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ellipsoids and final state observables

M. I. Nagy1,2 and T. Csörgő3,4
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We present a class of analytic solutions of non-relativistic fireball hydrodynamics for a fairly gen-
eral class of equation of state. The presented solution describes the expansion of a triaxial ellipsoid
that rotates around one of its principal axes. We calculate the hadronic final state observables such
as single-particle spectra, directed, elliptic and third flows, as well as HBT correlations and corre-
sponding radius parameters, utilizing simple analytic formulas. The final tilt angle of the fireball,
an important observable quantity, is shown to be not independent of its exact definition: one gets
different tilt angles from the geometrical anisotropies, from the single-particle spectra, and from
HBT measurements. Taken together, the tilt angle in the momentum space and in the relative
momentum or HBT variable may be sufficient for the determination of the magnitude of the rota-
tion of the fireball. We argue that observing this rotation and its dependence on collision energy
could characterize the softest point of the equation of state. Thus determining the rotation may be
a powerful tool for the experimental search for the critical point in the phase diagram of strongly
interacting matter.

PACS numbers: 24.10.Nz,47.15.K

I. INTRODUCTION

The quest for the experimental investigation of hot and
dense strongly interacting matter has always had a fruit-
ful connection to hydrodynamics. The development of
hydrodynamical models that incorporate more and more
details about the expansion dynamics of the matter pro-
duced in nucleus-nucleus collisions has been going to-
gether hand-in-hand with the richer and richer experi-
mental observations on the particle production mecha-
nism. From the early days of statistical modelling of
multiplicity distributions in high-energy collisions (pio-
neered by Fermi) through the hydrodynamical descrip-
tion of rapidity distributions (by the famous Landau-
Khalatnikov solution [1–3] as well as the Hwa-Bjorken
solution [4, 5]) nowadays we have various exact analytic
as well as numerical solutions of hydrodynamics at hand.
These strive to describe refined observations on essen-
tially three-dimensional momentum spectra (rapidity as
well as transverse mass distributions along with vaious
order azimuthal anisotropies), two-particle Bose-Einstein
(also named HBT) correlations with resolving power on
average momentum, azimuthal angle, and many other
observables. It is impossible to review all these devel-
opments here; for a brief summary of hydrodynamical
modeling, see e.g. Ref. [6] and references therein.

A relatively recent research direction in heavy-ion
physics phenomenology is to take the rotation of the
created matter into account. In non-central heavy-ion
collisions, the non-zero initial angular momentum of the

matter influences the time evolution, and numerical mod-
ellings of this rotation (of which now there are many,
some pioneering work is to be found in Refs. [7–9]) predict
effects on several observables. According to these models,
the effect of rotation can generally be thought of as that
of an effective radial flow [10] that influences the spectra,
the elliptic flow as well as two-particle HBT correlations.
An equally important prediction was that assuming lo-
cal thermal equilibrium for spin degrees of freedom [11],
baryons will be produced with non-zero polarization from
a rotating system [12, 13]. To observe this, Λ baryons
are promising candidates, since their polarization can be
measured with current experimental setup, by studying
their decay kinematics.

On another notice, it was known for long that particle
production from an ellipsoid-like source results in a char-
acteristic oscillation of the HBT radius parameters as a
function of pair azimuthal angle, and if the ellipsoid is
tilted in coordinate space by a fixed angle, it results in
the appearance of new cross-terms in the Gaussian ap-
proximation of the correlation function. A simple model
with these features can be read in Ref. [14], and a more
advanced, exact hydrodynamical derivation is given in
Ref. [15]. Refs. [8, 9] also proposed the differential HBT
method to infer the angular momentum of the fireball,
although it was pointed out that it is hard to disentangle
the effects of rotation on the HBT radii.

Nowadays one of the most interesting questions in
heavy-ion physics concerns the existence (and if it ex-
ists, the location) of a critical endpoint on the phase dia-
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gram of strongly interacting matter, as well as the precise
experimental determination of the location of the quark-
hardon transition on this phase diagram. Already some
finite-size scaling investigations of measured system sizes
and freeze-out durations in heavy-ion collisions suggest
that the critical endpoint is in reach with current beam
energies at the RHIC accelerator [16, 17]. However, as
of now, much additional work is needed to underpin this
statement and to explore the phenomenological proper-
ties of this transition. One means to this end is to system-
atically investigate the equation of state of the produced
matter as a function of beam energy.

The determination of the rotation of the system can
give a very useful input to achieve this goal. The impor-
tance of rotation — besides that as an effect that influ-
ences final state observables, it is interesting on its own
— is that the time evolution of the angular velocity of
an expanding system depends on how violent is the ex-
pansion, which in turn depends on the equation of state
(EoS) of the matter. The main reasons behind this are
easy to grasp. On one hand, if the initial energy density
is fixed, then a softer EoS results in less rapid increase of
the moment of inertia (because of lower pressure), which
leads to higher angular velocity as compared to the case
of a stiffer EoS. Another effect is that adiabatic expansion
of a substance with a softer EoS means slower decrease
of the temperature for a given volume change, meaning
that there is more time for the system to rotate before
reaching the freeze-out temperature, where the final state
observables take their values. In the following we will
demonstrate how the interplay of these two effects influ-
ence the final rotation angle of the expanding system.

Rotation is also noteworthy because if one wants to
investigate the EoS of the matter using hadronic final
state observables, it is important to have knowledge on
the initial conditions of the flow, since different initial
conditions and equations of state can lead to similar final
states, making the final state taken alone incapable of
determining the EoS. The initial rotational angle of the
system can be thought of as either zero or at least as a
monotonic function of the energy of the colliding heavy
ions, while the EoS — and thus the final rotation angle
— is not necessarily monotonic: when searching for the
critical point via the softening of the EoS, it is precisely
such a non-monotonic behavior that one is looking for.

The vast work in the field of numerical hydrodynamics
and models based on analytic solutions of hydrodynam-
ics supplement each other well. Analytic models that use
exact solutions of both relativistic and non-relativistic
hydrodynamics for the description of particle production
are naturally harder to find and more specialized in their
initial conditions, but once found, they give general in-
sights in the mechanisms involved in the origin of observ-
ables.

As far as we know, the first rotating solutions of rela-
tivistic perfect fluid hydrodynamics were found by the
simultaneous solution of collisionless Boltzmann equa-
tion [22] and the equations of perfect fluid hydrodynam-

ics. Recent developments concerning exact relativistic
and non-relativistic hydrodynamical solutions with rota-
tion were found also in the framework of AdS/CFT cor-
respondence. Given that high energy heavy ion collisions
and Quark-Gluon Plasmas (QGP-s) produced in these
collisions are generically endowed with very large angular
momenta, ref. [20] proposed to incorporate angular mo-
mentum in holographic models. In the case in which the
plasma rotates, allowing for a non-vanishing initial angu-
lar momentum usefully improves holographic estimates of
the value of the quark chemical potential [20]. Recently
it was shown that local rotation has effects on the QGP
at high values of the baryonic chemical potential, which
are not only of the same kind as those produced by mag-
netic fields, but which can in fact be substantially larger.
Furthermore, the combined effect of rotation and mag-
netism is to change the shape of the main quark matter
phase transition line in an interesting way, reducing the
magnitude of its curvature [21]. Rotation (local vortic-
ity) and non-vanishing shear stress was also investigated
in the solutions found in Refs. [18] and [19]. These re-
sults gave much thrust to the effort to better understand
the rotational expansion of heavy ion collisions and to
disentangle the various effects of the rather high initial
angular momentum in these collisions.

In this paper we present a rotating exact solution of the
non-relativistic hydrodynamical equations, that is well
suited to the geometrical picture of the strongly interact-
ing matter created in heavy ion collisions. The presented
solution features ellipsoidal level surfaces of temperature
as well as density, with three different principal axes. It
is a natural generalization of our earlier results presented
in Refs. [23, 24], where we explored exact analytic non-
relativistic rotating spheroidal solutions (where the two
principal axes of the level surface ellipsoids perpendicu-
lar to the rotation is equal to each other), as well as the
effect of rotation on the observables. Our new solution
also fits into a long line of self-similar but not rotating
solutions of hydrodynamics, both relativistic and non-
relativistic ones [15, 25–31]. These solutions, as well as
the so-called Buda-Lund hydrodynamical parametriza-
tion [32, 33], that gives a reasonable relativistic exten-
sion of them, have proven to be adequate tools in the
description of hadronic observables.

The structure of this paper is as follows. In Section II
we recite the hydrodynamical equations suited for the
treatment of our problem at hand. It turns out that the
solution that we are after can be easily written up in a ro-
tating reference frame instead of the laboratory frame of
the colliding nuclei. In Section III we present the solution
for an expandig rotating triaxial ellipsoid (i.e. an ellip-
soid with three different principal axes): Section III A
presents the solution itself in a compact way (those in-
terested only in this should look up this section), while
discussion is left to Sections III B and III C, and techni-
cal details about the derivation is left to Appendix A. In
Section IV we calculate the final state hadronic observ-
ables (spectra, flow parameters, HBT correlation func-
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tion) using simple analytical formulas. These formulas
enable us to draw some general conclusions on the effect
of rotation on the observables. In Section V we illustrate
the time evolution of the system as well as the effect of
rotation on the observables using some simple and rea-
sonable initial conditions. The detailed investigation of
the available experimental data is beyond the scope of
this paper, however, we point out that the simultaneous
measurement of the harmonic flow parameters (v1, v2, v3)
and the azimuthal oscillation of HBT radii (especially the
cross-terms in the so-called Bertsch-Pratt parametriza-
tion) gives a means to determine the angular velocity as
well as the final tilt angle of the ellipsoidal expanding
system, providing a path to determine the softest point
of the equation of state as outlined above. Finally we
summarize and conclude.

II. BASIC EQUATIONS

A. Equations of hydrodynamics

We outline the non-relativistic hydrodynamical equa-
tions in a form suited to our task of finding rotating exact
solutions. The fluid motion is described by the velocity
field v, the pressure p, the energy density ε, the tem-
perature T , the particle number density n, the chemical
potential µ, and the entropy density σ. All these hydro-
dynamical quantities are functions of t and r, the time
and the spatial coordinate. The fundamental equations
are the particle number and energy conservation equa-
tions as well as the Euler equation:

∂tn+∇(nv)= 0, (1)

∂tε+∇(εv)=−p(∇v). (2)

∂tv+(v∇)v=−∇p/(m0n). (3)

Here m0 is a the mass of an individual particle. Using
the well-known thermodynamical relations

ε+p=Tσ+µn, (4)

dε=Tdσ+µdn, (5)

one can verify that the energy conservation equation
Eq. (2) is equivalent to the entropy conservation:

∂tσ+∇(σv)= 0. (6)

This set of equations need to be supplemented by an ap-
propriate equation of state providing a relation between
T , p and ε. Just as in Refs. [15, 23], we choose

p=nT, (7)

ε= κ(T )p. (8)

This EoS is thermodynamically consistent for any κ(T )
function, as was shown e.g. in Ref. [15]. It is a generaliza-
tion of the case for constant κ, which would correspond
to a non-relativistic ideal gas for κ=3/2, and to an ultra-
relativistic ideal gas for κ=3. The arbitrary κ(T ) func-
tion introduced here allows one to incorporate any tem-
perature dependent speed of sound c2s = dp/dǫ=1/κ(T ).

Just as in Ref. [23], we may rewrite Eqs. (1)–(3) for
the independent variables T , n and v as follows:

(∂t+v∇)n=−n∇v, (9)
[

T
dκ

dT
+κ

]

(∂t+v∇)T =−T∇v, (10)

nm0(∂t+v∇)v=−n∇T −T∇n. (11)

Also, following Refs. [23, 24], we note here that this set of
equations is valid for the case when there is non-vanishing
n particle density which embodies the fact that there
is a meaningful total particle number that is conserved.
This assumption is valid for the late stages of the hydro-
dynamic evolution of the matter produced in heavy-ion
collisions, when the kinetic freeze-out is not yet reached
but the particle type changing hadronic reactions ceased
to play a role. For the case generally thought to ap-
ply to the quark-gluon-plasma phase, that is, when there
is no conserved particle density, we may (again follow-
ing Ref. [23]) write up a separate set of hydrodynamic
equations, the main difference being that here the only
independent variables are T , σ and v, and the mass term
in the Euler equation is different:

∂tσ+∇(σv)= 0, (12)

(ε+p)(∂tv+(v∇)v)=−∇p, (13)

which, using the thermodynamical relations ε+p=Tσ,
dp= σdT (which are valid for n=0) are rewritten as

(∂t+v∇)σ=−σ∇v, (14)

T (∂t+v∇)v=−∇T. (15)

The mass term ε+p in the Euler equation (the enthalpy
density) stems from the relativistic version of the Euler
equation. In the non-relativistic case with a conserved
particle number, one is led to make the approximation
µ≈m0, and thus ε+p=Tσ+µn≈m0n. The case for
vanishing n is the opposite limiting case, when the mass
term stems entirely from the entropy density.
The basic equations for vanishing n, Eqs. (14) and (15)

also have to be supplemented with an EoS. The conve-
nient choice again is simply

ε= κ(T )p ⇔ [κ(T )+1]p=Tσ. (16)

With an appropriate κ(T ) function, one can describe e.g.
the equation of state of the strongly interacting matter
inferred from lattice QCD calculations.
As seen already in Ref. [23], the solution of these two

sets of equations (one valid for non-vanishing n, the other
for vanishing n) can be done very similarly to each other;
this is also true for the solutions presented in this pa-
per. In the following, we mainly restrict ourselves to the
case when there is a conserved n, i.e. to the solution of
Eqs. (1)–(3), mainly because we want to calculate the
final state hadronic observables which are formed in the
final states of the hydrodynamical evolution, where this
approximation is thought to be valid.
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B. Equations in a rotating reference frame

For our treatment, the shape of the hot and dense mat-
ter that is created in non-central heavy-ion collisions can
be approximated with a triaxial ellipsoid that has non-
zero angular momentum, and also expands violently. As
customary in heavy-ion phenomenology, let the z axis
point in the direction of the incoming projectiles, and the
x axis point in the direction of the impact parameter. In
the following this inertial frame is called the laboratory
frame, denoted by K. The rotation is assumed to be in
the x–z plane, around the y axis.
It turns out that finding a solution which describes

the physical situation of interest to us, i.e. a triaxial,
expanding and simultaneously rotating ellispoid, is sim-
pler to achieve in a frame which rotates together with the
expanding ellipsoid. This frame is denoted by K ′, with
its axes, x′, y′ and z′, pointing in the directions of the
principal axes. The y′ axis is the same as the y axis. We
denote the rotation angle of K ′ with respect to K in the
x–z plane by ϑ(t). (We will sometimes omit the explicit
notation of the time dependence for functions introduced
as functions of t.) We introduce the rotation matrix M

that connects the K and K ′ frames, and also the vector
Ω as the angular velocity of K ′ with respect to K:

M(t)≡





cosϑ 0 − sinϑ
0 1 0

sinϑ 0 cosϑ



, Ω=





0

ϑ̇
0



, (17)

so the coordinate and the velocity components transform
between K and K ′ as

r′ =M(t)r, v′ =Mv−Ω× r′. (18)

Of Eqs. (9)–(11) or Eqs. (14) and (15), the continuity-
like equations retain their form inK ′, but the Euler equa-
tion needs to be supplemented with inertial force terms.
The basic equations in the K ′ frame are then

(∂′
t+v′∇′)n=−n∇′v′, (19)

[

T
dκ

dT
+κ

]

(∂′
t+v′∇′)T =−T∇′v′, (20)

(∂′
t+v′∇′)v′ =−∇′T

m0
− T

n

∇′n

m0
+ f ′, (21)

f ′ ≡ 2v′×Ω+Ω× (r′×Ω)+ r′× Ω̇. (22)

The terms in f ′ describe the Coriolis force, the centrifu-
gal force and the force stemming from the angular ac-
celeration of the K ′ frame. We introduced the ∇′ and
∂′
t notations for derivatives in the K ′ frame: ∇′ means

derivatives with respect to the r′ coordinates, while ∂′
t

is time derivative for r′ fixed. (This is different from ∂t,
because the relation between r′ and r is time-dependent.)

III. ROTATING ELLIPSOIDAL SOLUTIONS

The solution presented below is a direct generaliza-
tion of earlier results describing non-rotating ellipsoidal

expansion [15], as well as rotating solutions [23]: many
features carry over essentially unchanged into our treat-
ment, and we conform our notations to those used in
these works. In the following section, we present the so-
lutions in a concise form; additional technical details can
be found in Appendix A. In order to enhance the clar-
ity and transparency of the presentation, we also provide
Appendix B, where we summarize our new exact solu-
tions in the laboratory (inertial) frame.

A. New rotating triaxial solutions

As mentioned, the new solutions are easier to write up
in the co-rotatingK ′ frame. From Eqs. (17) and (18), the
relations between the coordinate and the velocity com-
ponents in K and K ′ are

r′x = rx cosϑ− rz sinϑ, (23)

r′z = rx sinϑ+ rz cosϑ, (24)

v′x = vx cosϑ− vz sinϑ− ϑ̇r′z, (25)

v′z = vx sinϑ+ vz cosϑ+ ϑ̇r′x. (26)

The y components do not mix: v′y = vy, r
′
y = ry.

Following the mentioned earlier works, we introduce
the time-dependent principal axes of the rotating ellip-
soid, X(t), Y (t), Z(t). We also introduce the scaling
variable s, whose level surfaces correspond to the rotat-
ing ellipsoidal level surfaces of the temperature and den-
sity, and the characteristic volume V and average lateral
radius R of these ellipsoids:

s=
r′x

2

X2
+

r′y
2

Y 2
+

r′z
2

Z2
, V ≡ (2π)3/2XY Z, R≡ X+Z

2
.

(27)
In order to obtain the desired rotating solution, we spec-
ify the ϑ̇(t) quantity and the velocity field by introducing
the ω(t) “angular velocity” as follows:

ϑ̇(t)≡ ω(t)

2
, ω(t)=ω0

R2
0

R2(t)
, (28)

v′(r′, t) =













Ẋ(t)
X(t)r

′
x+

ω(t)
2

X(t)
Z(t) r

′
z

Ẏ (t)
Y (t)r

′
y

Ż(t)
Z(t)r

′
z −

ω(t)
2

Z(t)
X(t)r

′
x













. (29)

This velocity field preserves the s=const ellipsoids, as s
is constant along the trajectories of the fluid elements:

(∂t+v∇)s=0 ⇔ (∂′
t+v′∇′)s=0. (30)

The (19)–(20) density and temperature equations are
solved along similar lines as in e.g. Ref. [23]. We distin-
guish two cases:
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• Case A: If we assume for the (8) EoS that κ(T )=
κ=const, we can have the solutions

n(r′, t)=n0
V0

V
ν(s), T (r′, t)=T0

(

V0

V

)
1

κ

T (s) (31)

for Eqs. (19) and (20). Here V0 is the initial value
of the volume V , and (just as in e.g. Refs. [27, 28])
the ν(s) and T (s) functions obey the condition

ν(s)=
1

T (s)
exp

(

−1

2

∫ s

0

ds′

T (s)

)

, (32)

so only one of them can be chosen independently.
(In e.g. Ref. [28] the similar condition is expressed
with an additional free scale parameter introduced;
it can be absorbed into the scales of the X , Y ,
Z axes.) Eq. (31) describes an adiabatic expan-
sion, where the familiar T κV =const relation holds.
The coordinate dependence of n and T enters only
through s, so these profiles are self-similar.

• Case B: If we allow any temperature dependent
κ(T ) function in the (8) equation of state, then the
relevant solution for Eqs. (19) and (20) is specified
by a Gaussian density profile and a spatially homo-
geneous temperature profile:

n(r′, t)=n0
V0

V
e−s/2, T (r′, t)≡T (t). (33)

The time evolution of T (t) is given by the following
differential equation stemming from Eq. (20):

d[Tκ(T )]

dT

Ṫ

T
+

V̇

V
=0 (34)

which can be integrated in an implicit relation that
yields the volume as a function of the temperature
T

ln
V0

V
=

T
∫

T0

dT ′

T ′

d[T ′κ(T ′)]

dT ′
. (35)

Cases A and B have a common special case if κ(T )=
κ=const and ν(s)= e−s/2: if κ(T )=const, then Eq. (35)
can be solved for T (t) to yield the form in Eq. (31), and if
T (s)= 1, then Eq. (32) implies a Gaussian density profile:

T (s)= 1 ⇒ ν(s)= e−s/2. (36)

To get a full solution of the Euler equation, the time
evolution of the principal axes X , Y , Z must obey a set
of ordinary differential equations. For both Case A and
B, they can be written up in the short form

X
(

Ẍ−ω2R
)

= Y Ÿ =Z
(

Z̈−ω2R
)

=
T

m0
. (37)

The formulas in this subsection describe a rotating, tri-
axial, expanding fireball and they correspond to an ex-
act solution of hydrodynamics: it can be directly verified
that they indeed solve Eqs. (19)–(21).

B. Analysis of the new solutions

The meaning of the equations of motion in Eq. (37) is
that the hydrodynamical problem is reduced to a set of
ordinary differential equations. Although a general an-
alytical solution to these ordinary differential equations
is lacking, in terms of the hydrodynamical problem, they
can be considered as readily solvable for any initial con-
ditions, at least numerically. In this sense, our new solu-
tions can be called parametric ones, just as those found
in Refs. [15, 23, 24, 28]. The equations of motion en-
countered here are also natural generalizations of those
found in these earlier works. It must be remembered,
however, that our new equations are valid for the axes
in the rotating K ′ frame. In our new class of solutions,
there are eight independent initial conditions: the initial
values X0, Y0, and Z0 of the principal axes, their initial
time derivatives Ẋ0, Ẏ0, and Ż0, as well as T0, the ini-
tial temperature in the centre of the fireball, and the ω0

parameter that quantifies the initial value of the angular
velocity, characterizing the rotation around the y axis.
We introduced the “average” angular velocity ω(t) of

the flow, as well as the “average radius” R(t) (and its
initial value R0) to conform with the earlier spheroidal
solutions of Ref. [23]; this notation will be useful in the
following. In the spheroidal limiting case X = Y =R will
hold, and this R is the same as the radial size of the
ellipsoid in the case of the spheroidal solution.
Also we note that of the so-called vorticity of the

flow, ω(r, t)≡∇×v(r, t), only the y-component is non-
vanishing, and it takes the simple form of

ωy(r, t)≡ (∇×v(r, t))y =ω(t)
(X+Z)2

2XZ
. (38)

In the case of X =Z, ωy =2ω(t), just as in Ref. [24].
We will also see that this ω(t) is the quantity character-
isitic to the rotation that appears in the expression of the
observables in a straightforward way.
To elucidate the characteristic of our velocity field, we

note again that taken in the inertial K frame by substi-
tuting Eq. (29) into Eqs. (25) and (26), it reduces to the
velocity field of Refs. [23] in the X = Y =R case. But
it must be noted here that in the case of our new gen-
eral, X 6=Z solution, it is not simply the case that we
have a rotating frame K ′ which is the eigenframe of the
rotating ellipsoidal surfaces, and also the velocity field
is non-rotating in the K ′ frame. We see from Eq. (29)
that the expression of v′ in the K ′ frame also involves
rotational, off-diagonal terms: this means that these off-
diagonal terms and the rotation of K ′ with respect to
K each “carry” half of the rotation of the velocity field.
In other words, the rotation of the velocity field (in the
inertial K frame) has two “components”: first, the ex-
panding ellipsoidal surfaces (to which the K ′ frame is

fixed) are rotating in the K frame, governed by ϑ̇(t) as
seen from Eqs. (25) and (26), and secondly, the velocity
field rotates with respect to the K ′ frame, as seen from
Eq. (29). It turns out after some investigation of the Eu-
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ler equation that one cannot find a solution where the v′

velocity field is diagonal (i.e. non-rotating) in the frame
fixed to the rotating ellipsoids (i.e. the K ′ frame). In
Appendix A we get back to this question.
For the principal axesX , Y , Z, the equations of motion

were written up in Eq. (37). This form suits both cases,
Case A and B as discussed in the previous subsection: in
Case B, for arbitrary κ(T ) function but spatially homoge-
neous T profile, the r.h.s. of Eq. (37) is just the T (t) func-
tion, which is in turn determined as a function of X(t),
Y (t), and Z(t) (through the volume V =XY Z) implic-
itly by Eq. (35). In case of κ(T )= κ=const, T (t) has an
explicit form as given by Eq. (31). As discussed already,
the constant κ case allows a more general, coordinate-
dependent temperature, given by Eq. (31). The equa-
tions of motion of the axes in this case are again Eq. (37),
in the sense that the T on the r.h.s. is to be understood
as the “time-dependent part” of T (t, r′), i.e. if one wrote
T (s)= 1 in Eq. (31).
The equations of motion for the principal axes X , Y ,

Z can be thought of as the equations of motion of a par-
ticle with mass m0 in an external potential. We write
up the Hamiltonian governing this motion correspond-
ing to Eq. (37) only in the constant κ case (Case A in
Section IIIA):

H =
1

2m0

(

P 2
X +P 2

Y +P 2
Z

)

+U(X,Y, Z), (39)

U(X,Y, Z) = κT0

(

X0Y0Z0

XY Z

)1/κ

+
m0ω

2
0

4

(X0+Z0)
4

(X+Z)2
.

(40)

The momenta PX , PY , PZ are just equal to m0Ẋ, m0Ẏ ,
m0Ż, respectively. The potential term can be also writ-
ten in a short-hand notation, with the help of R and ω
as defined in Eq. (28), as

U = κT +m0ω
2R2. (41)

In the case of a non-constant κ(T ), the Hamiltonian that
gives back Eq. (37) also can be written up in a much
similar way, the only difference is the form of the tem-
perature related term in the expression of the potential
U . We do not indulge in this now, but mention that this
can be done in a way similar to that outlined in Ref. [23].
If we set X =Z ≡R in our equations, we get back the

results of Ref. [23]: we see that in this case indeed the ω0

plays the role of the initial value of the angular velocity
of the fluid. In the case of X =Z, the meaning of the
ϑ angle becomes ill-defined: for a rotating spheroid one
clearly cannot uniquely define the tilt of the co-rotating
coordinate system and the rotational velocity with re-
spect to that frame separately. In the spheroidal case
only the total angular velocity of the fluid (i.e. that with
respect to the inertial K frame) has a definite meaning;
as discussed above, in some sense half of this angular ve-
locity is provided by the rotation of K ′, the other half by
the rotation of v′ in K ′.

C. Conserved quantities

It is also worthwhile to calculate some conserved quan-
tities. We do this only for the case of constant κ, and for
simplicity we also specify the spatial shape of the density
n and T by taking the spatially homogeneous tempera-
ture and Gaussian density case, Eq. (36). In this case,
the total particle number N0 is

N0 =

∫

d3r′n(t, r′)=n0V0, (42)

which is clearly a constant.
The total (kinetic and internal) energy E0 of the fluid

turns out to be

E0 =
m0

2

(

Ẋ2+ Ẏ 2+ Ż2
)

+U(X,Y, Z), (43)

with U(X,Y, Z) given by Eq. (40). This is precisely the
value of the Hamiltonian; the conservation of E0 is thus
equivalent to the Hamiltonian formulation of the equa-
tions of motion for X , Y , Z.
In the special case of constant κ(T )= κ=3/2 (which is

the case of a non-relativistic ideal gas), one can write up
another first integral of Eq. (37). Combining these equa-
tions with the energy conservation equation obtained
from the H =const criterion, with H defined in Eq. (39),
for κ=3/2 one gets the following solution for the time
evolution of X2+Y 2+Z2:

X2+Y 2+Z2=
2E0t

2

m0N0
+2
[

X0Ẋ0+Y0Ẏ0+Z0Ż0

]

t+

+X2
0 +Y 2

0 +Z2
0 , if κ=3/2, (44)

with the initial conditions taken at t=0. This is similar
to the results found in e.g. Refs. [24, 40].
Another important quantity is the total angular mo-

mentum J0 of the fluid. In our setting, only the Jy com-
ponent is non-zero: its value turns out to be

Jy =2N0m0ω0R
2
0, R0 ≡

X0+Z0

2
, (45)

which is indeed constant. To frame this expression, we
can calculate the (time-dependent) moment of inertia
Θ(t) of the fluid (with respect to the y axis). For the
Gaussian shape of n specified by Eq. (36), we get

Θ(t)=m0N0

(

X2+Z2
)

, (46)

Jy =Θ(t)ω(t)× 2R2

X2+Z2
. (47)

We see that the analogy to the spherical case is not com-
plete; our new solution has a richer structure. Also, the
rotational motion in our solution is clearly different from
that of a rotating solid body. Nevertheless, again in the
X =Z ≡R special case, the present formulas give back
those valid for the spheroidal case.

* * *
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In some sense the solution presented above is a fairly
general self-similar rotating solution. In Appendix A we
outline the reasoning that leads to this solution, and show
that from the ansatz specified up to now, a slightly more
general solution also may follow. However, for the prob-
lem under consideration, namely, the rotating expansion
of the fireball produced in heavy-ion collisions, the addi-
tional generality in that solution is apparently irrelevant.
It should be also emphasized that (as seen from the

treatment of the problem in Appendix A) although one
would very much prefer a rotating solution which is a
more direct generalization of the previously known ellip-
soidal or rotating spherical solutions, i.e. where the ellip-
soids co-rotate with the velocity field (in the sense that v′

is a non-rotating diagonal one in K ′, so the cross-terms in
Eq. (29) are missing), such solutions simply do not exist.
In this sense the solution presented here is the simplest
one corresponding to triaxial rotating ellipsoids.

IV. CALCULATION OF HADRONIC

OBSERVABLES

Having seen a hydrodynamical solution whose time de-
pendence mirrors that of an expanding rotating triaxial
ellipsoid, that is a reasonable analytic model for the ro-
tating expanding time evolution of the strongly interact-
ing matter created in heavy-ion collisions, we now turn
to the question of what observable quantities carry in-
formation on the rotation of the system. It turns out
that the hadronic observables for the considered solution
can be expressed by means of simple analytic formulas.
In this section we outline these calculations and discuss
what observables are sensitive to the rotation.
In the usual way in hydrodynamical modelling, we as-

sume that the system (the fluid) freezes out on some hy-
persurface, i.e. the hydrodynamical evolution abruptly
stops, to give way to the final observable particles. The
phase-space distribution of the system at the instant of
freeze-out then determines the final state distributions.
We specify the solution that we will investigate as well as
the freeze-out condition in the simplest way that suits the
calculation: we take the spatially homogeneous tempera-
ture case (with a Gaussian density profile, Eq. (36)), and
assume that the freeze-out sets in at a given Tf tempera-
ture. In our T ≡T (t) case this also means that freeze-out
is happening at a given time, tf , everywhere simultane-
ously. We assume that at the freeze-out, particles with
mass m appear. Throughout the calculation, m is re-
tained as a free parameter, however, in practical cases,
the mass of the produced particles may be taken the
fixed values valid for e.g. pions, kaons, or (anti)protons
(m=140 MeV, m=494 MeV, and m=938 MeV, respec-
tively). An estimation of Tf was made already by Lan-
dau and Belenkij [2]: Tf ≈mπ, the pion mass, since this
is the typical energy at which the hadronic collisions that
transform particle types cease, and thus this is the typ-
ical temperature at which the mean free path of a pion

gas starts to increase exponentially.
It may be also noted that our treatment is fully non-

relativistic, an assumption that allows a fully analytic
calculation, but questionable as a realistic assumption
for intermediate transverse momenta. Concerning rela-
tivistic parametrizations, an easily performed generaliza-
tion of the exact formulas stemming from non-relativistic
solutions is described in the framework of the so-called
Buda-Lund model [32, 33]. The end result here is basi-

cally that one may substitute mt =
√

p2t +m2 (transverse
mass) into the place of the massm of the individual parti-
cles, for a rudimentary relativistic generalization. So the
m dependence in our following formulas for the observ-
ables may be understood as a preliminary suggestion on
the mt dependence what one might get in a more realis-
tic relativistic treatment. However, in this paper we only
deal with fully analytic (thus in our case, non-relativistic)
formulas, with m being the mass of the particle.

A. Source function

The observables are calculated from the source func-

tion or emission function, denoted by S(t, r,p), the ther-
mal phase-space distribution taken at the freeze-out time,
tf . It can be written in our non-relativistic approxima-
tion, for our case of solution, as

S(r,p)∝ n(tf , r)

T
3/2
f

exp

{

− (p−mv(tf , r))
2

2mTf

}

, (48)

with every hydrodynamical quantity taken at the freeze-
out time. This is normalized so that the integral over p
at a given point r is proportional to the number density,
n at that point. Here m stands for the mass of the pro-
duced particle which may or may not be equal to the m0

parameter that governs the time evolution of the hydro-
dynamical evolution as in Eq. (37).
One can use this source function to calculate two im-

portant set of observables: the single particle spectrum
(and its corollaries, like azimuthal anisotropies), and two-
particle correlation functions (and related quantities, like
HBT radii). The defining formula of the single-particle
spectrum N1(p) in our hydrodynamical setting is

N1(p)≡E
dn

d3p
∝E

∫

d3rS(p, r), (49)

where E is the particle energy.
Bose-Einstein or HBT-correlations of bosons stem from

their quantum mechanical indistinguishability, and in
turn, the symmetry property of their wave-function. As-
suming interaction-free final state, the two-particle Bose-
Einstein correlation function C(K,q) is connected to the
Fourier transform of the emission function:

C(K,q)≈ 1+λ

∣

∣S̃K(q)
∣

∣

2

∣

∣S̃K(0)
∣

∣

2 , (50)
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with K= 1
2 (p1+p2) being the average momenutm and

q=p1−p2 the relative momentum of the pair, and

S̃K(q) =

∫

d3r eiqrS(r,K), (51)

with S(r,p) taken at the average momentum K. The
so-called intercept parameter λ measures the correlation
strength at zero momentum. A phenomenological expla-
nation for λ is the so-called core-halo model [35], where√
λ measures the ratio of primordial particles (pions) to

all the produced ones (including those coming from long-
lived resonance decays). The approximation in Eq. (50)
is, among other things, that one writes K in the argu-
ment of the source function in Eq. (51), and also that one
neglects multi-particle correlation effects, correlated par-
ticle production, and Coulomb interactions (this latter
one can be straightforwardly corrected for).
In what follows, we outline the calculations that lead

to our results on the observables. The calculations are
in essence very simple, since they involve only Gaussian
integration, albeit multivariate Gaussians with mixed
second-order terms. Using Eqs. (36) and (29), we clearly
see that indeed S(r,p) is Gaussian in the coordinates.
Our hydrodynamical solution outlined in Section III

was written up in a rotating reference frame, K ′, whose
tilt angle with respect to the inertial K frame, ϑ(t) was
one of the dynamical variables of the rotating expansion.
We got an expression for ϑ̇(t) that can be numerically
integrated to yield the final tilt angle ϑf ≡ϑ(tf ). The
calculation of the observables is most easily done in an
inertial, i.e. non-rotating reference frame that is tilted
with ϑf with respect to K. We may denote this frame by

K
′
: the momentum components in this frame are related

to the K-components similarly as the coordinate r′ to r:

p′ =Mp ⇔ p′x = px cosϑ−pz sinϑ,
p′z = px sinϑ+pz cosϑ,

(52)

with M defined in Eq. (17). However, the velocity field

v′ in the K
′
frame is different from v′ as introduced in

Eq. (18) precisely because the K
′
frame is inertial, so v′

does not contain the effect of angular motion:

v′ =Mv ⇔ v′x = v′x+ ϑ̇r′z ,

v′z = v′z− ϑ̇r′x.
(53)

The coordinates in the K
′
frame are of course the same

as those in K ′, with the components of that of r′. Again,
the y components do not mix: p′y = py, v

′
y = v′y = vy.

We need to plug these expressions into Eq. (48). So
the final expression of the source function is

S(r′,p′)∝ n0

T 3
f

exp

(

− r′2x
2X2

f

−
r′

2
y

2Y 2
f

− r′2z
2Z2

f

)

×

× exp

(

− 1

2mTf
(p′−mv′(r′, tf ))

2
)

. (54)

B. Single particle spectrum

As already mentioned, the calculations leading to the
results below are simple Gaussian integrals, as seen from
Eq. (54): the particle number density n is of Gaussian
form, and the Maxwellian term for a velocity field lin-
ear in the coordinates also yields a Gaussian shape. The
only complication compared to Refs. [15, 24] is that the
desired integrals contain also off-diagonal, r′xr

′
z terms.

After some calculation, one arrives at the following ex-
pression for dn

d3p
from Eqs. (48) and (49):

dn

d3p′
∝ exp

(

− 1

2m
p′k(T

′)
−1
kl p

′
l

)

, k, l= x, y, z, (55)

with summation understood over repeated indices. We

introduced here the T′
kl matrix and its inverse, T′−1

kl , as
the matrix whose components correspond to the inverse

slope parameters of the spectrum in the K
′
frame. We

find that the expression of these components is

T ′
xx=T +m

(

Ẋ2+ω2R2
)

, (56)

T ′
yy =T +mẎ 2, (57)

T ′
zz =T +m

(

Ż2+ω2R2
)

, (58)

T ′
xz =mωR

(

Ẋ− Ż
)

, (59)

and for the inverse matrix:
(

T ′
xx T ′

xz

T ′
xz T ′

zz

)(

T ′−1
xx T ′−1

xz

T ′−1
xz T ′−1

zz

)

=

(

1 0
0 1

)

, (60)

that is,

T ′−1
xx =

T ′
zz

T ′
xxT

′
zz−T ′2

xz

, (61)

T ′−1
yy =

1

T ′
yy

, (62)

T ′−1
zz =

T ′
xx

T ′
xxT

′
zz−T ′2

xz

, (63)

T ′−1
xz =

−T ′
xz

T ′
xxT

′
zz−T ′2

xz

. (64)

All time-dependent quantities: the axes X , Y , Z, their
time derivatives, the R radius, the temperature T , and
the “angular velocity” ω from Eq. (28) are to be taken
at the freeze-out time tf , but for brevity we omit the f
index in these and in the following formulas.
We thus got a simple expression for the momentum

distribution, much in the spirit of Ref. [15]. There it was
emphasized that for a tilted, but not rotating ellipsoidal
source, the momentum distribution is diagonal in exactly
the same frame that corresponds to the tilted ellipsoid.
We see that in our more realistic and general, rotating
case, this is clearly not true: the presence of the cross-
term in Eq. (55) signifes that the eigenframe of N1(p

′) is
not that of the coordinate-space ellipsoid, K ′. We may
introduce the angle ϑ′

p that corresponds to the tilt of the
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eigenframe of the single particle spectrum with respect
to the rotated ellipsoids, K ′. This is given by

tan
(

2ϑ′
p

)

=
2T ′

xz

T ′
xx−T ′

zz

=
2ωR

Ẋ+ Ż
. (65)

Thus the observable tilt angle of the momentum spec-
trum, which we may denote by ϑp, becomes ϑp ≡ϑ+ϑ′

p.
We see that the additional tilt ϑ′

p of the momentum spec-
trum depends on how strong is the angular velocity ω
that charactizes the rotation of the fireball geometry, as

compared to an avarege radial Hubble flow, Ẋ+Ż
2R . It is

also maybe interesting that in our model, this ϑ′
p angle

does not depend on the particle mass m; this gives an
indication that in a Buda-Lund model type of relativis-
tic extension (see the discussion before Section IVA) this
angle will not depend on mt.
We can also write up the momentum distribution in the

original, laboratory frame (K) by the use of the matrix
M that connects p′ with p in Eq. (52):

dn

d3p
∝ exp

(

− 1

2m
pk(T)−1

kl pl

)

, k, l= x, y, z (66)

where

T−1 =M−1T′−1
M. (67)

Written up in components, the inverse slope parameters
of the single-particle spectrum in the K frame are

T−1
xx =T ′−1

xx cos2 ϑ+T ′−1
zz sin2 ϑ+T ′−1

xz sin(2ϑ), (68)

T−1
yy =T ′−1

yy , (69)

T−1
zz =T ′−1

xx sin2 ϑ+T ′−1
zz cos2 ϑ−T ′−1

xz sin(2ϑ), (70)

T−1
xz =T ′−1

xz cos(2ϑ)+
(

T ′−1
zz −T ′−1

xx

)

cosϑ sinϑ. (71)

The difference to the formulas in Ref. [15] is again that

the “intrinsic” cross-term, T ′−1
xz , does appear here: even

in the ϑf =0 (hypothetical) case, one would get cross-
terms in the single-particle spectrum.

C. Azimuthal anisotropies

We can also calculate the azimuthal dependence of the
particle production, which is usually characterized by the
vn azimuthal harmonics. Remember, the z axis is taken
as the axis of collision of the nuclei, and the x axis was
taken to be the collision event plane, so the ϕ azimuthal
angle is measured in the x–y plane. The definition of
the azimuth-averaged single-particle spectrum dn

dptdy
and

that of the vn, n=1, 2, . . . anisotropy parameters is

dn

d3p
=

E

2πpt

dn

dptdy

[

1+2

∞
∑

n=1

vn cos[n(ϕ−Ψn)]

]

, (72)

where y= 1
2 ln

E+pz

E−pz

is the rapidity, pt =
√

p2x+p2y is the

transverse momentum, and Ψn is called the nth order
event plane angle.

The calculation of the vn parameters and the angle-
averaged spectrum in our case goes very much similarly if
not identically to that found in Ref. [15]. It was pointed
out there that the angle-averaged spectrum as well as
the vn parameters depend on the kinematical variables
only through certain combinations of them. It is the
case also here; the difference is that the expression of
these combinations differ from the earlier results because
of the presence of rotation in the velocity terms.
Introducing the w and v variables and the average

slope parameter Teff as

Teff ≡ 2

T−1
xx +T−1

yy

, (73)

w≡ p2t
4m

(

T−1
xx −T−1

yy

)

, v≡−ptpz
m

T−1
xz , (74)

the single-particle spectrum can be written as

dn

d3p
∝ exp

(

− p2z
2mTzz

− p2t
2mTeff

)

× ewcos(2ϕ)+vcosϕ. (75)

We can proceed from Eq. (75) by expanding the v-
dependence in a series. Then using the Iν(w)≡
1
π

∫ π

0
dϕ cos(νϕ)ew cosϕ modified Bessel functions, we can

do the Fourier decomposition in the ϕ dependence. It is
important to note that in our simple model all the event
planes coincide and this plane is where we set the zero of
the azimuthal angle ϕ. We obtain the following:

dn

2πptdptdy
∝ exp

(

− p2z
2m

T−1
zz − p2t

2mTeff

)

I0(w, v), (76)

vn =
In(w, v)
I0(w, v)

, (77)

where the In(w, v) auxiliary quantities are expressed as

I2p(w, v)≡
∑

k,l

I|k+p|(w)+ I|k−p|(w)

22k+2l+1(2k+ l)!l!
v2k+2l, (78)

I2p+1(w, v)≡ v
∑

k,l

I|k+p|(w)+ I|k−p|(w)

22k+2l(2k+ l)!(l+1)!
v2k+2l. (79)

In this latter formula, the summation over k and l for-
mally goes over all integer values of them (including neg-
ative ones), but because of the factorials in the denomi-
nator, many terms will be zero.
We have given the full v-dependent expansion here.

Practically, at mid-rapidity (i.e. arount pz =0) v≈ 0, so
only the first few terms in v are of interest. For the v1
(directed flow), the v2 (elliptic flow) and v3 (third flow),
these approximate expressions are:

I0(w, v) = I0(w)+
v2

4
[I0(w)+ I1(w)]+O

(

v4
)

, (80)



10

v1 =
v

2

[

1+
I1(w)

I0(w)

]

+O
(

v3
)

, (81)

v2 =
I1(w)

I0(w)
+

v2

8

[

1+
I2(w)

I0(w)
− 2

I21 (w)

I20 (w)

]

+O
(

v4
)

, (82)

v3 =
v

2

I2(w)+ I1(w)

I0(w)
+O

(

v3
)

. (83)

The formulas obtained here are one-to-one copies of those
found in Ref. [15]1. The difference, as mentioned already,
lies in the fact that the relation between the w, v scaling
variables and the fundamental kinematical quantities is
different here (because the T−1 matrix contains the effect
of rotation, not only the finite tilt angle). In particular,

the apperarance of the non-zero cross term T ′−1
xz implies

that T−1
xz is nonzero even in the hypothetical case of zero

ϑf tilt angle. Thus there is an interplay between the ro-
tational motion of the fluid and the tilted state of the
freeze-out ellipsoids that results in the characteristic ra-
pidity and pt dependence of the flow parameters through
the w and v variables.
It is important to note that at mid-rapidity pz =0,

hence v=0, and we recover the simple universal scal-
ing form of the elliptic flow, v2 = I1(w)/I0(w), so the tri-
axial, rotating and expanding ellipsoids have the same
centrality, particle type, collision energy and transverse
momentum independent universal scaling as predicted
in Ref. [15], and extended to relativistic kinematics in
Ref. [34]. In other words, triaxial ellipsoidal expansion
does not spoil the universal scaling of the elliptic flow,
but it modifies the definition of the scaling variable w.

D. Two-particle correlations

Using the formula Eq. (50) together with Eq. (48), a
straightforward calculation leads to the following expres-
sion of the HBT correlation function in the K ′ frame (i.e.
in the eigenframe of the tilted coordinate-space ellipsoid):

C(K′,q′)= 1+λ exp



−
∑

k,l=x,y,z

q′kR
′2
klq

′
l



. (84)

Again, the exponent is easier to write down in this matrix

form. The components of the R′2 matrix turn out to be

R′2
xx=X2TT ′−1

xx , (85)

R′2
yy = Y 2TT ′−1

yy , (86)

R′2
zz =Z2TT ′−1

zz , (87)

R′2
xz =XZTT ′−1

xz , (88)

1 We retained the notation v for the scaling variable introduced
in Eq. (74) as a similar quantity appeared in Ref. [15]; it should
not be confused neither with the flow quantities v1, v2, v3. . . ,
nor with the fluid velocity v. Also, the w scaling variable should
not be confused with the ω angular velocity parameter.

where the components of the inverse temperature matrix

T′−1
are given by Eqs. (61)–(64).

The fact that the radius parameters do not depend on
the total transverse momentum K of the pair is a fea-
ture characteristic to the non-relativistic nature of the
treatment and the self-similar nature of the solution [15].
Again, as before Section IVA, we mention that in a yet
to be explored relativistic generalization, the HBT radii
most probably depend on the transverse mass mt of the
pair approximately in the same way as they do depend
on the particle mass m in the case of our exact non-
relativistic solution. In our presented case this depen-
dence is rather involved; it is given by Eqs. (85)–(88),
which in turn refer to Eqs. (61) and (64) and Eqs. (56)
and (59). However, it is not hard to see that a term
with approximate 1/m-like dependence is present in the
expression of the squared radius parameters, which im-
plies the well known 1/R2=C1+C2 ·mt-like dependence
of the R2 components in the relativistic setting. In what
follows, however, we again concentrate on the exact non-
relativistic results, the relativistic generalization being
outside of the scope of this paper.

To analyze the obtained HBT correlation further, we
might again note that the final eigenframe of the rotating
ellipsoid, K ′ is not the same as the frame in which the
(Gaussian-like) HBT correlation function C(q′) is diago-
nal. We denote the angle between K ′ and the eigenframe
of the HBT correlation function by ϑ′

HBT. It turns out
that this angle is not only non-zero, but in general differ-
ent from ϑ′

p, the angle that described the eigenframe of
the single-particle spectrum. The expression of ϑ′

HBT is

tan(2ϑ′
HBT)=

2XZT ′
xz

X2T ′
zz−Z2T ′

xx

= (89)

=
2mXZωR

(

Ẋ− Ż
)

(T +mω2R2)(X2−Z2)+m
(

X2Ż2−Z2Ẋ2
) ,

thus the observable tilt angle of the HBT correlation
function, which we may denote by ϑq, becomes ϑq ≡
ϑ+ϑ′

HBT. In contrast to the ϑ′
p angle introduced in

Eq. (65), this ϑ′
HBT angle does depend on the mass of

the particle, thus in a relativistic setting it may pick
up an mt-dependence. It might be interesting to note
that by formally setting m=0 in the above formula, the
ϑ′
HBT angle vanishes. Thus in the vanishing transverse

mass limit the measurable tilt of the HBT system, ϑq

approaches the actual ϑ angle of tilt of the geometrical
shape of the triaxial ellipsoid of the expanding and ro-
tating fireball. The latter angle, denoted by ϑ up until
now, may in this context thus be denoted by ϑr, being
the geometrical tilt.

To write up the HBT correlation function in the labo-
ratory frame (K frame), we only need to apply the matrix
M introduced in Eq. (17) to the components of q′ to ex-
press q′ with the components of the relative momentum
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measured in the K frame. Simple calculation leads to

C(K,q)= 1+λ exp

(

−
∑

k,l=x,y,z

qkR
2
klql

)

, (90)

R2
xx=R′2

xx cos
2 ϑ+R′2

zz sin
2 ϑ+R′2

xz sin(2ϑ), (91)

R2
yy =R′2

yy, (92)

R2
zz =R′2

xx sin
2 ϑ+R′2

zz cos
2 ϑ−R′2

xz sin(2ϑ), (93)

R2
xz =R′2

xz cos(2ϑ)+
(

R′2
zz−R′2

xx

)

sinϑ cosϑ. (94)

We can also evaluate the HBT radius parameters suited
for the usual setting of azimuthally sensitive HBT mea-
surements, in the so-called Bertsch-Pratt (BP) or out-
side-long frame. In this frame, the relative momentum
vector q is written up in the components (ql, qo, qs): the
ql (“long”) component points in the beam (that is, the z)
direction, the qo (“out”) component points to the direc-
tion of K, the average transverse momentum of the pair,
and qs (“side”) is the component perpendicular to both
of these. We denote the azimuthal angle of K in the x–y
plane by ϕ, so

ql = qz, (95)

qo = qx cosϕ+ qy sinϕ, (96)

qs =−qx sinϕ+ qy cosϕ. (97)

An important additional remark is in order here (just
as in Ref. [15]): the preceding formulas were derived for
instantaneous particle emission at time tf . Assuming a
finite ∆t time duration of the particle emission (eg. by
setting the time dependence as (2π∆t2)−1/2 exp[−(t−
tf )

2/2∆t2], a Gaussian) will have an effect on the
HBT correlation function (although not on the single-
particle spectrum). As in Refs. [15, 24], one gets
the result that the radius parameters have to be aug-
mented with an additional term δR2

ij = βiβj∆t2, where
β=(p1+p2)/(E1+E2) is the velocity of the pair. In
the Bertsch-Pratt frame βs =0, so finally we have the
correlation function as

C(K′,q′)= 1+λ exp

(

−
∑

k,l=o,s,l

qkR
2
klql

)

, (98)

with the Bertsch-Pratt radius parameters being equal to

R2
oo =R2

xx cos
2 ϕ+R2

yy sin
2 ϕ+β2

o∆t2, (99)

R2
ss =R2

xx sin
2 ϕ+R2

yy cos
2 ϕ, (100)

R2
ll=R2

zz +β2
l ∆t2, (101)

R2
os =

(

R2
yy−R2

xx

)

sinϕ cosϕ, (102)

R2
ol=R2

xz cosϕ+βlβo∆t2, (103)

R2
sl =−R2

xz sinϕ. (104)

Note that in the Longitudinally Co-Moving System,
(LCMS), the above formulas simplify as in this system
βl =0. In particular,

R2
ll=R2

zz, (105)

R2
ol=R2

xz cos(ϕ), (106)

hence in the LCMS we obtain the interesting relation:

R2
ol(ϕ+π/2)=R2

sl(ϕ), (107)

and both terms oscillate in ϕ with half of the frequency
of the oscillations of the side–side and out–out terms and
the out–side cross-term. This feature may be straightfor-
ward to test experimentally.
We thus see how the oscillation of the Bertsch-Pratt

radii (especially of the out-long, side-long components)
is connected to the rotation of the flow. We also see
evidently the emergence of a long-known fact that the ϕ-
averaged R2

oo−R2
ss value (at a given m value) basically

measures the duration of the particle emission: this is
a frequently exploited feature, perhaps most recently in
the already mentioned work of Ref. [17], where the non-
monotonic behavior and finite-size scaling properties of
this quantity is used to give a first indication on the pres-
ence of a critical endpoint on the phase diagram of QCD.
As an aside: note, however, that for expanding fire-

shells with large temperature inhomogeneity and rela-
tively small radial flows, typical for hadron-proton or
proton-proton collisions, Rss <Roo is also possible and
actually expected at low transverse momentum, as pre-
dicted in Ref. [32] and as indicated as a robust feature of
h+p and p+p reactions in Refs. [36–38].

V. ILLUSTRATION OF RESULTS AND

DISCUSSION

We have demonstrated in the previous section how
the rotating nature of the flow of our presented solution
translates to the observable quantities. In this section we
illustrate the results obtained above by taking a reason-
able set of initial conditions.
In the hydrodynamical equations we set the m0 mass

to be the proton mass, m0 =938 MeV, and start the
time evolution with T0 =300 MeV. As an illustration,
we take the initial conditions for the principal axes as
X0 =4 fm, Y0 =6 fm, Z0=2 fm, the initial ellipsoid being
the thinnest in the beam direction, resembling the con-
ditions right after a non-central heavy-ion collision. The
ω0 parameter is taken to be 0.15 c/fm. As said earlier,
we make the assumption that the freeze-out happens in-
stantaneously when the temperature reaches Tf , taken to
be 140 MeV. (The parameter set employed here closely
follows the one taken in Ref. [39] where the spheroidal
special case of our solution was studied.)
One of our goals in this section is to demonstrate that

the final state observables carry information on the ro-
tation and thus on the equation of state. In this work
we do not investigate all the possible equations of state
(including the µB =0 lattice QCD EoS, and those calcu-
lated for finite µB) in detail, we just want to give a hint
at how the softness of the equation of state might influ-
ence the time evolution and the final state observables,
deferring the detailed investigation to a follow-up work.
Here we simply take different constant values of κ in the
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equation of state, Eq. (8). The conclusions that we arrive
at with the initial conditions and assumptions should not
thus be taken as general conclusions. But nevertheless,
we will be able to draw some qualitative conclusions, and
we will hint at which of the features of our results may
carry over to a more general setting.

On Fig. 1 we plot the time evolution of the principal
axes X(t), Y (t), Z(t) of our solution for the mentioned
initial conditions and parameters, for three different κ
values. The higher the κ, the “softer” the equation of
state is. On Fig. 2 we plot also the time evolution of the
temperature T (t) as well as that of the angular velocity
ω(t). We denote the values of these quantities at the
freeze-out by distinct markers.

Further, we plot the time evolution of the various tilt
angles of the system introduced so far on Fig. 3. For
this sake, we use the unified notation already introduced:
ϑr ≡ϑ denotes the tilt angle of the coordinate-space el-
lipsoids (eg. that of the level surfaces of the particle
number density). However, as was pointed out, when ro-
tation of the system plays a role, this angle is not acces-
sible at first hand experimentally. Rather, what one can
measure is the tilt angle corresponding to the eigenframe
of the single-particle spectrum, which we can denote by
ϑp ≡ϑ+ϑ′

p, where ϑ′
p was introduced in Eq. (65), and

measures the tilt of the eigenframe of the momentum
spectrum with respect to the K ′ frame, which itself is
tilted by ϑr ≡ϑ in the laboratory frame. Another ob-
servable tilt angle is that of the eigenframe of the HBT
correlation function, which we denote by ϑq =ϑ+ϑ′

HBT,
where ϑ′

HBT measures the tilt angle of the HBT corre-
lation function in the K ′ frame, and is introduced in
Eq. (90). The initial value of these measured angles is
sensitive to the precise initial conditions; e.g. the inital
value of ϑp of π/4 is due to the fact that our special ini-

tial conditions had Ẋ0 = Ẏ0 = Ż0=0. Nevertheless, one
sees that by simultaneously measuring ϑp and ϑq, one
can infer the final rotation angle of the system, and one
gets a quantity that is sensitive to the equation of state.

We do not detail further investigations of more spe-
cific equation of states now. However, we note that in
our plotted case, the EoS dependence of the final ϑr tilt
angle mainly comes from the fact that the adiabatic ex-
pansion lasts longer for a softer (i.e. that with a higher
κ) equation of state. In the plotted case, i.e. when T0 is
kept fixed as κ changes, the change in the time evolution
of the principal axes because of the change in κ has an
opposite effect: we see from Figs. 1 and 2 that in this
case, for softer κ the system expands more violently. In
the plotted case the first effect dominates, so at the end
of the day, softer κ will result in greater final tilt angle.
It must be noted that if e.g. the total energy density
is held fixed as κ changes, one can have a different con-
clusion, since in this case the time evolution will be less

violent for softer κ. Since we do not have any a priori
knowledge of the initial temperature or the initial energy
density of the thermalized matter produced in various en-
ergy nucleus-nucleus collisions, in a realistic setting, the
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FIG. 1: Illustration of the dependence of the time evolution
of principal axes X, Y , Z of the solution on the equation of
state, for three different constant κ values. Initial conditions
and parameters are: m0 =938 MeV, T0 =300 MeV, ω0 =0.15
c/fm, X0 =4 fm, Y0 =6 fm, Z0 =2 fm, and Ẋ0 = Ẏ0 = Ż0 =0.
Markers denote the values at the respective freeze-outs (when
the temperature reaches Tf =140 MeV).

conclusions evident on Figs. 1 and 2 may undergo signif-
icant changes. However, it is clear that besides the final
(freeze-out) value of the ω(t) angular velocity, the final
rotation angle of the system is a sensitive additional tool
to investigate in the quest for the experimental equation
of state of the strongly interacting matter.

Fig. 4 illustrates how the final, freeze-out tilt angles:
the ϑr (the coordinate-space tilt of the ellipsoid), and
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FIG. 2: Illustration of the dependence of the time evolution
oft the temperature T (upper panel) and the angular velocity
ω introduced in Eq. (28) on the equation of state, for three
different constant κ values. Initial conditions and parame-
ters are as in the previous example: m0 =938 MeV, T0 =300
MeV, ω0 =0.15 c/fm, X0 =4 fm, Y0 =6 fm, Z0 =2 fm, and

Ẋ0 = Ẏ0 = Ż0 =0. Markers denote the values at the respective
freeze-outs (when the temperature reaches Tf =140 MeV).

the two observable tilt angles, ϑp≡ϑ+ϑ′
p (the tilt of the

single-particle spectrum), and ϑq≡ϑ+ϑ′
HBT (the tilt of

the HBT correlation function) depend on the initial con-
dition ω0, and on the κ parameter in the EoS, respec-
tively. All the other initial conditions and parameters in
these plots are the same as those used for Fig. 3.

We plot some usual observable quantities such as the
Bertsch-Pratt HBT radii given by Eqs. (99)–(104) as a
function of pair azimuthal angle on Fig. 5, and the rapid-
ity dependence of the azimuthal harmonics of the single
particle spectrum, the v1 directed flow, the v2 elliptic
flow, and the v3 third flow on Fig. 6, for a reasonable set
of parameter values at freeze-out. The intention of these
plots is to illustrate the behavior of usual observables;
we note that a combined measurement of all the HBT
radii, including the R2

ol, R
2
sl cross-terms is necessary to

determine the ϑ′
HBT angle. In particular, as seen from

Eqs. (99)–(104), the out-long and side-long cross-terms
are the most characteristic to the tilted ellipsoidal source
(as already pointed out in Refs. [14, 15]), but here we
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FIG. 3: Time evolution of the various tilt angles in our new
hydrodynamical solution, for three different EoS. Parameters
and initial conditions are the same as in Figs. 1 and 2, markers
denote the values at the respective freeze-outs. Upper panel:
the tilt angle of the coordinate-space ellipsoids in the x–z
plane, ϑr, as introduced in the text. This is the tilt angle of
the co-rotating K′ frame. Middle panel: the ϑp angle, the
observable tilt angle of the eigenframe of the single-particle
spectrum (ϑp =ϑ+ϑ′

p). Lower panel: ϑq, the tilt angle of the
eigenframe of the HBT correlation function (ϑq =ϑ+ϑ′

HBT).
For plotting the ϑq angle, the mass of the pion mπ was used
to evaluate ϑ′

HBT. As mentioned after Eq. (90), in the m→ 0
limit, the coordinate-space tilt is recovered as ϑq →ϑr.
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FIG. 4: The various tilt angles introduced in the text (ϑr ≡ϑ,
the coordinate-space tilt, ϑp ≡ϑ+ϑ′

p, the tilt of the single-
particle spectrum, and ϑq ≡ϑ+ϑ′

HBT, the tilt of the HBT
correlation function) at freeze-out time. Upper panel: freeze-
out time angles plotted as a function of initial angular velocity
ω0 (for κ=3/2). Lower panel: freeze-out time angles plotted
as a function of κ (in this plot, the ω0 was taken to be 0.15
c/fm). All other initial conditions are the same as in Fig. 1.

see that not only the final tilt angle but the rotational
motion also gives a contribution to these parameters. Ex-
perimentally, the measurement of these cross-terms are
the most challenging, because one has to have a combined
event-by-event information on the first and second order
event planes. In our simple hydrodynamical model, these
event planes coincide, but in a realistic setting, both of
them will be smeared by initial state fluctuations. Fig. 5
also illustrates the (107) relation between the Rol and Rsl

cross-terms: that in the LCMS, R2
ol(φ+π/2)=R2

sl(ϕ),
and both terms oscillate with half of the frequency of
the oscillations of the other, more commonly measured
out–out, side–side and out–side terms.

Also, a combined measurement of at least the slope of
the v1(y), the pt dependence of v2 and the measurement
of the angle-averaged single-particle spectrum is neces-
sary to get the ϑ′

p value. The most characteristic feature
stemming from a tilted (or rotating) source in terms of
the vn parameters is perhaps the rapidity dependence of
the v1 directed flow; a feature already observed in exper-
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FIG. 5: Bertsch-Pratt HBT radii vs. ϕ azimuthal angle of
the particle pair, calculated for a reasonable set of parame-
ters: R′2

xx =25 fm2, R′2

yy =16 fm2, R′2

zz =36 fm2, R′2

xz =2
fm2, ϑf = π/8. The oscillations in R2

oo, R
2

ss and R2

os with π
periodicity are characteristic to an ellipsoid-like source. The
oscillations in R2

ol and R2

sl with 2π periodicity are character-
istic to a tilted or rotating ellipsoid-like source. A measure-
ment of these Bertsch-Pratt radii enables one to deduce the
R HBT radius matrix introduced in Eq. (90), and in turn the
ϑ+ϑ′

HBT angle introduced in Eq. (90), that characterizes the
tilt of the eigenframe of the HBT correlation function. In this
plot, the freeze-out is assumed to be instantaneous (∆t=0),
although in real data analysis ∆t plays an important role.

iment. However, in itself it is not enough to determine
the tilt angle of the single-particle spectrum.

VI. SUMMARY AND OUTLOOK

We have presented a class of rotating and expanding,
self-similar solutions of non-relativistic hydrodynamics
that describes the expansion of a triaxial ellipsoid with
non-zero initial angular momentum. Both the initial an-
gular momentum and the triaxial geometry are realistic
features, when one considers the rotating expansion of a
hot and dense, strongly interacting matter produced in
non-central heavy-ion collisions. The solution presented
in this paper can accomodate various equations of state,
and is a natural generalization of earlier results describing
rotating spheroids and non-rotating triaxial ellipsoids.
We have evaluated single-particle spectra, flow (az-

imuthal anisotropy) parameters, two-particle Bose-
Einstein correlations for this solution, using simple for-
mulas that straightforwardly mirror the effect of rotation
on the final state observables. The generality in the pre-
sented solution (that it allows for ellipsoids with three
different principal axes) makes it possible to draw con-
clusions on the final state tilt angle, a quantity that in the
case of spheroidal rotating solutions is either ill-defined or
at least does not translate into the final state observables.
This tilt angle is expected to behave non-monotonically
around the softest point of the equation of state, which
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FIG. 6: Illustration of the dependence of flow parameters
v1, v2, v2 on rapidity y. The parameters were set to T ′

xx =
300 MeV, T ′

xz =−20 MeV, T ′

zz =500 MeV, T ′

yy =200 MeV,
ϑf = π/8. The pt of the particles are assumed to be pt =600
MeV/c, while the particle mass m was set to equal to the
kaon mass, m=494 MeV. By measuring these flow coefficients
and the angle-averaged spectrum, one can reconstruct the T

slope matrix elements introduced in Eq. (66), and in turn the
angle ϑ′

p that characterizes the tilt of the eigenframe of the
momentum distribution, as introduced in Eq. (65).

may correspond to the critical endpoint of QCD phase
transitions.
Although in terms of observables we restricted our-

selves to the exact non-relativistic solution discussed in
the paper, we are confident that the general insight
our treatment gives into the behavior of them will be
useful in analyzing experimental data on single-particle
spectra and HBT correlations. A relativistic generaliza-
tion, although presently lacking as an actual hydrody-
namical solution, maybe derived as a parametrization in
the framework of the Buda-Lund hydrodynamical model.
We made some preliminary remarks on this possibility
throughout the paper.
A surprising finding of our calculations of observable

quantities is that at mid-rapidity, we recover the uni-
versal scaling form of the elliptic flow, v2 = I1(w)/I0(w),
even for the considered triaxial, rotating and hydrody-
namically expanding ellipsoids, as already obtained in
Ref. [15], for non-relativistic and in Ref. [34] for relativis-
tic kinematic domains. In other words, triaxial, explod-
ing and rotating ellipsoidal solutions of hydrodynamics
do not spoil the universal scaling of the elliptic flow, but
they lead to the modification of the definition of the scal-
ing variable w. We also emphasize that the elliptic flow
v2 is a dimensionless quantity, hence its universal scaling
variable w must also be a dimensionless, just as is the
case in our calculations.
We pointed out that in the general case of rotating

and tilted source (on which our exact ellipsoidal hydro-
dynamical solution gives a fairly reasonable picture) the
tilt angle of the ellipsoidal system is not identical to the
tilt angle of the single-particle spectrum or that of the

HBT correlation function. We derived expressions that
connect these variables, and demonstrated their time de-
pendence (and their values taken at the freeze-out of the
hydrodynamical evolution) for a reasonable set of initial
conditions, although a more detailed investigation of this
dependence is beyond the scope of this paper.
In particular, we argued that the tilt angle observ-

able from the oscillating HBT radii and from the single-
particle spectrum becomes a non-monotonic function at
the softest point of the equation of state, which suggest
that this variable will be useful and straightforward to
measure observable to signal the QCD critical point. We
have also found that in the Longitudinal Center of Mass
System of the boson pairs the out-long and the side-long
cross-terms oscillate for rotating and expanding triaxial
hydrodynamical systems and they are phase-shifted by
π/2 as compared to one another, providing straighfor-
ward experimental testing possibilitiy for the qualitative
features obeyed by in our new, rotating and expanding,
triaxial ellipsoidal hydrodynamical solutions.
So the measurement of the rotation by means of the

observables discussed in the paper might well give new
insights into the equation of state of the quark-gluon
plasma produced in high energy heavy-ion collisions, a
main goal in today’s heavy ion physics research. We thus
look forward to the systematic experimental exploration
of the rotation of the system produced in heavy ion col-
lisions as a function of colliding beam energy, that might
reveal a non-monotonic behavior of the equation of state
as a function of temperature and baryochemical poten-
tial, and thus might help to locate and better characterize
the deconfinement phase transition.
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Appendix A: General linear rotating solution

At the end of Section III C, we stated that the pre-
sented solution follows from the ansatz of a linear ve-
locity field, and the requirement that it describes self-
similarly expanding ellipsoids in the K ′ frame that is ro-
tating around the y axis. In this Appendix we elucidate
this statement, and write up the most general solution
following from this ansatz. After exploring the general
solution, we argue that the generality beyond that pre-
sented in the body of the paper is not relevant for the
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physical problem at hand.
The starting point is the (21) Euler equation in the K ′

frame, the (22) expression of the f ′ inertial force density,
the (27) definition of the scaling variable s. We require
the velocity field to be a generalization of the directional
Hubble flow, to mirror the rotational nature of the flow,
to be “compatible” (in the sense of Eq. (30)) with the
ellipsoidal scaling variable s of Eq. (27), and to be linear
in the coordinates in theK ′ frame. (This implies linearity
also in the K frame, but the calculations are easier in
the K ′ frame). The most general velocity field satisfying
these requirements is

v′(r′, t) =













Ẋ(t)
X(t)r

′
x+ g(t)X(t)

Z(t) r
′
z

Ẏ (t)
Y (t)r

′
y

Ż(t)
Z(t)r

′
z − g(t) Z(t)

X(t)r
′
x













, (A1)

whereX(t), Y (t), and Z(t) are the axes of the ellipsoid as
in Eq. (27), and g(t) is an (up to now) arbitrary function
of time. Now we can readily write up the solutions for
the continuity equations (for the number density and the
temperature) as in Eq. (31); with the knowledge of the
foregoing examples of similar solutions [23, 28], this does
not need additional explanation.
The remaining equation to be solved is the Euler equa-

tion, Eq. (21). Calculating the f ′ interial force from
Eqs. (22) and (A1) is straightforward, as is the deriva-
tives of T and n; one can plug these into Eq. (21). In
order to have a proper solution for the Euler equation,
the coordinate dependence on both sides of it must be
identical. This yields that the ν(s) and T (s) functions
in Eq. (31) are not independent, but must obey the con-
dition (32): if it would not hold, it would be impossible
to satisfy the Euler equation for all spatial coordinates
with these velocity, temperature and density fields. But
if (32) holds, then the coordinate dependence of the Euler
equation becomes simple: the x′ component of the Euler
equation will contain terms proportional to r′x and terms
proportional to r′z , the y component only yields terms
proportional to r′y, and the z′ components also contain
terms proportional to r′x and r′z. For all of these to be
satisfied for any r′, we thus get five ordinary differential
equations for X(t), Y (t), Z(t), ϑ̇(t) and g(t). After some
calculation, these turn out to be

−g2+
Ẍ

X
=

T0

m0

(

V0

V

)
1

κ 1

X2
+2

Z

X
gϑ̇+ ϑ̇2, (A2)

Ÿ

Y
=

T0

m0

(

V0

V

)
1

κ 1

Y 2
, (A3)

−g2+
Z̈

Z
=

T0

m0

(

V0

V

)
1

κ 1

Z2
+2

X

Z
gϑ̇+ ϑ̇2, (A4)

X

Z
ġ+2g

Ẋ

Z
=−ϑ̈− 2

Ż

Z
ϑ̇, (A5)

Z

X
ġ+2g

Ż

X
=−ϑ̈− 2

Ẋ

X
ϑ̇. (A6)

If X(t) 6=Z(t), then these last two equations can be cast
into the form:

d

dt

[

(X+Z)
2
(

g+ ϑ̇
)]

=0, (A7)

d

dt

[

(X−Z)
2
(

g− ϑ̇
)]

=0, (A8)

whose solutions are easily written up as

g(t)=
χ0

(X+Z)
2 +

ξ0

(X−Z)
2 , (A9)

ϑ̇(t)=
χ0

(X+Z)2
− ξ0

(X−Z)2
, (A10)

with χ0 and ξ0 constants. Substituting these expressions
back into Eqs. (A2)–(A4), we get

XẌ=
T0

m0

(

V0

V

)
1

κ

+
2χ2

0X

(X+Z)
3 +

2ξ20X

(X−Z)
3 , (A11)

Y Ÿ =
T0

m0

(

V0

V

)
1

κ

, (A12)

ZZ̈ =
T0

m0

(

V0

V

)
1

κ

+
2χ2

0Z

(X+Z)
3 −

2ξ20Z

(X−Z)
3 . (A13)

Now these equations for X , Y , Z can be written as the
canonical equations from the following Hamiltonian:

H =
1

2m0

(

P 2
X +P 2

Y +P 2
Z

)

+U, (A14)

U = κT0

(

V0

V

)1/κ

+
m0χ

2
0

(X+Z)
2 +

m0ξ
2
0

(X−Z)
2 . (A15)

The most general solution of the hydrodynamical equa-
tions with the conditions stated at the beginning of this
Appendix is thus given by the formulas for v′, T and n,
with the additional condition that the time evolution of
ϑ̇(t), g(t) and the axes X , Y , Z follow Eqs. (A9)–(A10)
and Eqs. (A11)–(A13). We note that the vorticity of
this flow is a slightly more general expression than in the
body of the text, Eq. (38), which is recovered if ξ0 =0,

i.e. ϑ̇(t)= g(t)≡ω(t)/2:

ωy(r, t)≡ (∇×v(r, t))y =2

(

ϑ̇+ g
X2+Z2

2XZ

)

. (A16)

We can calculate the conserved quantities for this gen-
eral solution: the total particle number N0 is again given
by Eq. (42), the total energy turns out again to be equal
to the Hamiltonian (A14), and the angular momentum
Jz now contains a contribution determined by ξ0:

Jz =N0m0(χ0− ξ0). (A17)

The time evolution of a non-rotating ellipsoidal solution
is fixed by seven initial conditions: the initial values of
the axes and their time derivatives as well as by the ini-
tial temperature T0. We are now investigating a rotating
solution; we expect one additional free initial condition
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(that corresponds to e.g. the angular momentum of the
flow). The appearance of the two new constants, χ0 and
ξ0 in compare to the non-rotating case may thus seem
superfluous. This is a justification to confine ourselves to
the case of ξ0 =0, and in this case the additional initial
condition, e.g. the value of Jz, is in one-to-one corre-
spondence with the new constant, χ0. A more enlight-
ening argument for taking ξ0 =0 is that, as seen from
the equation of motion of X , Y , Z, Eqs. (A11)–(A13), in
the ξ0 6=0 case, the potential term (A15) exhibits an im-
penetrable potential barrier between the X >Z and the
X <Z regions. So if the initial conditions satisfyX0 >Z0

(as it is physically plausible in the case of a heavy ion col-
lision, see the discussion in Section V), then this relation
will hold at any future time. On the other hand, realisti-
cally one expects that during the time evolution, because
of pressure gradients, we expect that the initially more
compressed beam direction, Z0 <X0 will expand faster
and eventually in the late stages of the expansion X <Z
will hold.
So we conclude that although the ξ0 6=0 case might

be interesting as some exotic rotating expanding flow, it
is physically not what we are after in the quest for the
description of a heavy-ion reaction. So we set ξ0 =0, and
at this point, to get in conformity with the earlier [23]
result on rotating solutions, we introduce the convenient
notation for the χ0 constant as

χ0 ≡ 2ω0R
2
0, R0 ≡X0+Z0. (A18)

With this we get the solution presented in Section III.
Of course, for vanishing initial angular momentum we
recover the earlier obtained directional Hubble flow pro-
files and ellipsoidal exact hydrodynamical solutions.
Returning to the 5 basic equations of motion,

Eqs. (A2)–(A6), it is interesting to see what happens in

the X(t)=Z(t)≡R(t) case. In this case Eqs. (A2) and
(A4) are the same, so are Eqs. (A5) and (A6). Four quan-

tities (R, Y , ϑ̇, g) are constrained by three equations:

T0

m0

(

V0

V

)1/κ

+R2
(

g+ ϑ̇
)2

= RR̈, (A19)

T0

m0

(

V0

V

)1/κ

= Y Ÿ , (A20)

d

dt

[

R2
(

g+ ϑ̇
)]

= 0. (A21)

So only the sum, g+ ϑ̇ (which is the total “angular
velocity” of the fluid) is uniquely determined: in the
spheroidal case, one cannot unequivocally introduce the
rotating K ′ frame and the angular velocity measured in
that frame. The remaining freedom in choosing g and ϑ̇
can be thought of as some kind of “gauge freedom”.

Appendix B: Expression of the new solution in the

laboratory frame

In the body of the paper we have presented our new
solution in a frame (K ′) that rotates together with the
ellipsoidal surfaces of the expanding and rotating fireball.
For a concise summary of our solution, let us present ove
here the complete solution of the hydrodynamical prob-
lem in the laboratory frame K. We strive to write up the
formulas in a way that it is easy to compare their forms
in the K and K ′ frames. For clarity, we only present
the solution with homogeneous temperature and Gaus-
sian density profile here (Case B in Section III A).

First we write up the hydrodynamical equations in Ta-
ble I in both frames.

Equations in the laboratory frame K Equations in the rotating frame K′

∂tn+∇(nv)= 0 ∂′

tn+∇′(nv′)= 0

d(κT )
dT

(∂t+v∇)T +T∇v=0,
d(κT )
dT

(∂′

t+v′∇′)T +T∇′v′ =0

m0n(∂t+v∇)v=−∇(nT ) m0n(∂
′

t+v′∇′)v′ =−∇′(nT )+F′

F′ =m0n
(

2v′×Ω+Ω× (r′ ×Ω)+ r′× Ω̇
)

TABLE I: Summary of the hydrodynamical equations for the intertial, laboratory frame K and the same equations in the
rotating K′ frame, where the coordinate axes rotate together with a triaxial ellipsoid. The angle of rotation ϑ and the vector
Ω are related as Ω=(0, ϑ̇, 0), as introduced in Eq. (17).

Now let us summarize the parametric, exact solutions
of the hydrodynamical problem presented in the body
of the paper, so that the solution is given both in the
laboratory frame K and in the co-rotating frame K ′. In

Section IIIA the solution was presented in the K ′ frame,
the frame that fits naturally to the rotating nature of our
solution. Using Eqs. (23)–(26), it is easy to write up the
solution in the K frame. The resulting formulas can be
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found in Table II.

In both frames:

Hx =
Ẋ
X

, Hy =
Ẏ
Y
, Hz =

Ż
Z
,

V =(2π)3/2XY Z, n=n0
V0

V
exp(−s/2),

d[Tκ(T )]
dT

Ṫ
T

+ V̇
V

=0 if κ(T ) 6= const,

T =T0

(

V0

V

)

1/κ

if κ(T )= const

ϑ̇≡ ω
2
, ω=ω0

R2

0

R2
, R= X+Z

2
, X

(

Ẍ−ω2R
)

=Y Ÿ =Z
(

Z̈−ω2R
)

= T
m0

,

in laboratory frame K: in the co-rotating frame K′:

s= r2x
X2

+
r2y
Y 2

+ r2z
Z2

+

(

1
Z2

− 1
X2

)

[

(r2x− r2z) sin
2 ϑ+ rxrz sin(2ϑ)

]

s= r′x
2

X2
+

r′y
2

Y 2
+ r′z

2

Z2

v(r, t)=vH(r, t)+vR(r, t) v′(r′, t)=v′

H(r′, t)+v′

R(r
′, t)

vH(r, t)=













(Hxcos
2ϑ+Hzsin

2ϑ)rx

Hyry

(Hxsin
2ϑ+Hzcos

2ϑ)rz













+(Hz −Hx)
sin(2ϑ)

2













rz

0

rx













v′

H(r′, t)=













Hxr
′

x

Hyr
′

y

Hzr
′

z













vR(r, t)= ϑ̇













rz

0

−rx













+ ϑ̇















(

X
Z
cos2ϑ+ Z

X
sin2ϑ

)

rz

0

−

(

X
Z
sin2ϑ+ Z

X
cos2ϑ

)

rx















+ ϑ̇

(

X
Z

− Z
X

)

sin(2ϑ)
2













rx

0

−rz













v′

R(r
′, t)= ϑ̇















X
Z
r′z

0

− Z
X

r′x















TABLE II: Summary of the new rotating solution of the hydrodynamical equations, written up both in the intertial, laboratory
frame K and in the K′ frame, where the coordinate axes rotate together with the (X,Z) axes of a triaxial ellipsoid.

The dynamical equations that describe the time evolution
of the scale parameters (X,Y, Z) and the temperature T
are the same both in K and in K ′.
We have written up the velocity field as a sum of two

terms: a ,,Hubble-term” vH , and a ,,rotational term” vR.
The directional Hubble flow and its Hubble constants
(Hx, Hy, Hz) have a very clear meaning in the rotating
frame K ′, where the Hubble component of the velocity
field, vH is diagonal; this is not the case in the K frame.
The distinction between vH and vR is that the Hubble
term has zero curl (and thus does not contribute to the
vorticity of the flow), while the rotational term has zero
divergence. So for the divergence we can write:

∇v=∇vH =∇′v′
H =

V̇

V
, ∇vR =∇′v′

R =0. (B1)

The terms in v that are proportional to the angular ve-
locity ϑ̇ contribute to the rotational flow velocity vR,
which determines the vorticity of the solution as

ω(r, t)≡∇×v=∇×vR, ∇×vH =0, (B2)

ω′(r′, t)≡∇′×v′=∇′×v′
R, ∇×v′

H =0. (B3)

The vorticity vector is parallel with the axis of rotation,
and the value of its only non-vanishing component in the
laboratory frame, ωy, was given already in Eq. (38). We
can also write up it in the rotating K ′ frame; we have

ωy(r, t)=ω+
ω

2

(

X

Z
+

Z

X

)

, (B4)

ω′
y(r

′, t)=
ω

2

(

X

Z
+

Z

X

)

. (B5)

In the X→Z limit, it is easy to confirm from Table II
that ω=2ϑ̇ is indeed the angular velocity of the fluid.

Thus Table II summarizes our new solutions for the
case of the spatially homogeneous temperature profile.
This class of solutions allows for a temperature depen-
dent (but otherwise general, unrestricted) κ(T ) function.
Again, we note that a solution with arbitrary temper-
ature profile and corresponding density profile was also
given in Section IIIA, but for simplicity they are not
included in Table II of this Appendix.
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[28] T. Csörgő, Acta Phys. Polon. B 37, 483 (2006).
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