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Abstract

Because of relativistic off-center motion of the charged spectators and the local momentum-
imbalance experienced by the participants, a huge magnetic field is likely generated in high-
energy collisions. The influence of such short-lived magnetic field on the QCD phase-transition(s)
shall be analysed. From Polyakov linear-sigma model, we study the chiral phase-transition and
the magnetic response and susceptibility in dependence on temperature, density and magnetic
field strength. The systematic measurements of the phase-transition characterizing signals, such
as the fluctuations, the dynamical correlations and the in-medium modifications of rho-meson,
for instance, in different interacting systems and collision centralities are conjectured to reveal
an almost complete description for the QCD phase-structure and the chemical freezeout. We
limit the discussion to NICA energies.
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1 Introduction

In most of the experimental signals revealing the deconfinement phase-transition such as the corre-
lations and the elliptic flow of produced particles, the increase in the collision size and centrality is
conjectured to improve their detection. The heavy-ion collisions - on the other hand - introduce a
remarkable effect; a nonzero magnetic field, which can be generated due to the relativistic off-center
motion of the spectators electric charges and due to the local imbalance in the momentum carried
by colliding nucleons, which leads to local angular-momentum [1, 2]. Accordingly, the life span of
the resulting magnetic field can approximatively be estimated from the duration of both mecha-
nisms. The relativistic off-center motion of the electric charges and the local momentum imbalance
of colliding nuclei keep up with the strong interaction causing them, i.e., ∼ 10−23 sec. Thus, the
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resulting magnetic field is short-lived but its strength can be very huge, O(m2
π) [3]. We focus the

discussion to NICA energies, where eB ≃ 0.156m2
π ≃ 1.567 × 1017 Gauss, Fig. 3.

Quantum electrodynamical (QED) phenomena such as magnetic catalysis which describes how
the magnetic field generates masses, dynamically and the Meissner effect in which the magnetic field
changes the order of the phase transition in type-I superconductor are borrowed from solid-state
physics in order to study the possible influence of the generated magnetic field on the quantum
choromodynamical (QCD) phase-space structure [4] and/or the response of the hadronic and par-
tonic matter to nonzero magnetic field in thermal and dense medium.

We have utilized the Polyakov linear-sigma model (PLSM) in characterizing various QCD phe-
nomena. Thermodynamic quantities including the higher-order moments of particle multiplicities
are studied and compared with lattice QCD results [5, 6]. The chiral phase-structure of (pseudo)-
scalar and (axial)-vector meson masses in thermal and dense medium was analysed, as well [7].
Furthermore, we have reported on some properties of the quark-gluon plasma (QGP) in nonzero
magnetic field [8]. From these studies, various parameters of PLSM can be fixed. Based on this
PLSM can also be utilized at high density, where the non-perturbative lattice technique becomes
no longer applicable.

In the present work, we shall describe how the chiral phase-transition and the magnetic response
and susceptibility are affected at high density and nonzero magnetic field. In doing this, we utilize
PLSM in the mean field approximation. Upon availability, our calculations shall be compared with
lattice QCD simulations.

2 A short reminder to Polyakov linear-sigma model in finite mag-

netic filed

By assuming that the magnetic field (eB) is directed along z-axis of the collision plane and from
magnetic catalysis and Landau quantization [9], the magnetic field strength causes a considerable
modification to the quark (and equivalently in antiquark) dispersion relations,

EB,f = [p2z +m2
f + 2|qf |(n− Sz + 1/2)B]1/2, (1)

where subscript f runs over all quarks (and antiquarks) flavors, Sz is the component of the spin
in the magnetic field direction, n being index label for Landau levels and |qf | > 0 is the electric
charge of f -th quark flavor. From the magnetic catalysis property, a dimensional reduction can be
implemented [9],

∫

d3p

(2π)3
−→ |qf |B

2π

∞
∑

ν=0

∫

dpz
2π

(2− δ0ν), (2)

where 2 − δ0ν stands for degenerate Landau levels and n − Sz + 1/2 is replaced by the quantum
number ν.

Further details about the PLSM formalism can be taken from Ref. [5, 6, 7]. In the mean field
approximation, the PLSM grand potential can be summarized as [6],

Ω(T, µ) = U(σx, σy) + U(φ, φ∗, T ) + Ωψ̄ψ(T ;φ, φ
∗, B). (3)

The mesonic potential U(φ, φ∗, T ) is assumed to vanish at high temperatures ≥ ΛQCD. The purely
mesonic potential is given as [10].

U(σx, σy) = −hlσx − hsσy +
m2

2
(σ2
x + σ2

y)−
c

2
√
2
σ2
xσy +

λ1

2
σ2
xσ

2
y +

(2λ1 + λ2)

8
σ4
x +

(λ1 + λ2)

4
σ4
y . (4)
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Due to the Landau quantization and the magnetic catalysis, the quarks and antiquark contri-
butions to the PLSM potential are given as [8]

Ωq̄q(T, µf , B) = −2
∑

f=l,s

|qf |B T

(2π)2

νmaxf
∑

ν=0

(2− δ0ν)

∫

∞

0
dpz

{

ln
[

1 + 3
(

φ+ φ∗eF (x)
)

e−F (x) + e−3F (x)
]

+

ln
[

1 + 3
(

φ∗ + φe−F (−x)
)

e−F (−x) + e−F (−x)
]}

, (5)

where F (x) = −(EB,f − µf )/T and F (−x) = −(EB,f + µf )/T . EB,f is given in Eq. (1) and
µf refers to the chemical potential of f -th quark flavor. In vanishing magnetic field, the quarks
potential reads

Ωq̄q(T, µf ) = −2T
∑

f=l,s

∫

∞

0

d3~p

(2π)3

{

ln
[

1 + 3
(

φ+ φ∗e−F (x)
)

× e−F (x) + e−3F (x)
]

+

ln
[

1 + 3
(

φ∗ + φe−F (−x)
)

× e−F (−x) + e−3F (−x)
]}

, (6)

Landau quantization, which is applied in order to add restrictions to the quarks due to the
existence of free charges in the plasma phase, affects the strongly interacting matter by reducing
the electromagnetic interactions between the quarks. In nonzero magnetic field, one still has to
sum over color and flavor degrees of freedom with a dispersion relation given in Eq. (1), because
the electric charges of the quarks are not equal, Eq. (5). On the other hand, the zero modes, Eq.
(6), are taken into consideration in the present calculations. Furthermore, we have estimated the
occupation of Landau levels at different temperatures, densities (chemical potentials), and magnetic
field strengths (not shown here). We have concluded that the population of Landau levels is most
sensitive to the magnetic field and the quark charges, as well. Having PLSM potential, Eq. (3), we
can then straightforwardly deduce the thermodynamics quantities of interest.

3 Results and discussion

3.1 Chiral phase-transition at high density and nonzero magnetic field

In Fig. 1, the normalized chiral condensates (σl/σlo and σs/σso) are depicted in dependence on
the temperature T at different baryon chemical potentials; µb = 0 (solid), 100 (dashed), 200 MeV
(dotted curves), and various magnetic field strengths; eB = m2

π (left-hand panel) and eB = 10m2
π

(right-hand panel). In these calculations, the PLSM parameters are determined at (vacuum) sigma-
meson mass 800 MeV, where the vacuum light and strange chiral condensates are measured as
σlo = 92.5 MeV and σso = 94.2 MeV with σl ≡ σx and σs ≡ σy, respectively. We notice that
the values of the chiral condensates decline (having smaller critical temperatures) with increasing
the baryon chemical potential. This means that, the chiral critical temperature decreases with
the increase in the magnetic field strength (eB). It is obvious that the increasing in the baryon
chemical potential (µb) has the same effect. In other words, we conclude that the influences of
the magnetic field are almost the same as that of the baryon chemical potentials, especially on
decreasing the phase-transition temperature. The influence of the corresponding magnetic field
(eB ≃ 0.156m2

π ≃ 1.567× 1017 Gauss) becomes stronger with increasing density, e.g. NICA, which
operates at the highest baryon density.
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Fig. 2 presents σl and σs as functions of the baryon chemical potential at fixed temperatures;
T = 50 MeV (left-hand panel) and T = 100 MeV (right-hand panel). Both chiral condensates are
calculated in different magnetic field strengths; eB = 1 (solid), 10 (dashed), 15 (dotted), 20 (dot-
dashed), and 25m2

π (double dotted curves). Although these eB strengths are much larger than
the one at NICA top energy (eB ≃ 0.156m2

π), they reveal the tendency of eB with the collision
energies and the significant influence of the magnetic field strength can determined.

We conclude that increasing temperature causes a rapid decrease in the chiral condensates,
especially near the chiral phase-transition, Fig. 1. This is similar to the observation reported in a
previous study without magnetic field [7]. At high density corresponding to NICA, there is a gap
difference between light and strange chiral condensates, Fig. 2. This can be understood because
of the anomaly term in the mesonic part of the Lagrangian [7]. The anomaly term was proposed
[10] to enhance the numerical estimation for the chiral condensates. Originally, this proposed
term models the axial U(1)A anomaly of the QCD vacuum, which is likely broken by quantum
effects. As the anomaly term explicitly appears in the strange quark condensate, we conclude that
it considerably counts for its difference relative to the light quark condensate. At high temperature
and density, it remains finite for the strange quark condensate while entirely vanishes for the light
quark condensate. For the sake of completeness, we recall here that this anomaly term also appears
in the meson masses. Its effects have been systematically analysed for sixteen meson states [7].
Also, here its effects at high density are remarkably large. From Fig. 3, it is obvious that the
magnetic field causes a considerable effect on the chiral phase-structure with varying temperature.
Reducing the magnetic fields leads to an increase in the chiral critical-temperature, right-hand
panel of Fig 3. Furthermore, raising the magnetic field strength sharpens the QCD phase-structure
and accelerates the formation of the metastable phase. The latter is to be understood due to early
phase-transition, i.g. smaller critical temperature.

Now, we analyse the influence of the magnetic field strength on the chiral phase-diagram. In Fig.
3, the chiral temperature Tc (left-hand panel) and baryon chemical potential (right-hand panel) are
calculated in dependence on eB. Tc is calculated according two criteria. The first one implements
the second-order moment of the quark multiplicity, in which Tc is determined at the peak of the
normalized quark susceptibility (χq/T

2). This criterion is frequently utilized in lattice QCD simu-
lations. Depending on the order of the phase transition, the corresponding critical temperature can
be determined. In cross-over, which is likely for light and strange quarks at low density, the phase-
transition takes place in a range of temperatures. Thus, an average value can be assigned to the
quasi-critical temperature. Our results are given by the solid curves. The second criterion defines
Tc as the intersect of the light-quark chiral condensate and the deconfinement order-parameter [6].
As illustrated in Figs. 1 and 2, the chiral quasi-critical temperature can be determined from σl
and σy, separately, which should become coincident with the deconfinement phase-transition. In
PLSM, the latter is related to the temperature dependence of the order parameters φ and φ∗. Both
condensates seem to have cross-over phase transitions, where their values decrease from large values
at low temperatures to low values at high temperatures. Accordingly, Tc can be approximated as
an average within the cross-over region. In order to increase the certainty of the estimated Tc, we
utilize coincidence of both chiral condensates with φ and φ∗. The corresponding results are depicted
by dashed curves. The vertical bands mark eB at 7.7 GeV comparable to NICA (∼ 0.156m2

π),
RHIC beam energy scan ranging from 7.7 to 200 GeV (0.156 − 4.051m2

π) [11, 12] and 2760 GeV
at LHC (∼ 10− 15m2

π) calculated from PYTHIA with 30− 40% centrality and impact parameter
∼ 9 fm.

We observe that Tc decreases with increasing eB, i.e., inverse magnetic catalysis. A good
agreement between dotted curve (second criterion) and the lattice results, especially at 0 ≤ eB ≤
0.2 GeV2, is obtained. At a wider range of eB; 0.13 ≤ eB ≤ 0.55 GeV2, the solid curve (first
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criterion) matches well with the lattice calculations [13]. Tc estimated from the first criterion
apparently overestimates the lattice simulations, especially at small eB. The PLSM calculations
refer to larger Tc than the one deduced from the lattice QCD. On the contrary, the second criterion
seems to underestimates Tc (relative to the lattice) at large eB.

In right-hand panel (b), in a constant magnetic field such as the one marked by the verti-
cal bands, we observe that, a larger µ can be reached at a lower temperature, i.e., µ decreases
with increasing eB. In determining the critical baryon chemical potential at which the broken
chiral symmetry should be restored, we implement the intersection between deconfinement phase-
transition and the light-quark chiral condensate. At fixed temperatures, T = 50 (solid curve) and
100 MeV (dashed curve), the dependence of critical µ on eB is illustrated in the right-hand panel of
Fig. 3. In determining the critical chemical potential, a second criterion, the intersection between
deconfinement order-parameter and light-quark chiral condensate, can be implemented.

3.2 Magnetic response and susceptibility

As mentioned in previous sections, the nonzero magnetic field comes up with modifications to the
dispersion relation so that the response of the QCD matter can be determined from the derivative
of the free energy density F = −T/V · lnZ with respect to the magnetic field itself

M = − ∂F
∂(eB)

, (7)

where e 6= 0 is the elementary electric charge. The sign of the magnetization defines whether the
QCD matter is para- or dia-magnetic, i.e. M > 0 (bara-), or M < 0 (dia-). Similar to solid-state
physics,

• if the QCD matter is dia-magnetic, then the color-charges are oriented oppositely to the
magnetic field direction and an induced current shall be produced. The induced current
spreads in form of small loops which - in tern - try to cancel out the magnetic effects, and

• if the QCD matter is para-magnetic, then most color-charges shall be aligned towards the
magnetic field direction.

Recently, the magnetic susceptibility of the QCD matter has been reported [14]

χB = − ∂2F
∂(eB)2

. (8)

The magnetization is a dimensionless proportionality parameter indicating the degree of magneti-
zation and depending on the magnetic permeability [15]. Thus, it is apparent that the temperature
weakens the magnetization and at relativistic energies (or vanishing chemical potential), the mag-
netization likely vanishes.

In left-hand panel of Fig. 4 (a), the magnetization of the QCD matter due to the effects of
nonvanishing magnetic field eB = 0.2 GeV2 is studied as a function of temperature at a vanish-
ing baryon chemical potential and compared with recent lattice calculations (open triangles with
errorbars) [13]. Increasing the magnetization with the temperature obviously refers to positive
magnetization, M > 0, i.e., the paramagnetic property of the QCD matter becomes dominant. At
temperatures smaller than the critical one, the calculations agree well with the lattice results. At
temperatures larger than the critical one, we find that our PLSM calculations slightly overestimate
the lattice results. In this limit, the degrees of freedom might not be sufficient to achieve a good
agreement at very high temperature. Furthermore, such a discrepancy can be interpreted due to
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the PLSM applicability, which is determined up to the temperature range, where σl, σs, φ and φ∗

remain finite. For the sake of completeness, we emphasize that the lattice results at eB = 0.2 GeV2

are obtained by using half-half method for three lattice temporal extensions; Nτ = 6 and 8 and the
continuum limit.

The right-hand panel of Fig. 4 (b) presents the magnetic susceptibility as a function of temper-
ature at eB = 0.2 GeV2 and a vanishing chemical potential. The results from PLSM are compared
with various lattice simulations (symbols) in which different simulation methods and lattice con-
figurations are applied. Features of PLSM and lattice QCD results can be summarized as follows.

• The PLSM free energy, Eq. (3), consists of three parts. The first one is the gauge potential
(pure meson). The second one represents the quark and antiquark potential, which includes
fluctuations of quarks and antiquark. The third part takes into consideration the color and
gluon interactions. This means that two types of contributions are not free of fluctuations,
while the third one takes into consideration the gluon interactions.

• At low temperatures, the slope of the magnetic susceptibility χ(T ) becomes negative (inside-
box in the right-hand panel). This signals a dia-magnetic property and apparently confirms
the lattice results, as well. Such result has been also obtained from parton-hadron-string dy-
namics [16]. On the other hand, at high temperature, i.e., when the broken chiral symmetry is
restored, a transition between dia- and para-magnetic properties is observed. Similarly, from
non-interacting MIT bag model, the phase-transition from dia- to para-magnetism was ob-
served [17]. QCD-like models with Polyakov potential agree well with the lattice calculations,
especially at high temperatures [18].

• The lattice simulations [13] implement half-half method in 243 × 32 lattice (closed triangle)
and integral method in 283 × 10 lattice (open triangle). Thus, the continuum limit is likely
achieved [19]. For Nf = 2 + 1 degrees of freedom and by using HISQ/tree action with quark
masses ml/ms = 0.05 and Nτ = 8, the lattice results are represented by diamonds [20]. The
closed circles stand for isotropy lattice [21].

• The PLSM calculations seem to confirm the para-magnetic property of the QCD matter. At
100 ≤ T ≤ 250 MeV, the magnetic susceptibility steeply increases with approaching the
deconfinement phase-transition [22, 23].

4 Conclusions

Although the magnetic field strength in heavy-ion collisions at NICA energies is small relative to
top RHIC and LHC energies, Fig. 3, we observe that even such relative small eB considerably
decreases the critical temperatures with increasing magnetic field strength, i.e., inverse magnetic
catalysis. At finite magnetic field, we find that the phase-transition seems to take place at higher
critical temperatures than that of the restoration of the chiral symmetry breaking. The estimation
of both types of critical temperatures is effectively achieved from the location (in temperature
axis) of the second-order moment of the quark multiplicity, know as susceptibility and from the
intersection of light and strange quark condensates with the deconfinement order parameters φ and
φ∗.

Both chiral condensates (σl and σs), which can be characterized through thermal, dense and
magnetic in-medium modifications of rho-meson, for instance [24]. We have presented results
on their evolution with increasing temperature, chemical potential and magnetic field. We find
that the chiral condensates rapidly decrease with increasing the baryon chemical potential, i.e.,
the chiral critical temperature decreases with the increase in the magnetic field strength. We
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conclude that the influences of the magnetic field are almost the same as that of the baryon chemical
potentials, especially on decreasing the phase-transition temperature. Thus, the influence of the
magnetic field at NICA energies (eB ≃ 0.156m2

π) becomes stronger because of the high density. The
susceptibilities and fluctuations of different particle yields are examples about possible experimental
signatures for the deconfiment phase-transition and critical endpoint. The latter is conjectured to
connect the cross-over of the QCD boundary at low density (chemical potential) and the first-order
phase transition at high density [25]. In light of this, we recommend systematic measurements for
the phase-transition characterizing signals such as the fluctuations and the dynamical correlations
in various interacting systems and centralities. These shall reveal a complete description for the
QCD phase-structure and for the chemical freezeout at high density.

The magnetization and magnetic susceptibility almost monotonically increase with increasing
temperature. At low temperatures, the magnetic susceptibility has negative slope, i.e., the QCD
matter possesses dia-magnetic property. At high temperature, i.e., when the broken chiral symme-
try is restored, the QCD matter becomes paramagnetic. In both temperature regimes, the PLSM
calculations and the recent lattice calculations are in good agreement. In order to justify this
agreement, we have shortly reviewed the configurations and the characteristics of the lattice QCD
calculations.

Furthermore, we conclude that increasing critical temperature (as a result of decreasing mag-
netic field) is accompanied by a considerable decrease in the baryon chemical potential. We have
analysed how at a fixed temperature the increase in eB decreases the chiral critical temperature,
which - in turn - decreases further with increasing the temperature. Nearly the same effects has
the baryon chemical potential.
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