the standard-parameterization result
for the one-electron/one-photon truncation and the dashed lines are the results for sector-dependent
parameterization at three different values of photon mass µ0; both use m1 = ∞. The results for the
sector-dependent parameterization are plotted only for values of µ1 for which the probability of the
two-particle sector remains between 0 and 1; for values of µ0 ≤ 0.01me, this requires µ1 > 1000me,
which is beyond the range of the plot. For the case of the standard parameterization, µ0 has its physical
value of zero. The filled circles are from a calculation with the standard parameterization that includes
the self-energy contribution from the one-electron/two-photon sector [20]. It also includes a second PV
photon flavor, with its mass, µ2, set to

√
2µ1; the PV electron mass m1 is equal to 2 · 104me. The

variation is due to errors in numerical quadratures.

However, this limit cannot be taken without making the underlying theory inconsistent, and the result
for finite regulator masses is quite different from the exact one-photon result, as can be seen in Fig. 3.

For both the standard and the sector-dependent parameterizations, truncation of the Fock space
results in uncanceled divergences. For the standard case, these divergences are explicit; for the sector-
dependent case, they are found in the renormalization of the coupling. However, the sector-dependent
coupling renormalization is not the usual coupling renormalization; instead of being driven by vacuum
polarization, it is the result of unbalanced wave-function renormalization and the breaking of the Ward
identity by the truncation. In both parameterizations, consistency requires a limit on one or more of
the regulators, and not all PV masses can be taken to infinity. Any results need to be extracted at
finite PV masses. For the sector-dependent approach, this is complicated by infrared divergences.

With so much difficulty caused by the Fock-space truncation, there is a strong motivation to avoid
the truncation all together. Unfortunately, a finite calculation in Fock space requires a truncation of
some kind. However, this need not be a truncation in particle number. Other truncations are possible,
as discussed in the next section.
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3.7 Light-Front Coupled-Cluster Method

The LFCC method [21] avoids the difficulties associated with an explicit Fock-space truncation by
truncating the set of coupled equations in a very different way. Instead of truncating the number of
particles, it truncates the way in which wave functions are related to each other; the wave functions
of higher Fock states are determined by the lower-state wave functions and the exponentiation of an
operator T . Specifically, the eigenstate is written in the form

√
ZeT |φ〉, where

√
Z is a normalization

factor and |φ〉 is a state with the minimal number of constituents. The operator T increases particle
number and conserves all relevant quantum numbers, including the total light-front momentum. This
is in principle exact but also still infinite, because T can have an infinite number of terms.

The truncation made is a truncation of T . The original eigenvalue problem becomes a finite-sized
eigenvalue problem for the valence state |φ〉, combined with auxiliary equations for the terms retained
in T :

PvP−|φ〉 = M2 + P 2
⊥

P+
|φ〉, (1− Pv)P−|φ〉 = 0. (187)

Here Pv is a projection onto the valence sector, and P− ≡ e−TP−eT is the LFCC effective Hamiltonian.
The projection 1−Pv is truncated to provide just enough auxiliary equations to determine the functions
in the truncated T operator. The effective Hamiltonian is computed from its Baker–Hausdorff expansion
P− = P−+[P−, T ]+ 1

2
[[P−, T ], T ]+ · · ·, which can be terminated at the point where more particles are

being created than are kept by the truncated projection 1−Pv. The use of the exponential of T rather
than some other function is convenient, not only because of the Baker–Hausdorff expansion but more
generally because it is invertible; in principle, other functions could be used and would also provide an
exact representation until a truncation is made.

The truncation of T can be handled systematically. Terms can be classified by the number of
annihilated constituents and the net increase in particle number. For example, in QCD the lowest-order
contributions annihilate one particle and increase the total by one. These are one-gluon emission from
a quark, quark pair creation from one gluon, and gluon pair creation from one gluon. Each involves a
function of relative momentum for the transition from one to two particles. Higher order terms annihilate
more particles and/or increase the total by more than one. These provide additional contributions to
higher-order wave functions and even to low-order wave functions for more complicated valence states.
For example, the wave function for the |qq̄g〉 Fock state of a meson can have a contribution from a term
in T that annihilates a qq̄ pair and creates a pair plus a gluon, when this acts on the meson valence
state |qq̄〉.

Zero modes can be included in the LFCC method [118]. The vacuum must then also be computed
as a nontrivial eigenstate, which takes the form of a generalized coherent state of zero modes [64, 119].
The zero modes are included by first introducing modes of infinitesimal longitudinal momentum and
taking the limit of zero momentum at the end of the calculation. Inclusion of four zero modes in the T
operator should be sufficient for a calculation of the critical coupling for dynamical symmetry breaking
directly in terms of the vacuum state.

The mathematics of the LFCC method has its origin in the many-body coupled-cluster method [120]
used in nonrelativistic nuclear physics and quantum chemistry [121].15 The physics is, however, quite
different. The many-body method works with a state of a large number of particles and uses the
exponentiation of T to build in correlations of excitations to higher single-particle states; the particle
number does not change. The LFCC method starts from a small number of constituents in a valence
state and uses eT to build states with more particles; the method of solution of the valence-state
eigenvalue problem is left unspecified.

15Some applications to field theory of the coupled-cluster method have been previously considered [122], for Fock-state
expansions in equal-time quantization. The focus was on the non-trivial vacuum structure, and particle states are then
built on the vacuum. There was some success in the analysis of φ41+1, particularly of symmetry-breaking effects.
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The computation of physical observables from matrix elements of operators requires some care.
Direct computation would require an infinite sum over Fock space. We instead borrow from the many-
body coupled cluster method [121] a construction that computes expectation values from right and
left eigenstates16 of P−. This can be extended to include off-diagonal matrix elements and gauge
projections [123].

Consider the expectation value for an operator Ô:

〈Ô〉 = 〈φ|eT †

ÔeT |φ〉
〈φ|eT †eT |φ〉 . (188)

Define O = e−T ÔeT and 〈ψ̃| = 〈φ| eT
†
eT

〈φ|eT†
eT |φ〉 . The expectation value can then be expressed as 〈Ô〉 =

〈ψ̃|O|φ〉, and the dual vector 〈ψ̃| is normalized as

〈ψ̃′|φ〉 = 〈φ′| eT
†
eT

〈φ|eT †eT |φ〉|φ〉 = δ(P ′ − P ). (189)

The effective operator O can be computed from its Baker–Hausdorff expansion, O = Ô + [Ô, T ] +
1
2
[[Ô, T ], T ] + · · ·. The dual vector 〈ψ̃| is a left eigenvector of P−, as can be seen from

〈ψ̃|P− = 〈φ| eT
†P−eT

〈φ|eT †eT |φ〉 = 〈φ|P−† eT
†

eT

〈φ|eT †eT |φ〉 =
M2 + P 2

⊥
P+

〈ψ̃|. (190)

Physical quantities can then be computed from the right and left LFCC eigenstates.
The LFCC method can also be extended to consider time-dependent problems, such as the strong-

field dynamics studied by Zhao et al. [106]. The fundamental time-evolution equation P−|ψ〉 = i ∂
∂x+ |ψ〉

is replaced by

Pv

(
P− − i

∂T

∂x+

)
|φ〉 = i

∂

∂x+
|φ〉 and (1− Pv)

(
P− − i

∂T

∂x+

)
|φ〉 = 0. (191)

Because ∂T/∂x+ increases particle number, the valence time-evolution equation reduces to

PvP−|φ〉 = i
∂

∂x+
|φ〉. (192)

For a single-particle valence state, there is only a time-dependent phase. The time evolution of the T
operator is determined by the auxiliary equation, subject to appropriate initial conditions.

3.8 Effective Particles

The renormalization-group procedure for effective particles (RGPEP) [29] has been developed as an
extension of the program for nonperturbative QCD by Wilson et al. [31]. It builds on the idea of
the similarity renormalization procedure proposed by Glazek and Wilson [32]. Effective Hamiltonians
are constructed in terms of creation and annihilation operators for effective particles, which allows for
constituent masses that differ from the current masses in the original Hamiltonian. This facilitates a
direct connection with constituent quark models and admits a perturbative construction of the effective
Hamiltonian.

A given quantum field ψ0, built from creation and annihilation operators for bare quanta, is trans-
formed to a field ψs = Usψ0U †

s , built from creation and annihilation operators for effective particles with

16The effective Hamiltonian is not Hermitian, because every term of T must increase the particle count and therefore
T itself cannot be Hermitian.
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scale s. Kinematical quantum numbers are unchanged; however, masses are treated as dynamical, so
that effective particles, such as gluons, can acquire mass. The effective fields are used to construct an
effective Hamiltonian Ht, with t = s4 a convenient re-parameterization. The effective Hamiltonian is
band diagonal, with bandwidth ∼ 1/s.

For a generic Hamiltonian, written in terms of annihilation operators q0i

Ht(q0i) =
∞∑

n=2

∑

i1,i2,...,in

ct(i1, . . . , in)q
†
0i1 · · · q0in , (193)

the evolution in the scale t is given by

∂

∂t
Ht = [[Hf ,HPt],Ht], (194)

where Hf ≡ ∑
i p

−
i q

†
0iq0i is the free part of the Hamiltonian and

HPt ≡
∞∑

n=2

∑

i1,i2,...,in

(
1

2

n∑

k=1

p−ik

)2

ct(i1, . . . , in)q
†
0i1 · · · q0in . (195)

This reduces to coupled equations for the coefficients ct, which then determine the effective Hamiltonian
Ht(qti) as a polynomial in the effective-particle operators qti.

The band-diagonal structure occurs because the evolution of matrix elements for the interaction
Hamiltonian HI ≡ H−Hf is given by [29]

∂

∂t

(
∑

mn

|HImn|2
)
= −2

∑

km

(M2
km −M2

mk)
2|HIkm|2 ≤ 0, (196)

with M2
km the invariant mass squared for the particles in the kth Fock state that are connected by

the interaction to the particles in the mth state. These Fock states are eigenstates of Hf . Thus, the
off-diagonal matrix elements decrease in magnitude with increasing t = s4 and do so most rapidly for
those states most greatly separated in invariant mass.

Illustrations of the RGPEP in terms of simple theories, where the interaction is a mixing of particle
states, can be found in [29]. The solutions are consistent with those obtained with ordinary light-front
Fock-space methods.

4 Applications

To illustrate the use of light-front methods, some applications to a range of quantum field theories are
considered.

4.1 Quenched Scalar Yukawa Theory

Also known as the (massive) Wick–Cutkosky model [124], quenched scalar Yukawa theory involves
charged and neutral scalars coupled by a cubic interaction and quenched, to exclude pair production.
The Wick–Cutkosky model focuses on two charged scalars interacting through the exchange of the
neutral, which may or may not be massive. Various light-front analyses have been done [125, 126, 127,
73, 128, 129, 130, 131, 132, 18, 133], including both two-dimensional and four-dimensional theories. The
most recent work focuses on the construction of the eigenstate for a charged scalar dressed by a cloud
of neutrals [134].
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Without quenching, the theory is ill defined, having a spectrum that extends to negative infinity, as
is generally true of cubic scalar theories [135, 136]. Within a DLCQ approximation, this instability can
be difficult to detect [128] unless constrained longitudinal zero modes are included [75]. However, the
constraint equation for the neutral scalar can be solved exactly, and the effective interactions that this
generates include zero-mode exchange as well as a destabilizing doorway to infinite numbers of charged
pairs. The exchange of zero modes is important for obtaining the nominal 1/K2 convergence of the
trapezoidal quadrature rule [73].

The Lagrangian of the model is

L = ∂µχ
∗∂µχ−m2|χ|2 + 1

2
(∂µφ)

2 − 1

2
µ2φ2 − gφ|χ|2. (197)

The Hamiltonian density is

H = |~∂⊥χ|2 +m2|χ|2 + 1

2
(~∂⊥φ)

2 +
1

2
µ2φ2 + gφ|χ|2. (198)

The mode expansions for the fields are, as in Sec. 2.2.1,

φ(x) =
∫
dp+d2p⊥√
16π3p+

[
a(p)e−ip·x + a†(p)eip·x

]
(199)

and

χ(x) =
∫
dp+d2p⊥√
16π3p+

[
c+(p)e

−ip·x + c†−(p)e
ip·x
]
. (200)

The necessary commutators are given in (10) and (15).
If the φ zero mode is to be included in a DLCQ calculation, then the mode expansion is periodic

on the interval −L < x− < L and φ is equal to this expansion plus the zero-mode contribution φ0(~x⊥).

When the Euler–Lagrange equation ∂−∂+φ−~∂⊥ · ~∂⊥φ+m2φ+g|χ|2 = 0 is averaged over the x− interval,
only the φ0 contribution survives, leaving the constraint

m2φ0 −∇2
⊥φ0 = − g

L

∫ L

−L
dx−|χ|2. (201)

When φ0 is eliminated from the Hamiltonian density, the |χ|2 term induces a negative term in the
Hamiltonian, proportional to g2|χ|4. The expectation value of this term can be made arbitrarily negative
by including a large number of charged pairs with momentum fraction 1/K [75], and the spectrum must
therefore be unbounded from below. This term also contributes an effective quartic interaction between
charged scalars that can be interpreted as zero-mode exchange [73].

In the continuum, the light-front Hamiltonian is P− = P−
0 + P−

int, with

P−
0 =

∫
dp
m2 + ~p2⊥
p+

[
c†+(p)c+(p) + c†−(p)c−(p)

]
+
∫
dq
µ2 + ~q2⊥
q+

a†(q)a(q). (202)

and

P−
int = g

∫ dpdq
√
16π3p+q+(p+ + q+)

[(
c†+(p+ q)c+(p) + c†−(p+ q)c−(p)

)
a(q) (203)

+a†(q)
(
c†+(p)c+(p+ q) + c†−(p)c−(p+ q)

)]

+g
∫ dp

1
dp

2√
16π3p+1 p

+
2 (p

+
1 + p+2 )

[
c†+(p1)c

†
−(p2)a(p1 + p

2
) + a†(p

1
+ p

2
)c+(p1)c−(p2)

]
.
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For the quenched theory, the second term in P−
int is dropped.

The Fock-state expansion for the eigenstate with charge ±1 is

|ψ±(P )〉 =
∞∑

n=0

(P+)n/2
∫ (

n∏

i

dxid
2ki⊥

)
θ(1−

n∑

i

xi)ψ
±
n (xi;

~ki⊥)|xi, ~ki⊥, P , n,±〉, (204)

with the Fock states written as

|xi, ~ki⊥, P , n,±〉 = 1√
n!
c†±((1−

n∑

i

xi)P
+, (1−

n∑

i

xi)~P⊥ −
n∑

i

~ki⊥)
n∏

i

a†(xiP
+, ~ki⊥ + xi ~P⊥)|0〉. (205)

Substitution into the eigenvalue problem P−|ψ±(P )〉 =
M2

±+P 2
⊥

P+ |ψ±(P )〉 yields the coupled system for
the wave functions ψn


m

2 + (
∑

i
~ki⊥)

2

1−∑
i xi

+
n∑

i

µ2 + k2i⊥
xi


ψ±

n (xi;
~ki⊥) (206)

+
g√

16π3n

n∑

j

ψ±
n−1(x1, ~k1⊥; . . . ; xj−1, ~kj−1⊥; xj+1, ~kj+1⊥; . . . ; xn, ~kn⊥)√

xj(1−
∑

i 6=j xi)(1−
∑

i xi)

+
g
√
n + 1√
16π3

∫
dyd2q⊥θ(1−

n∑

i

xi − y)
ψ±
n+1(x1, ~k1⊥; . . . ; xn, ~kn⊥; y, ~q⊥)√
y(1−∑

i xi − y)(1−∑
i xi)

=M2
±ψ

±
n (xi,

~ki⊥).

This system is then solved for M± and the ψ±
n .

Numerical solutions have been obtained by Li et al. [134]. They used PV regularization with one
PV neutral scalar and sector-dependent renormalization. Fock-space truncations up to four particles
were investigated. Earlier work [131] had included only three particles (one charged and two neutral).
The formulation is slightly different, being based on the covariant light-front dynamics scheme [3], but
equivalent. Gauss-Legendre quadrature is used for longitudinal, transverse, and azimuthal integrations.
Truncations to two, three, and four particles are compared, in order to study convergence as the Fock-
space truncation is relaxed; for weak to moderate coupling, convergence is observed, as illustrated in
Fig. 4. The solution is also used to compute the form factor of the dressed charged scalar.

For the LFCC method, this model is probably the most straightforward application, aside from the
original exactly soluble case [21]. The charge ±1 valence state is just c†±(P )|0〉, and the exact T operator
can be written as

T =
∑

n

∫ n∏

i

dq
i
dp tn(q1, . . . , qn, p)

(
n∏

i

a†(q
i
)

)
c†±(p)c±(p+

n∑

i

q
i
). (207)

The action of eT on the valence state then generates all the Fock states of the quenched theory, with
a one-to-one correspondence between the functions tn and the Fock-state wave functions ψn; each is a
nonlinear combination of the others. Convergence with respect to truncations of the sum over n in T
can be studied.

4.2 φ42 Theory

Two-dimensional φ4 theory has been a focus for nonperturbative light-front methods from almost the
beginning [63, 64, 58, 59, 60, 61, 68], at least partly because the theory provides a relatively simple
instance of symmetry breaking and the possible importance of zero modes [57, 75]. The phase transition
has been studied on the light front [58], and there have been various attempts at the calculation of critical
couplings and even critical exponents [71]. Comparison with results from equal-time quantization require
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Figure 4: Fock sector probabilities as a function of coupling strength α ≡ g2

16πm2 for the (a) one-particle
and (b) two-particle sectors of the dressed charged scalar in quenched scalar Yukawa theory, as shown
in [134], for a sequence of Fock-space truncations to two, three, and four particles. The regulating PV
mass is set at 15 GeV; the bound-state mass is 0.94 GeV; and the neutral scalar’s mass is 0.14 GeV,
chosen to mimic a nucleon dressed by pions.

some care if phrased in terms of bare parameters; the renormalization of these parameters is different
in the different quantizations [137].

The Lagrangian for φ4
2 theory is L = 1

2
(∂µφ)

2 − 1
2
µ2φ2 − λ

4!
φ4. Some choose to normalize the

coupling differently, replacing λ/4! with λ/4 or even simply λ. The light-front Hamiltonian density is
H = 1

2
µ2φ2 + λ

4!
φ4. The mode expansion for the field at zero light-front time is, as usual,

φ =
∫ dp+√

4πp+

{
a(p+)e−ip+x−/2 + a†(p+)eip

+x−/2
}
, (208)

with the nonzero commutator [a(p+), a†(p′+)] = δ(p+ − p′+).

The light-front Hamiltonian can be divided into a kinetic piece and three interaction pieces, each
with a different number of creation and annihilation operators, P− = P−

11 + P−
13 + P−

31 + P−
22, where

P−
11 =

∫
dp+

µ2

p+
a†(p+)a(p+), (209)

P−
13 =

λ

6

∫
dp+1 dp

+
2 dp

+
3

4π
√
p+1 p

+
2 p

+
3 (p

+
1 + p+2 + p+3 )

a†(p+1 + p+2 + p+3 )a(p
+
1 )a(p

+
2 )a(p

+
3 ), (210)

P−
31 =

λ

6

∫
dp+1 dp

+
2 dp

+
3

4π
√
p+1 p

+
2 p

+
3 (p

+
1 + p+2 + p+3 )

a†(p+1 )a
†(p+2 )a

†(p+3 )a(p
+
1 + p+2 + p+3 ), (211)

P−
22 =

λ

4

∫
dp+1 dp

+
2

4π
√
p+1 p

+
2

∫
dp′+1 dp

′+
2√

p′+1 p
′+
2

δ(p+1 + p+2 − p′+1 − p′+2 )a†(p+1 )a
†(p+2 )a(p

′+
1 )a(p′+2 ). (212)

The eigenstate with momentum P+ is expanded as

|ψ(P+)〉 =
∑

n

(P+)
n−1

2

∫ n∏

i

dyiδ(1−
n∑

i

yi)ψn(yi)
1√
n!

n∏

i=1

a†(yiP
+)|0〉, (213)
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with the sum over n restricted to odd or even numbers, because P− does not mix the two cases. On
substitution of this Fock-state expansion and a dimensionless coupling g = λ/4πµ2, the light-front
Hamiltonian eigenvalue problem P−|ψ(P+)〉 = M2

P+ |ψ(P+)〉 becomes

n

y1
ψn(yi) +

g

4

n(n− 1)√
y1y2

∫
dx1dx2√
x1x2

δ(y1 + y2 − x1 − x2)ψn(x1, x2, y3, . . . , yn)

+ g
6
n
√
(n + 2)(n+ 1)

∫ dx1dx2dx3√
y1x1x2x3

δ(y1 − x1 − x2 − x3)ψn+2(x1, x2, x3, y2, . . . , yn)

+ g
6

(n−2)
√

n(n−1)√
y1y2y3(y1+y2+y3)

ψn−2(y1 + y2 + y3, y4, . . . , yn) =
M2

µ2 ψn(yi). (214)

This coupled system can then be solved for the mass M and wave functions ψn. The fully symmetric
polynomials discussed in Sec. 3.4 were designed for just this purpose; some results obtained in this way
are discussed below.

The earliest and highest resolution calculations have been done with DLCQ. The resolution has been
taken high enough to obtain degeneracy between the odd and even sectors in the broken-symmetry
case [59], following the work of Rozowsky and Thorn [57] where degeneracy was indicated but not
achieved at their lower resolution. Figure 5 contains two samples of the high-resolution DLCQ results,
which show the degeneracy between odd and even states in the infinite-resolution limit. Low-level
excitations at strong coupling can be associated with kink-antikink states [60, 61, 138]. These may
indicate formation of a kink condensate driving the transition to symmetry restoration for the negative
mass-squared case.

Inclusion of zero modes can improve the DLCQ calculations. The solution of the DLCQ constraint
equation for the zero mode can be used to study the critical coupling and critical exponents [71].
The solution can also be used to develop a controlled series of effective interactions that improve the
numerical convergence [75].

The LFCC method has also been applied to φ4
2 theory [139]. For the odd case, the valence state is

the one-particle state a†(P+)|0〉. The leading contribution to the T operator is

T2 ≡
∫
dp+1 dp

+
2 dp

+
3 t2(p

+
1 , p

+
2 , p

+
3 )a

†(p+1 )a
†(p+2 )a

†(p+3 )a(p
+
1 + p+2 + p+3 ); (215)

the function t2 is symmetric in its arguments. For T truncated to T2, the projection 1−Pv is truncated
to projection onto the three-particle state a†(p+1 )a

†(p+2 )a
†(p+3 )|0〉. Zero modes can also be included [118].

The valence equation, the first in (187), can be reduced to

1 + g
∫

dx1dx2√
x1x2x3

t̃2(x1, x2, x3) =M2/µ2, (216)

where t̃2 is a rescaled function of longitudinal momentum fractions xi = p+i /P
+,

t̃2(x1, x2, x3) ≡ P+t2(x1P
+, x2P

+, x3P
+). (217)

Given the definition of a dimensionless mass shift

∆ ≡ g
∫

dx1dx2√
x1x2x3

t̃2(x1, x2, x3), (218)

the valence equation can be written as simply M2 = (1 + ∆)µ2.
The reduced auxiliary equation, from the second equation in (187), is

1

6

g√
y1y2y3

+
M2

µ2

(
1

y1
+

1

y2
+

1

y3
− 1

)
t̃2(y1, y2, y3) (219)
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Figure 5: Mass-squared eigenvalues for odd and even states in the broken-symmetry phase, in units of
µ2, from DLCQ calculations with resolution K, from [59]. The values of the coupling constant λ are
quoted in units of µ2, where µ is the bare mass of the constituents. The solid lines are extrapolated fits
to the numerical results.

+
g

2



∫ 1−y1

0
dx1

t̃2(y1, x1, 1− y1 − x1)√
x1y2y3(1− y1 − x1)

+ (y1 ↔ y2) + (y1 ↔ y3)




−∆

2

(
1

y1
+

1

y2
+

1

y3

)
t̃2(y1, y2, y3)

+
3g

2






∫ 1

y1/(1−y2)
dα1

∫ 1−α1

0
dα2

t̃2(y1/α1, y2, 1− y1/α1 − y2)t̃2(α1, α2, α3)√
α1α2α3y3(α1 − y1 − α1y2)

+(y1 ↔ y2) + (y1 ↔ y3)
}

+
3g

2








∫ 1

y1+y2
dα1

∫ 1−α1

0
dα2

t̃2(y1/α1, y2/α1, 1− (y1 + y2)/α1)t̃2(α1, α2, α3)

α1

√
α2α3y3(α1 − y1 − y2)

+(y2 ↔ y3)
]

+(y1 ↔ y2) + (y1 ↔ y3)
}
= 0,

with yi = q+i /P
+. For comparison, consider a Fock-state truncation that produces the same number

of equations. The truncated eigenstate then contains only one and three-body contributions and the
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coupled system of integral equations reduces to

1 + g
∫

dx1dx2√
x1x2x3

ψ̃3(x1, x2, x3) =M2/µ2, (220)

1

6

g√
y1y2y3

+

(
1

y1
+

1

y2
+

1

y3
− M2

µ2

)
ψ̃3(y1, y2, y3) (221)

+
g

2




∫ 1−y1

0
dx1

ψ̃3(x1, y1, 1− y1 − x1)√
x1(1− y1 − x1)y2y3

+ (y1 ↔ y2) + (y1 ↔ y3)



 = 0,

with ψ̃3 ≡ ψ3/(
√
6ψ1).

In each case, the first equation is of the same form; it provides for the self-energy correction of the bare
mass to yield the physical mass. The second equations, (219) and (221), however, differ significantly.
The LFCC auxiliary equation includes the physical mass in the three-body kinetic energy; the three-
body equation of the Fock-truncation approach has only the bare mass and would require sector-
dependent renormalization [16, 17, 18, 20] to compensate. The fourth LFCC term is the nonperturbative
analog of the wave-function renormalization counterterm. The last two terms are partial resummations
of higher-order loops. These terms do not appear in the truncated coupled system because the loops
have intermediate states that are removed by the truncation.

These equations are solved numerically in [139], and more recently for higher Fock-space trunca-
tion, with basis function expansions that use the fully-symmetric multivariate polynomials [34]. The
converged results for the mass-squared eigenvalues are shown in Fig. 6. There is a distinct differ-
ence between the LFCC approximation and the lowest-order Fock-space truncation. This arises from
two factors: the correct kinetic-energy mass in each sector of the LFCC calculation and contributions
from higher Fock states. When the lowest-order Fock-space truncation method is modified with sector-
dependent masses [16, 17, 18, 20], the resulting mass values are intermediate between the these two sets.
The higher-order Fock-space truncations, at five-body and seven-body Fock sectors, are in agreement
to within numerical error, indicating convergence in the Fock-state expansion. The LFCC result is close
to these, implying excellent representation of contributions from the higher Fock states.

The Fock-space-converged results also allow estimation of the critical coupling of the theory. In
the plot, the mass gap vanishes at g ≃ 2.1. This is consistent with a much older light-front (DLCQ)
calculation by Harindranath and Vary [63] but not with equal-time calculations, as reported by Rychkov
and Vitale [140]. In their units, the LFCC result for the critical coupling is 1.1, and the DLCQ result
is 1.38, to compare with their result of 2.97. However, these are values of the ratio of bare parameters
of the Lagrangian; as such, the different quantizations need not yield the same values. In fact, earlier
work by Burkardt [137] has shown that, while the bare coupling λ is unchanged, the renormalization
of the bare mass µ is different in the two quantizations by a computable amount. The bare mass is
renormalized by tadpole contributions in equal-time quantization but not in light-front quantization,
and the two different masses are related by [137]

µ2
LF = µ2

ET + λ

[
〈0| : φ

2

2
: |0〉 − 〈0| : φ

2

2
: |0〉free

]
. (222)

The vacuum expectation values of φ2 resum the tadpole contributions; the subscript free indicates
the vev with λ = 0. This distinction between bare masses in the two quantizations implies that the
dimensionless coupling g = λ/4πµ2 is also not the same. Estimates of the critical coupling must then
be adjusted for the difference if they are to be compared.
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Figure 6: Mass-squared ratios M2/µ2 versus dimensionless coupling strength g for the LFCC approxi-
mation (circles), the Fock-space truncation to three (up triangles), five (squares), and seven (diamonds)
particles, and the Fock-space truncation to three with sector-dependent masses (down triangles) for the
odd eigenstate of φ4

1+1. The error bars reflect uncertainties in the numerical extrapolations. For small
g, all of the results overlap; for all g, the results for the five and seven-particle truncations are nearly
indistinguishable, indicating convergence of the Fock-state expansion.

4.3 Yukawa Theory

The standard Yukawa theory of fermions interacting with scalars has received considerable attention.
A series of papers [94, 109, 81] investigated the dressed fermion state on the light front, using PV reg-
ularization, DLCQ, and Gauss–Legendre quadrature. These built on preliminary work with a soluble
model [78, 141] and considered various truncations as well as different choices for the PV sector. A
number of properties of the dressed-fermion eigenstate were extracted from the Fock-state wave func-
tions, including average numbers of constituents and their average momenta, structure functions, and
the average radius.

An analysis of the exactly soluble case of PV-mass degeneracy was also done [142], in order to
better understand the connection with equal-time quantization, through the exact operator solution of
the theory, and to consider the possibility of developing a perturbation theory based on mass differences;
the eigenvalue problem in the Fock basis is exactly soluble because it is triangular when the PV masses
are degenerate with the physical masses.

The one-loop fermion self-energy in light-front Yukawa theory requires three PV scalars to subtract
the quadratic and log divergences and to restore chiral symmetry in the massless limit [143]. In the
preliminary work [78], a DLCQ approximation of this self-energy was shown to require a discrete set
of PV Fock states that was only 1.5 times the size of the set of ordinary Fock states; this provided
encouragement that the computational load associated with the introduction of the additional PV
states was not too large.

The first calculation [94], with the DLCQ approach, used these three scalars. Subsequent work [109,
81] used one PV scalar and one PV fermion, coupled in null combinations. The advantage of the newer
PV scheme was in the absence of four-point instantaneous fermion interactions, which are independent
of the fermion mass and cancel between physical and PV fermions. Their absence significantly simplifies
the matrix representation of the Hamiltonian, which then contains only three-point vertices. This later
work truncated the Fock space to include no more than two bosons dressing the fermion and excluded
pair production. The one-boson truncation [109] is exactly solvable; the two-boson truncation [81]
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requires numerical methods.
Closely following this work, there was a sequence of investigations [144, 145, 146, 19, 147] within

the context of covariant light-front dynamics and eventually employing PV regularization and sector-
dependent renormalization. This work included computation of the anomalous magnetic moment [19]
and even the electromagnetic form factors [147] of the fermion dressed by one or two bosons. Dependence
on the cutoff is eliminated to within numerical accuracy. This is closely related to earlier work by Glazek
and Perry [148] on the sector-dependent approach to Yukawa theory; they show that triviality imposes
a limit on the cutoff.

The primary gain from this work has been the experience of working with fermions in nonperturbative
calculations without the additional complications of QED. For example, the form of PV regularization
which eliminates instantaneous fermion interactions was first developed in Yukawa theory before being
considered for QED. Yukawa theory also offers the opportunity to study an unquenched theory and
the associated renormalizations of the charge and scalar mass, something for which the unstable scalar
Yukawa theory cannot be used. This aspect is largely unexplored at present, although some preliminary
work has been done [94, 147]. Applications to modeling of scalar meson exchange in nuclear physics
are quite limited, given that accurate phenomenology requires a more sophisticated interaction [149].

The Yukawa-theory Lagrangian, regulated by one PV scalar and one PV fermion, is

L =
1

2
(∂µφ0)

2 − 1

2
µ2
0φ

2
0 −

1

2
(∂µφ1)

2 +
1

2
µ2
1φ

2
1 (223)

+
i

2

(
ψ0γ

µ∂µ − (∂µψ0)γ
µ
)
ψ0 −m0ψ0ψ0

− i

2

(
ψ1γ

µ∂µ − (∂µψ1)γ
µ
)
ψ1 +m1ψ1ψ1 − g(φ0 + φ1)(ψ0 + ψ1)(ψ0 + ψ1).

The subscript 0 indicates a physical field and 1, a PV field. The fermion masses are denoted by mi,
and the boson masses by µj. When fermion pairs are excluded, the resulting light-front Hamiltonian is

P− =
∑

i,s

∫
dp
m2

i + p2⊥
p+

(−1)ib†i,s(p)bi,s(p) +
∑

j

∫
dq
µ2
j + q2⊥
q+

(−1)ja†j(q)aj(q)

+
∑

i,j,k,s

∫
dpdq

{[
V ∗
−2s(p, q) + V2s(p+ q, q)

]
b†j,s(p)a

†
k(q)bi,−s(p+ q) (224)

+
[
Uj(p, q) + Ui(p+ q, q)

]
b†j,s(p)a

†
k(q)bi,s(p+ q) + h.c.

}
,

where a† creates a boson and b† a fermion, and

Uj(p, q) ≡
g√
16π3

mj

p+
√
q+
, V2s(p, q) ≡

g√
8π3

~ǫ ∗2s · ~p⊥
p+

√
q+
, ~ǫ2s ≡ − 1√

2
(2s, i). (225)

The nonzero (anti)commutators are
[
ai(q), a

†
j(q

′)
]
= (−1)iδijδ(q − q′),

{
bi,s(p), b

†
j,s′(p

′)
}
= (−1)iδijδs,s′δ(p− p′). (226)

The opposite signature of the PV fields is the reason that no instantaneous fermion terms appear in
P−; they are individually independent of the fermion mass and cancel between instantaneous physical
and PV fermions.

This scheme was explored in the unphysical equal-mass limit where analytic solutions of the field-
theoretic eigenstate can be obtained without explicit truncation [142]. The simplest such solution takes
the form

β†
+,k|0〉+mg

∫ k+

0
dl

U(k, l)

E1,0(k)− E1,1(l, k − l)
b†+,la

†
k−l|0〉+g

∫ k+

0
dl

V (k, l)

E1,0(k)− E1,1(l, k − l)
b†−,la

†
k−l|0〉, (227)
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where β†, b†, and a† are creation operators for null combinations of the fields, m ≡ m0 = m1 is the
fermion mass, and

U(k, l) ≡ 1√
16π3

1√
k+ − l+

(
1

l+
+

1

k+

)
, (228)

V (k, l) ≡ 1√
16π3

1√
k+ − l+

(
−l1 − il2

l+
+
k1 + ik2
k+

)
. (229)

The eigenvalue of the state is (k2⊥ + m2)/k+. Such analytic solutions provide a convenient check for
numerical calculations.

The Fock-state expansion for the dressed-fermion state with Jz = +1/2 is

|ψ+(P )〉 =
∑

i

zib
†
i+(P )|0〉+

∑

ijs

∫
dqfijs(q)b

†
is(P − q)a†j(q)|0〉 (230)

+
∑

ijks

∫
dq

1
dq

2
fijks(q1, q2)

1
√
1 + δjk

b†is(P − q
1
− q

2
)a†j(q1)a

†
k(q2)|0〉+ . . . ,

It is normalized by the requirement 〈ψσ′(P ′)|ψσ(P )〉 = δσσ′δ(P ′−P ). The wave functions f that define
this state must satisfy the usual coupled system of equations The first three coupled equations are

m2
i zi +

∑

i′,j

(−1)i
′+jP+

∫ P+

dq
{
fi′j−(q)[V+(P − q, q) + V ∗

−(P , q)]

+fi′j+(q)[Ui′(P − q, q) + Ui(P , q)]
}
=M2zi, (231)

[
m2

i + q2⊥
1− y

+
µ2
j + q2⊥
y

]
fijs(q) +

∑

i′
(−1)i

′
{
zi′δs,−[V

∗
+(P − q, q) + V−(P, q)]

+zi′δs,+[Ui(P − q, q) + Ui′(P, q)]
}

(232)

+2
∑

i′,k

(−1)i
′+k

√
1 + δjk

P+
∫ P+−q+

dq′
{
fi′jk,−s(q, q

′)[V2s(P − q − q′, q′)

+ V ∗
−2s(P − q, q′)]

+fi′jks(q, q
′)[Ui′(P − q − q′, q′) + Ui(P − q, q′)]

}
=M2fijs(q),

and
[
m2

i + (~q1⊥ + ~q2⊥)
2

1− y1 − y2
+
µ2
j + q21⊥
y1

+
µ2
k + q22⊥
y2

]
fijks(q1, q2) (233)

+
∑

i′
(−1)i

′

√
1 + δjk

2
P+

{
fi′j,−s(q1)[V

∗
−2s(P − q1 − q2, q2)

+ V2s(P − q1, q2)]

+fi′js(q1)[Ui(P − q1 − q2, q2) + Ui′(P − q1, q2)]

+fi′k,−s(q2)[V
∗
−2s(P − q1 − q2, q1) + V2s(P − q2, q1)]

+fi′ks(q2)[Ui(P − q1 − q2, q1) + Ui′(P − q2, q1)]
}
+ . . .

=M2fijks(q1, q2).

To best interpret the norms of different Fock sectors, the physical wave functions were defined as
the coefficients of Fock states containing only positive-norm particles. This reduction can be achieved
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by requiring all Fock states to be expressed in terms of the positive-norm creation operators b†0s and a
†
0

and the zero-norm combinations b†s ≡ b†0s + b†1s and a† ≡ a†0 + a†1. Any term containing a b†s or an a†,
which would be annihilated by the PV-generalized electromagnetic current, is discarded, leaving the
physical state

|ψ+〉phys = (z0 − z1)b
†
1+(P )|0〉+

∑

s

∫
dq




∑

ij

(−1)i+jfijs(q)



 b†0s(P − q)a†0(q)|0〉

+
∑

s

∫
dq

1
dq

2




∑

ijk

(−1)i+j+kfijks(q1, q2)
1

√
1 + δjk



 (234)

× b†0s(P − q
1
− q

2
)a†0(q1)a

†
0(q2)|0〉+ . . . ,

From this state various physical quantities are extracted, including the boson structure function for
constituent-fermion helicity s

fBs(y) =
∫
dqδ(y − q+/P+)

∣∣∣∣∣∣

∑

ij

(−1)i+jfijs(q)

∣∣∣∣∣∣

2

(235)

+
∫ 2∏

n=1
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+)
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∑

ijk

(−1)i+j+kfijks(qn)
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2

+ . . .

In traditional DLCQ, the lower bound of 1/K on longitudinal momentum fractions provides a natural
cutoff in the number of equations. The range of the transverse integrations is cut off by imposing
p2i⊥/xi < Λ2 for each particle in a Fock state; this reduces the DLCQ matrix problem to a finite size.
The transverse momentum indices nx and ny are limited by a transverse resolution N . For a reduced
set of equations, alternative quadratures are more efficient. In particular, the transverse momentum q⊥
can be mapped to a finite range that compresses the wave function’s tail to a relatively small region,
so that a Gauss–Legendre quadrature can yield a good approximation [81].

Given such a discretization and the consequent finite matrix eigenvalue problem, one can compute
mass eigenvalues and associated wave functions. The bare parameters g and m0 can be fixed by fitting
“physical” constraints, such as specifying the dressed-fermion mass M and its radius. In principle, one
then takes the infinite resolution and infinite momentum volume limits, as well as the infinite PV-mass
limits.

4.4 Supersymmetric Yang–Mills theory

A number of applications of SDLCQ to supersymmetric Yang–Mills (SYM) theories have been carried
out by the SDLCQ collaboration [33, 150, 86, 87, 151, 83, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162]. The most recent work has been on the inclusion of fundamental matter, i.e., supersymmetric
QCD (SQCD) with a Chern–Simons (CS) term [163] in the large-Nc approximation [157, 158, 164].
Thermodynamic properties were of particular interest [52].

The Chern–Simons term gives a mass to the adjoint partons without breaking the supersymmetry;
the adjoint particles are less likely to form long strings, which are difficult to approximate well and
are not naturally part of ordinary QCD. Both a dimensionally reduced model [153, 154] and the full
(2+1)-dimensional theory [155, 156] have been investigated.

A correlator 〈T++(x)T++(y)〉 of the stress-energy tensor, has been computed [86, 87] as a test
of a Maldacena conjecture [165, 166] of a correspondence between certain string theories and SYM
theories at large-Nc. These can be tested directly if one is able to solve an SYM theory at strong
coupling, as SDLCQ is capable of doing. The solution can be compared to a small-curvature supergravity
approximation to the corresponding string theory.
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The particular calculation [167] was done for of N = (8, 8) SYM theory in two dimensions, which
corresponds to a type IIB string theory [166]. The supergravity approximation and the opportunity for
an SDLQ calculation are discussed in [168] and [87]. The resolution needed to solve the SYM theory
accurately enough was reached with the work reported in [167]. The method of calculation is discussed
in Sec. 3.2.

For comparison, the N=(2,2) SYM theory was also considered. It is obtained through the dimen-
sional reduction of N=1 SYM theory from four to two dimensions [169]. The action is the same as for
N=(8,8), except that the indices run from 1 to 2 instead of 1 to 8. Because there are fewer dynamical
fields, there are also fewer symmetries. The smaller number of fields allowed calculations at higher
resolution, reaching K = 14 for the (2, 2) theory versus K = 11 for the (8, 8) theory. The important
point of the comparison is that there is no conjecture of correspondence for the (2, 2) theory, and its
correlator should behave differently.

Figure 7 shows the log-log derivative of the rescaled correlator f , as defined in (96), for both SYM
theories and for a range of resolution values. For small r ≡

√
2x+x−, the expected 1 − 1/K behavior,

(a) (b)

Figure 7: Plots of the log-log derivative of the rescaled correlator f for the (a) N = (2, 2) and (b) (8, 8)
SYM theories, from [167]. Each curve corresponds to a different resolution K, with K ranging from 3 to
14 in (a) and from 3 to 11 in (b). For odd K the curves are solid, and for even K they are dashed. The
darker lines are for the highest resolutions; the lower resolutions converge to these from above (odd)

and below (even) for log r ≥ 0.2. The separation r ≡
√
2x+x− is measured in units of

√
π/g2Nc.

stated in (95), appears for each resolution. For large r, odd and even resolutions produce different
behaviors; this is because exactly massless states are missing from the odd case. For even K, there is a
massless state that allows the correlator to behave as 1/r4 at large r. For odd K, the missing massless
state is recovered only in the limit of infinite K.

For intermediate r, the expected behavior of the (8, 8) theory, based on the correspondence, is 1/r5

and the log-log plot should be near −1. To investigate this region, the values of the scaled correlator
were extrapolated to infinite resolution. Estimates of the error in the extrapolation were made by
considering fits of different orders for the odd and even resolutions separately. The extrapolated results
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are shown in Fig. 8. The two theories are clearly different in their behavior for intermediate r. Only

(a) (b)

Figure 8: Summary of extrapolations to infinite resolution for the (a) N = (2, 2) and (b) (8, 8) SYM
theories, from [167]. The vertical segments represent the intervals obtained by various choices of ex-
trapolations..

the (8, 8) theory is consistent with the 1/r5 behavior predicted for it by the correspondence to the
supergravity approximation.

4.5 Quantum Electrodynamics

Light-front QED has provided a number of useful tests of various methods, particularly because it is
the simplest gauge theory. Some work has been two-dimensional, where QED is also known as the
(massive) Schwinger model [170, 171, 172], but the primary focus has been the full four-dimensional
theory. The first DLCQ application was by Tang, Brodsky, and Pauli [173], followed by a series of
efforts to compute the states of positronium [174, 175, 176] with steadily improving methods, based
primarily on quadrature schemes and Fock-space truncations, culminating in the current state-of-the-
art calculations with the BLFQ approach [101]. Related analytical calculations for level-splittings in
positronium [177] focused on renormalization of the QED Hamiltonian. There are also calculations of
fine and hyperfine structure [178] and the Lamb shift [179] in hydrogen.

Another important QED observable is the anomalous magnetic moment, which has been computed
in various ways. Langnau et al. [180] investigated the DLCQ approximation in the context of perturba-
tion theory. Hiller and Brodsky [17] used DLCQ combined with sector-dependent renormalization, an
invariant-mass cutoff, and a Fock space truncation to two photons. More recent calculations [24, 82] use
PV regularization. The one-photon truncation of the dressed electron state has also been computed by
Karmanov et al. [145, 18]. The dressed-photon state has also been investigated [108]; the appropriate
PV regularization has been found to enforce a zero eigenmass for the photon.
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4.5.1 anomalous moment of the electron

The dressed-electron eigenstate of Feynman-gauge QED has been computed in light-front quantization
with a Fock-space truncation to include the two-photon/one-electron sector [45, 20, 82, 181]. Earlier
work was limited to a one-photon/one-electron truncation [24]. The theory is regulated by the inclusion
of three massive Pauli–Villars (PV) particles, one PV electron, and two PV photons. In particular, the
chiral limit was investigated [45], and the correct limit was found to require two PV photon flavors, not
just one as previously thought [24]. The renormalization and covariance of the electron current were also
analyzed [45]. The plus component is well behaved and is used in a spin-flip matrix element to compute
the electron’s anomalous moment. The dependence of the moment on the regulator masses was shown
to be slowly varying when the second PV photon flavor is used to guarantee the correct chiral limit.
However, in the two-photon truncation, the chiral constraint must be computed nonperturbatively [82].
The nonperturbative constraint is that the bare mass m0 should be zero when the eigenmass M is zero.

The motivation for the use of the plus component of the current is that, for this component, ad-
ditional renormalization is not needed. Because fermion-antifermion states are excluded, there is no
vacuum polarization. Thus, if the vertex and wave function renormalizations cancel, there will be no
renormalization of the external coupling. In covariant perturbation theory, this is a consequence of the
Ward identity; order by order, the wave function renormalization constant Z2 is equal to the vertex
renormalization Z1. As discussed by Brodsky et al. [44], this equality holds true more generally for
nonperturbative bound-state calculations. However, a Fock-space truncation can have the effect of de-
stroying the covariance of the electromagnetic current, so that some components of the current require
renormalization despite the absence of vacuum polarization. Also, the lack of fermion-antifermion ver-
tices destroys covariance. However, in the particular case here, the couplings to the plus component are
not renormalized [45].

The violation of chiral symmetry in the massless electron limit was not recognized in the earlier
work on this particular PV regularization [24], because the symmetry is restored in the limit of infinite
PV electron mass, but the need for three PV fields is quite consistent with what has been found in
different PV regularizations of QED and Yukawa theory [143]. This symmetry is restored by the addition
of a second PV photon flavor, with its coupling strength and mass related by a constraint. For the
one-photon truncation, this is the simple condition [45]

2∑

i=0

(−1)iξ2i
µ2
i /m

2
1

1− µ2
i /m

2
1

ln(µ2
i /m

2
1) = 0. (236)

For the two-photon truncation, the coupling strength ξ2 must be adjusted nonperturbatively.

With the second PV photon flavor included, the electron’s anomalous moment at finite PV electron
mass can be computed [45]. Without the second PV photon flavor, the anomalous moment has a strong
dependence on the PV masses, as shown in Fig. 9, but with the restoration of chiral symmetry in the
limit of a massless electron, the dependence on the PV mass is very mild.

From Fig. 9, we see that, without the second PV photon, the PV electron mass needs to be on the
order of 107me before results for the one-photon truncation approach the infinite-mass limit. Thus,
the PV electron mass must be at least this large for a successful calculation with a two-photon Fock-
space truncation, if only one PV photon flavor is included. Unfortunately, such large mass values
make numerical calculations difficult, because of contributions to integrals at momentum fractions of
order (me/m1)

2 ≃ 10−14, which are then subject to large round-off errors. Therefore, the two-photon
calculation does require the second PV photon.

When the anomalous moment is re-calculated in the one-photon truncation with the second PV
photon flavor included, the result is given in Fig. 10, for PV masses related by µ2 =

√
2µ1. Clearly, the

dependence on the PV masses is greatly reduced.
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Figure 9: The anomalous moment of the electron in units of the Schwinger term (α/2π) [117] plotted
versus the PV photon mass, µ1, for a few values of the PV electron mass, m1, from [45]. The second
PV photon flavor is absent, and the chiral symmetry of the massless limit is broken by the remaining
regularization. The Fock-state expansion is truncated at one photon.

The value obtained for the anomalous moment differs from the leading-order Schwinger result [117],
and thus from the physical value, by 17%. This result is considerably improved if the self-energy
contribution from the one-electron/two-photon Fock sector is included [20]. The alternative, sector-
dependent renormalization method [17, 18] accomplishes this by restricting the bare mass in the one-
electron/one-photon sector to being equal to the physical mass; however, this introduces the usual
infrared divergence of perturbation theory which requires a nonzero photon mass and shifts the result
for the anomalous moment away from the standard result [17].

The truncation of the dressed-electron state was extended to include two photons, and the anomalous
moment was computed [82, 181]. With the chiral symmetry properly controlled, there is a plateau in
the dependence on the PV mass, as shown in Fig. 11. The main result for the two-photon truncation is
in general agreement with experiment, within numerical errors. It is, however, systematically slightly
below, due to the absence of two important contributions. One is from the Fock sector with an electron-
positron loop, which contributes at the same order as the two-photon sector in perturbation theory,
and the other is the three-photon self-energy contribution.

The work on QED has gone beyond Feynman gauge to include arbitrary covariant gauges [27]. The
gauge dependence was checked for a one-photon/one-electron truncation of the Fock expansion for the
dressed electron. The result for the anomalous moment is shown in Fig. 12. The gauge parameter ζ
is the coefficient of the gauge-fixing term in the Lagrangian; thus, ζ = 0 is a singular limit where the
gauge fixing is removed and the theory is undefined. Except for values of ζ near 0, the anomalous
moment varies only slightly. This variation is due to Fock-space truncation errors.

The one-photon truncation has also been solved with the BLFQ method [99, 100], both in a trans-
verse cavity and as free (modeled as a weak cavity field). The dressed electron problem was formulated in
light-cone gauge; however, the instantaneous interactions were neglected, making the coupled system for
the wave functions very similar in structure to the Feynman-gauge system. The ultraviolet divergences
were regulated by the basis choice and by the basis truncation. Sector-dependent mass renormalization
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Figure 10: Same as Fig. 9, and also from [45], but with the second PV photon included, with a mass
µ2 =

√
2µ1, and the chiral symmetry is restored. The mass ratio is held fixed as µ1 and µ2 are varied.

was also used, with the physical electron mass assigned in the |eγ〉 sector and the bare mass in the |e〉
sector adjusted to yield the correct eigenmass for the dressed state. Without sector-dependent coupling
renormalization, to absorb the uncanceled divergence from the broken Ward identity, the norm of the
wave function diverges in the infinite basis limit, and results had to be extracted from a range of finite
cutoffs. Later work argues for an explicit renormalization of the matrix element for the anomalous
moment [182].

These investigations included careful studies of convergence with respect to both the basis size
Nmax and the oscillator energy scale Ω. In the free case, convergence is slow because the harmonic
oscillator basis functions are not a good match to the power-law behavior of the electron’s wave functions.
However, the harmonic oscillator functions should be a good approximation for the confined quarks of
QCD, and this work serves as test of the method. The results are comparable to the known perturbative
result and the other nonperturbative calculations, as illustrated in Fig. 13.

As another illustration of the LFCC method, the dressed-electron state can be investigated [123]. To
simplify the calculations, electron-positron pairs are excluded; however, an infinite number of photons is
retained. The anomalous moment can then be computed from a spin-flip matrix element of the current.
The valence state is the bare electron, and the T operator is truncated to just simple photon emission
from an electron:

T =
∑

ijlsσλ

∫
dyd~k⊥

∫ dp√
16π3

√
p+ tσsλijl (y,

~k⊥) (237)

× a†lλ(yp
+, y~p⊥ + ~k⊥)b

†
js((1− y)p+, (1− y)~p⊥ − ~k⊥)biσ(p).

This includes as much physics as the two-photon Fock-space truncation considered earlier [82].
A graphical representation of the effective Hamiltonian P−, excluding terms that annihilate the

valence state, is given in Fig. 14. The self-energy loop is the same in each contribution, without the
sector and spectator dependence found in calculations with Fock-space truncation. Another consequence
of using the LFCC method is that terms corresponding to all three graphs for the Ward identity in
Fig. 2 appear in the effective Hamiltonian, as indicated by the last row of Fig. 14, which prevents the
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Figure 11: The anomalous moment of the electron in units of the Schwinger term (α/2π) [117] plotted
versus the PV photon mass, µ1, with the second PV photon mass, µ2, set to

√
2µ1 and the PV electron

mass m1 equal to 2 ·104me, from [82]. The solid squares are the result of the full two-photon truncation
with the correct, nonperturbative chiral constraint. The open squares come from use of a perturba-
tive, one-loop constraint. Results for the one-photon truncation [45] (solid line) and the one-photon
truncation with the two-photon self-energy contribution [20] (filled circles) are also included.

uncanceled divergence encountered in a Fock-space truncation. Also, in the equations for the functions
tσsλijl (y,

~k⊥), the physical mass of the eigenstate replaces the bare mass in the kinetic energy term, without
use of sector-dependent renormalization [16, 17, 18, 20].

The anomalous moment ae = F2(0) is obtained from the spin-flip matrix element of the current
J+ = ψγ+ψ [40], coupled to a photon of momentum q in the Drell–Yan (q+ = 0) frame [41], as given
in Eq. (52). The formalism for a projected expectation value [123], with the projection Ps being the
projection onto the physical subspace with the two transverse polarizations λ = 1, 2, yields for the
current matrix element

〈ψσ
a (P + q)|J+(0)|ψ±

a (P )〉 =
〈ψ̃σ

a (P + q)|e−TP †
s J

+(0)Pse
T |φ±

a (P )〉∫
dP ′〈ψ̃±

a (P
′)|e−TP †

sPseT |φ±
a (P )〉

, (238)

with 〈ψ̃σ
a (P + q)| the left-hand eigenstate of P−

|ψ̃±
a (P )〉 = |φ̃±

a (P )〉 (239)

+
∑

jlsλ

∫
dyd~k⊥

√
P+

16π3
l±sλ
ajl (y,

~k⊥)a
†
lλ(yP

+, y ~P⊥ + ~k⊥)b
†
js((1− y)P+, (1− y)~P⊥ − ~k⊥)|0〉,

The truncation to |e〉 + |eγ〉 is consistent with the truncation of T . The form factors can then be
extracted.

This can be checked by considering the perturbative solutions for the right and left-hand wave
functions; substitution into the expression for ae gives immediately the Schwinger result [117] of α/2π,
in the limit of zero photon mass, for any covariant gauge [123]. A complete calculation requires a
numerical solution of the eigenvalue problems. This will yield all contributions to ae of order α

2, except
those with electron-positron pairs, and a partial summation of higher orders.

55



ζ

0 2 4 6 8 10

(2
π/

α)
 a

e

0.2

0.4

0.6

0.8

1.0

1.2

Figure 12: The anomalous magnetic moment ae, relative to the Schwinger term α/2π [117], for the
dressed-electron state truncated to include at most the one-electron/one-photon Fock states, as a func-
tion of the gauge parameter ζ , with a bare photon mass of µ0 = 0.001me and PV photon mass of
µ1 = 200me, from [27].

4.5.2 positronium

The first application of light-front techniques to positronium in light-cone gauge was by Tang et al. [173].
An improved treatment of the Coulomb singularity led to better convergence [174]. Both of these
attempts considered an effective interaction in the |e+e−〉 sector, with the |e+e−γ〉 sector integrated
out and all other sectors neglected. A direct diagonalization of the light-front QED Hamiltonian was
attempted by Kaluža and Pauli [175]. This work culminated in the more exhaustive study by Trittmann
and Pauli [176], which included the annihilation channel and numerical convergence to restoration of
rotational invariance; the light-front equations were discretized by Gauss-Legendre quadrature.

More recently, the BLFQ method has been used to study positronium [101], again in light-cone
gauge, with a Fock-space truncation to the |e+e−〉 and |e+e−γ〉 sectors. The annihilation channel, with
coupling to the |γ〉 sector, is not included. With use of the Bloch formalism [183], the higher sector is
eliminated to yield an effective one-photon-exchange interaction in the lower sector, and the self-energy
contributions neglected. This is equivalent to the truncations made for the earlier work [174, 176], but
the numerical approximation is quite different. More important, it will serve as a point of reference for
future calculations with self-energies and sector-dependent renormalization.

If the full Hamiltonian were used instead of the Bloch-reduced Hamiltonian, the matrix representa-
tion would be much larger but much more sparse. However, the self-energy terms would be automatically
included with no simple way to exclude them. Of course, eventually this is exactly what needs to be
considered, to approximate the full many-body problem. This will require a better understanding of
the renormalization generated by the self-energy corrections.

The calculation is done at α = 0.3, in order to make higher-order effects visible numerically. The
results compare quite favorably with those from the Schrödinger equation with (perturbative) relativistic
corrections, to order α4. The dependence on the regulators and the rate of convergence were thoroughly
studied. The convergence rate with respect to the basis cutoff Nmax was found to be strongly affected
by the choice of oscillator energy scale b; the convergence rate with respect to the longitudinal DLCQ
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Figure 13: The square-root of the anomalous magnetic moment ae, relative to the electron charge e,
as a function of the BLFQ basis-size parameter Nmax, with resolution K set to Nmax + 1/2 and the
oscillator-basis energy scale b = me, from [100]. The lines are from linear fits for Nmax > 150.

resolution K was affected by the photon mass µ.

The convergence is again slow, because harmonic oscillator functions are not the best approximation
to the exponential functions of the Schrödinger-Coulomb problem. However, as preparation for the
calculation of meson states, the use of oscillator functions is worthwhile. Similarly, though the two-
body sector lends itself to solution in terms of relative coordinates, the single-particle basis set of BLFQ
was retained, as preparation for calculations that include more Fock sectors explicitly.

The instantaneous-photon interaction is singular for small longitudinal photon momentum. In a
perturbative calculation, this is canceled by a contribution from regular photon exchange, which can be
matched term by term. In the nonperturbative calculation, the cancellation is not complete and requires
a counterterm. Similar counterterms were used in earlier work [174, 176], where extensive discussion of
this counterterm can be found.

The integrable Coulomb singularity, while controlled in principle, causes difficulties numerically. A
photon mass is introduced to regulate it.

There is also a logarithmic divergence from the one-photon-exchange kernel [174, 184] that requires
a counterterm. This takes into account effects of the (missing) |e+e−γγ〉 sector. Unfortunately, the
counterterm worsens the breaking of rotational symmetry.

The Fock-sector truncation and the asymmetry between the longitudinal and transverse discretiza-
tions destroy the rotational invariance of the Hamiltonian. Thus, theMJ multiplets are not degenerate.
However, the individual projections are typically close enough to allow assignment of J values.

4.5.3 true muonium

The general approach used for positronium can be naturally extended to analyze true muonium, the
bound states of the µ+-µ− system. These states are metastable, with lifetimes short compared to the
muon lifetime. The methods of [176] have been extended to true muonium by Lamm and Lebed [80].
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Figure 14: Graphical representation of the terms of the LFCC effective QED Hamiltonian. Each graph
represents an operator that annihilates an electron and creates either a single electron or an electron
and photon. The crosses indicate light-front kinetic-energy contributions.

They include |µ+µ−〉 and |e+e−〉 sectors and effective interactions obtained by integrating out the one-
photon annihilation channel and the higher sectors with an added photon. The impact of the |e+e−〉
component is investigated by allowing the electron mass to be comparable to the muon mass. The
coupling strength is again held at α = 0.3.

The numerical methods were based on Clenshaw–Curtis [185] and Gauss-Chebyshev quadratures.
The Coulomb singularity required different counterterms in each sector. In general, the cutoff depen-
dence and choice of counterterms are studied carefully, leading to good agreement with nonrelativistic
calculations that include relativistic effects perturbatively. The agreement provides confirmation that
the light-front calculations are done correctly. However, one must keep in mind that these and other
tests of light-front methods in QED are just that, tests of the method, and will never be competitive
with equal-time calculations. The true home of light-front methods is in strongly interacting theo-
ries where perturbative corrections of some zero-order (non)relativistic approximation cannot be used
effectively.

4.6 Quantum Chromodynamics

Two-dimensional QCD has been studied quite extensively in the DLCQ approximation [186]. The earli-
est application to four-dimensional QCD is a DLCQ calculation by Hollenberg et al. [187]; however, such
four-dimensional applications have lacked a consistent regularization. The various methods developed
since, such as PV regularization [28, 188] and sector-dependent renormalization should provide a path
forward. The primary purpose of this review is to facilitate and encourage progress along that path.

As an alternative to direct diagonalization of the QCD Hamiltonian, one can use light-front tech-
niques to construct and analyze quark models, particularly in parallel with the AdS/QCD approach [105].
The BLFQ method has been modified to use relative coordinates and study heavy quarkonium in exactly
this way [189]. This allows the calculation of masses and decay constants. McCartor and Dalley [190]
have derived an effective Hamiltonian operator to induce chiral symmetry breaking; this could be in-
corporated into a study of mesons in QCD. There is also a construction of a confining interaction based
on the requirement of restoration for rotational symmetry [191, 192, 193].

Glueball states have been studied [194] with a renormalized light-front Hamiltonian, constructed
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from recursion relations that restore symmetries and eliminate cutoff dependence. The Fock space was
truncated to the two-gluon sector, and the Hamiltonian provided an effective interaction to bind the
gluons. The renormalization scheme was developed in the context of scalar theories [195, 196] and
builds on the fundamental ideas of Wilson et al. [31, 30] for a derivation of the constituent quark model
from light-front QCD. Along similar lines, asymptotic freedom in pure-glue QCD has been investigated
with the related RGPEP [197].

5 Future Challenges

The preceding sections have provided an in-depth review of the nonperturbative methods applied to
light-front calculations in a variety of quantum field theories. In each case, there remain many interesting
questions to pursue, not the least of which, of course, is the solution of QCD itself, and there are many
other applications not yet considered.

For quenched scalar Yukawa theory, perhaps the most important open question is the convergence
of the LFCC method. This theory is the simplest theory for such a test, because the T operator has the
simplest possible form, and the theory is not very far removed from the simple model where the leading
LFCC approximation gives the exact solution [21]. Another important question to be understood is
why sector-dependent renormalization works so well for calculations with Fock-space truncation [134],
seemingly avoiding the pitfalls found in Yukawa theory and QED [20]. Is the boson nature of the theory
the key? In which case, does this bode well for the gluons of QCD?

This leads to the more general question of whether sector-dependent renormalization can be in-
terpreted in some way to allow meaningful calculations. The triviality limit on cutoffs [148, 20] must
somehow be absorbed into the rules for extraction of physical observables. Avoidance of Fock-space
truncation, via the LFCC method, may be the best route forward, but the work on quenched scalar
Yukawa theory [134] indicates that Fock-space truncation and sector-dependent renormalization may
also provide a useful set of rules for calculation.

In φ4
1+1 theory, the standard bearer for theories with broken symmetry, there is still much to consider,

if only to show that light-front methods can do as good a job as any other approach. Specifically, the
critical couplings and critical exponents should be calculable for the restoration of symmetry in the
negative-mass-squared case as well as for the dynamical symmetry breaking in both the positive and
negative mass-squared cases. However, any comparison with equal-time calculations that is done in
terms of bare parameters must take into account the different renormalizations [137]. Near the critical
coupling, where the mass of the dressed state is close to zero and the probabilities of higher Fock states
should be large, use of sector-dependent mass renormalization or the LFCC method is probably crucial.

Zero modes can be useful in the analysis of φ4 theory but are not necessarily required [57]. In
any case, much hinges on the interpretation of the Fock vacuum |0〉. Critical couplings are typically
signaled by degeneracy of a dressed eigenstate with the (massless) vacuum. An increase of the coupling
beyond this point drives the “massive” eigenstate below zero and therefore below the alleged vacuum,
a nonsensical outcome. This implies that the quantization has been done incorrectly; the Fock vacuum
should always be the lowest state. A correct quantization should either shift the field explicitly [70] or
introduce zero modes that give some structure to the vacuum. Either way, the field then develops the
necessary vacuum expectation value.

The solution of Yukawa theory should be carried out with an additional PV scalar, to nonperturba-
tively restore the chiral symmetry of the massless limit. The work on Yukawa theory was done [81, 19]
before the understanding of the symmetry restoration was achieved in the context of PV-regulated
QED.

The work on supersymmetric Yang–Mills theory should be extended to 3+1 dimensions. This would
bring the possibility of analyzing QCD as a limit of supersymmetric QCD, with the superpartners re-
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placing PV fields as the regulators. Obviously, this also entails supersymmetry breaking, to give the
superpartners a large mass. However, this is distinct from supersymmetric extensions of the Standard
Model, which are theories in their own right. Instead, the idea is to use supersymmetry as a regulariza-
tion tool, with no physical interpretation given to the superpartners, which would be removed from the
calculation in an infinite-mass limit. The limitations on the form of supersymmetry breaking, that come
from the appearance of unobserved processes such as flavor-changing decays, would not necessarily be
applicable, which broadens the options for the mechanism of the breaking.

For both Yukawa theory and QED, very little has been done on the inclusion of vacuum polar-
ization [108]. Typically, the Fock space is truncated to exclude additional fermion-antifermion pairs.
This leaves open the question of nonperturbative charge renormalization. The charge renormalization
done in sector-dependent renormalization is ‘only’ an artifact of absorbing wave function and vertex
renormalization, leftover from a broken Ward identity. Of course, the LFCC method sidesteps issues of
Fock-space truncation, but needs to be tested in both Yukawa theory and QED.

There is a similar renormalization issue in the treatment of self-energy corrections for multiparticle
bound states. Calculations have typically divided into two types. One type focuses on the dressing
of a single particle; here self-energies are the center of the piece. The other type focuses on binding
two constituents, usually by an effective interaction obtained by integrating out other Fock sectors;
here self-energies are explicitly neglected, to understandably simplify the calculation. In the future,
the knowledge gained from the first type needs to be merged with the second. This is particularly
important before moving on to less severe Fock-space truncations for which a reduction to a single
effective equation and identification of self-energy contributions cannot be done. The LFCC method
should be useful because there the self-energy corrections tend to be spectator independent.

Simply by measuring the length of the section on applications to QCD in comparison with the
length of the other sections, one can see that there is much to be done. However, many if not all of
the tools necessary for the job have been established. Nonperturbative calculations of simpler systems
such as glueballs and heavy mesons are within reach. The potential for an explanation of confinement
is particularly interesting in these systems, perhaps based on RGPEP [29] or the LFCC method; in the
latter method, an infinite number of gluons can be included.

There is also much formal work to be done. A proof of renormalizability is needed for the proposed
PV regularization scheme [28]. A small step in this direction is the introduction of Nakanishi–Lautrup
fields [198] to make the BRST transformation nilpotent off-shell. However, there are more than just
the usual complications of perturbative renormalization, because, after all, the objective is use in a
nonperturbative calculation. The philosophy employed so far has been that a regularization adequate
for perturbation theory is then sufficient for nonperturbative calculations, implicitly assuming that
renormalizability carries over as well. This may not be the case; for example, in any gauge-fixed theory,
one must contend with the existence of Gribov copies [199].

Nevertheless, the time is ripe for tremendous progress in light-front solutions for systems in QCD.
Consider the progress that lattice gauge theory has made in the twenty-five years since its originator
expressed so much pessimism [13]. This progress was accomplished through the concerted and combined
efforts of a large community. The challenge of the future is for light-front methods to be carried forward
in just such a manner.
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[72] A. Borderies, P. Grangé, and E. Werner, Phys. Lett. B 319 (1993) 490 ; Phys. Lett. B 345 (1995)
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