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We study the radiative symmetry breaking of B−L in supersymmetric models with inverse seesaw

mechanism. We show that for a wide region of parameter space the radiative corrections can drive

the squared mass of the extra Higgs boson from positive initial values at the GUT scale to negative

values at the TeV scale, leading to the spontaneous breaking of the B − L symmetry. We also

emphasize that in this class of models, unlike the supersymmetric B−L models with type I seesaw,

the right-handed sneutrino cannot get a non-zero vacuum expectation value. Therefore, B − L can

be radiatively broken while R-parity remains an exact symmetry.

I. INTRODUCTION

The minimal B − L extension of the Standard Model (SM), which is based on the gauge group SU(3)C ×
SU(2)L×U(1)Y ×U(1)B−L, provides a satisfactory explanation for the non-zero neutrino masses [1, 2]. In this

class of models, SM singlet fermions are naturally introduced in order to cancel the associated anomaly. These

particles are accounted for right-handed neutrinos and hence a seesaw mechanism can be obtained. It was shown

that light neutrino masses can be generated within B −L extension of the SM through either type-I seesaw [1]

or inverse seesaw mechanism [3]. In type-I seesaw mechanism right-handed neutrinos acquire Majorana masses

at the B −L symmetry breaking scale, therefore the neutrino’s Yukawa coupling must be <∼ O(10−6), while in

inverse seesaw these Majorana masses are not allowed by the B − L gauge symmetry and another pair of SM

gauge singlet fermions with tiny masses ∼ keV must be introduced. One of these two singlets fermions couples

to right handed neutrino and is involved in generating the light neutrino masses.

Furthermore, it was shown that in a SUSY context, the B−L and SUSY scales can be correlated through the

mechanism of radiative breaking of B −L symmetry, similarly to the radiative electroweak symmetry breaking

in MSSM [4]. In particular, it was proven that the radiative corrections in B − L extension of the MSSM

(BLSSM) with type I seesaw may drive the squared mass of extra Higgs boson from positive initial values at

the GUT scale to negative values at the TeV scale, leading to spontaneous breaking of B−L. Thus, the energy

scale of B − L breaking is naturally related to the SUSY breaking scale. However, it was pointed out [5] that

the breaking of B − L in this model depends crucially on the large value of the right-handed neutrino Yukawa

coupling and it is possible to break the B−L through the Vacuum Expectation Value (VEV) of the right-handed

sneutrino. In this case R-parity is also spontaneously broken and the resulting model will have quite involved

phenomenology.

In this paper we analyze the radiative B−L symmetry breaking in BLSSM with Inverse Seesaw (BLSSM-IS).

We show that the breaking of B−L occurs for a wider region of parameter space through the VEV of the Higgs

singlet. We consider the Renormalisation Group Equations (RGEs) to show explicitly that for wide range of

parameters the squared mass of the Higgs singlet can be negative at TeV scale while the squared mass of the

right-handed sneutrino remains positive. Therefore, the B − L symmetry is spontaneously broken by the VEV

of this singlet and R-parity remains exact. In addition, using the program of Vevacious [6], we analyze the

vacuum stability in both BLSSM-IS and BLSSM-type I. We show that, unlike the BLSSM-type I, in BLSSM-IS

the VEV of right-handed sneutrino is always close to zero and much less than the VEV of the singlet scalar

that breaks the B − L and keeps R-party conserved.

The plan of the paper is as follows. In the next section, we analyze the RGE running and the radiative B−L
symmetry breaking in BLSSM with inverse seesaw and compare it with the results of the BLSSM with type

I seesaw. In Section 3 we investigate the vacuum stability in the BLSSM-IS and also in BLSSM-type I. We

conclude in Section 4.
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II. RGE RUNNING AND B − L SYMMETRY BREAKING

TeV scale BLSSM-IS is based on the gauge group SU(3)C ×SU(2)L×U(1)Y ×U(1)B−L, where the U(1)B−L
is spontaneously broken by chiral singlet superfields χ1,2 with B − L charge = ±1 As in conventional B − L
model, a gauge boson ZBL and three chiral singlet sueperfields νRi with B − L charge = −1 are introduced

for the consistency of the model. Finally, three chiral singlet superfields S1 with B − L charge = +2 and three

chiral singlet superfields S2 with B−L charge = −2 are considered to implement the inverse seesaw mechanism

[3]. The superpotential of the leptonic sector of this model is given by

W = YeE
cLH1 + Yν ν

c
RLH2 + YS ν

c
Rχ1S2 + µH1H2 + µ′ χ1χ2. (1)

Note that the chiral singlet superfields χ2 and νcR have the same B − L charge. Therefore, one may impose a

discrete symmetry in order to distinguish them and to prohibit other terms beyond those given in Eq. (1). In

this case, the relevant soft SUSY breaking terms, assuming the usual universality assumptions, are as follows

− Lsoft =
∑
φ

m̃2
φ|φ|2 + Y Aν ν̃

c
RL̃H2 + Y Ae Ẽ

cL̃H1 + Y AS ν̃
c
RS̃2χ1 +BµH1H2 +Bµ′χ1χ2

+
1

2
M1B̃B̃ +

1

2
M2W̃

aW̃ a +
1

2
M3g̃

ag̃a +
1

2
MBLZ̃BLZ̃BL + h.c, (2)

where the sum in the first term runs over φ = H1, H2, χ1, χ2, L̃, Ẽ
c, ν̃cR, S̃1, S̃2 and Y AL ≡ YLAL (L = e, ν, S) is

the trilinear scalar interaction coupling associated with lepton Yukawa coupling. In order to prohibit a possible

large mass term MS1S2 in the above, we assume that the particles, νcRi
, χ1,2, and S2 are even under matter

parity, while S1 is an odd particle. The B−L symmetry can be radiatively broken by the non-vanishing vacuume

expectation values (VEVs) 〈χ1〉 = v′1 and 〈χ2〉 = v′2 [4]. The tree level potential V (χ1, χ2) is given by

V (χ1, χ2) = µ2
1|χ1|2 + µ2

2|χ2|2 − µ2
3(χ1χ2 + h.c.) +

1

2
g2BL

(
|χ2|2 − |χ1|2

)2
, (3)

where µ2
1,2 = m2

χ1,2
+ |µ′|2 and µ2

3 = −B′µ′. The stablitity condition of V (χ1, χ2) is given by

2µ2
3 < µ2

1 + µ2
2. (4)

A non-zero minimum may be obtained if there is a negative squared mass eigenvalue in the B − L Higgs mass

matrix, i.e., if

µ2
1 µ

2
2 < µ4

3. (5)

this condition is not satisfied at the GUT scale with universal soft breaking terms. However, as we will show,

similar to the MSSM scalar Higgs masses, the running from a large scale down to TeV scale, µ2
1 and µ2

2 will

have different renormalization scales so that the minimization condition is eventually satisfied, and hence, the

B−L symmetry is spontaneously broken. The minimization conditions, ∂V
∂χi

= 0, i = 1, 2, lead to the following

equations:

|µ′|2 =
m2
χ2
−m2

χ1
tanβ′

tanβ′ − 1
−M2

Z′/2, (6)

sin 2β′ =
−2B′µ′

m2
χ1

+m2
χ2

+ 2|µ|2
, (7)

where tanβ′ = v1/v2 and M2
ZBL

= 4g2BL(v21 +v22). These two equations are similar to the electroweak symmetry

breaking conditions in MSSM which are used to determine the value of µ and B parameters at the electroweak

scale. It is worth noting that in MSSM, where tanβ > 1, one cannot satisfy the condition of non-vanishing

VEVs and |µ|2 > 0 unless the running from GUT to weak scale reduces m2
Hu

to negative values, thanks to the

large Yukawa coupling of Hu with top quark. The situation with B − L symmetry breaking could be different.



3

The conditions |µ′|2 > 0 and µ2
1µ

2
2 < µ4

3 can be simultaneously satisfied with positive m2
χ1,2

, if tanβ′ ∼ 1.

Before elaborating this point, let us consider the running of the scalar masses m2
χ1,2

and also the right-handed

sneutrino squared masses, m2
ν̃R

, via the B − L Renormalization Group Equations (RGEs) in both type I and

inverse seesaw mechanisms.

In type I seesaw, these RGEs are given by

16π2
dm2

χ1

dt
= −12g2BLM

2
BL + 4m2

χ1
Tr(YνRY

∗
νR) + 4Tr(Y A

∗

νR Y AνR) + 8Tr(m2
ν̃RYνRY

∗
νR), (8)

16π2 dm
2
ν̃R

dt
= −3g2BLM

2
BL + 8m2

χ1
YνRY

∗
νR + 8Y A

∗

νR Y AνR + 4m2
ν̃RYνRY

∗
νR + 8YνRm

2
ν̃RY

∗
νR + 4YνRY

∗
νRm

2
ν̃R , (9)

where YνR is the Yukawa coupling of right-handed neutrino term in type I superpotential: YνRν
c
Rχ1νR and the

trilinear coupling TνR is defined as usual as Y AνR = YνRAνR . Thus for YνR = YνR diag{0, 0, 1} one finds

16π2
dm2

χ1

dt
= −12g2BLM

2
BL + 4Y 2

νR

(
m2
χ1

+A2
νR + 2m2

ν̃R

)
, (10)

16π2 dm
2
ν̃R

dt
= −3g2BLM

2
BL + 8Y 2

νR

(
m2
χ1

+A2
νR + 2m2

ν̃R

)
. (11)

The last term proportional to YνR in these equations derives the mass squared negative at TeV scale. Therefore,

is clear that m2
ν̃R

can be negative before m2
χ1

(due to the large coefficient of YνR in the RGE of m2
ν̃R

). In

this case of hierarchal YνR , both B − L and R-parity will be spontaneously broken [5]. However, in case of

YνR = YνR diag{1, 1, 1}, the equations take the form

16π2
dm2

χ1

dt
= −12g2BLM

2
BL + 12Y 2

νR

(
m2
χ1

+A2
νR + 2m2

ν̃R

)
, (12)

16π2 dm
2
ν̃R

dt
= −3g2BLM

2
BL + 8Y 2

νR

(
m2
χ1

+A2
νR + 2m2

ν̃R

)
. (13)

Therefore it is expected that m2
χ1

becomes negative at TeV scale while m2
ν̃R

remains positive, so B−L symmetry

is spontaneously broken and R-parity remains exact [4].

In inverse seesaw, the relevant RGEs are given by

16π2
dm2

χ1

dt
= −12g2BLM

2
BL + 2m2

χ1
Tr(YsY

†
s ) + 2Tr(Y A

∗

s Y A
T

s ) + 2Tr(m2
s̃2Y

†
s Ys) + 2Tr(m2

ν̃RYνY
†
ν ), (14)

16π2
dm2

χ2

dt
= −12g2BLM

2
BL, (15)

16π2 dm
2
ν̃R

dt
= −3g2BLM

2
BL + 2m2

χ1
YsY

†
s + 2Y As Y

A†

s + 4Y Aν Y
A†

ν +m2
ν̃RYsY

†
s + 2m2

ν̃RYνY
†
ν

+ 2Ysm
2
s̃2Y

†
s + YsY

†
sm

2
ν̃R + 2YνY

†
νm

2
ν̃R , (16)

16π2 dm
2
s̃2

dt
= −3g2BLM

2
BL + 2m2

χ1
Y †s Ys +m2

s̃2Y
†
s Ys + 2Y A

†

s Y As + 2Y †sm
2
ν̃RYs + Y †s Ysm

2
s̃2 . (17)

Thus for hierarchical Yukawas: Ys = Ys diag{0, 0, 1} and Yν = Yν diag{0, 0, 1}, one gets

16π2
dm2

χ1

dt
= −12g2BLM

2
BL + 2Y 2

s

(
m2
χ1

+A2
s +m2

s̃2

)
+ 2m2

ν̃RY
2
ν , (18)

16π2 dm
2
ν̃R

dt
= −3g2BLM

2
BL + 2Y 2

s

(
m2
χ1

+A2
s +m2

s̃2 +m2
ν̃R

)
+ 4Y 2

ν (m2
ν̃R +A2

ν), (19)

16π2 dm
2
s̃

dt
= −3g2BLM

2
BL + 2Y 2

s

(
m2
χ1

+m2
s̃2 +A2

s +m2
ν̃R

)
. (20)

From these equations, one can see that in inverse seesaw scenario the evolution of m2
χ1

and m2
ν̃R

depends on the

relative strength of Ys and Yν . In the case of hierarchal Yukawa, m2
χ1

can be of order or slightly smaller than
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FIG. 1: The evolution of the B − L scalar masses: m2
χ1

(red), m2
χ2

(black ), and m2
ν̃R

(blue) in BLSSM with inverse

seesaw from GUT to TeV scale for m0 = m1/2 = A0 = 1 TeV, Ys ∼ diag{1, 1, 1} and Yν ∼ O(0.1) × diag{1, 1, 1} (left)
and Ys ∼ diag{0, 0, 1} and Yν ∼ O(0.1)× diag{0, 0, 1} (right), and gBL ∼ 0.1 (up) and gBL ∼ 0.5 (down).

m2
ν̃R

if Yν � Ys. From the RGEs of Ys and Yν one can notice that Yν must be <∼ 0.5, to avoid a possible Landau

pole at high scale, while Ys can be of order one. In these conditions, the masses m2
χ1

and m2
ν̃R

are of the same

order and positive (as shown explicitly in Fig. 1). So that R-parity remains exact symmetry and B − L could

be broken if symmetry breaking conditions in Eq. 7 are satisfied. As intimated, these conditions do not require

negative mass squared scalar masses and with tanβ′ ' O(1), symmetry can be broken with m2
χ1
> 0. So even

if m2
ν̃R
≤ m2

χ1
and both are positive, B − L symmetry only can be broken. In case of degenerate Yukawa, i.e.,

Ys = Ys diag{1, 1, 1} and Yν ∼ O(0.5)×diag{1, 1, 1}, the splitting between m2
χ1

and m2
ν̃R

& m2
s̃ becomes larger,

so that m2
χ1

can be negative while m2
ν̃R

and m2
s̃2

are positive.

In Fig. 1 we display the scale evolution of the Higgs masses m2
χ1,2

and also the scalar masses m2
ν̃R3

and m2
S̃1,2

based on the numerical solution of complete RGEs derived by using SARAH [7], for m0 = M1/2 = A0 = 1

TeV and Yν ∼ 1 is assumed. As can be seen from this figure, m2
χ1

drops rapidly to the negative region, while

m2
χ2

and other scalar masses remain positive at TeV scale. Analogously to the radiative electroweak symmetry

breaking in MSSM, this mechanism works with large Yukawa coupling. It is worth mentioning that unlike

the type I seesaw BLSSM, here the scalar mass m2
ν̃R3

remains positive at the low scale independently of the

initial values. Hence the B − L breaking via a non-vanishing VEV for right-handed sneutrinos ν̃R3
, does not
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FIG. 2: The evolution of the B − L scalar masses: m2
χ1

(red), m2
χ2

(black ), and m2
ν̃R

(blue) in BLSSM with type I

seesaw from GUT to TeV scale for m0 = m1/2 = A0 = 1 TeV, Yν ∼ diag{1, 1, 1} (left) and Yν ∼ diag{0, 0, 1} (right),

and gBL ∼ 0.1 (up) and gBL ∼ 0.5 (down).

occur in the present framework and R-parity remains exact. As intimated, if right-handed sneutrino acquires

a non-vanishing VEV, then both B − L and R-parity would simultaneously be broken. In this case, the model

leads to a quite different and involved phenomenology at the low scale [5, 10, 11].

III. B − L VACUUM STABILITY

In this section we analyze, by using Vevacious [6], the vacuum stability of the BLSSM-IS. We perform a wide

scan over all relevant parameters and calculate the scalar potential through SARAH [7] and SPheno [8]. The

stability results are classified into two categories: (i) Non-vanishing VEVs of χi: 〈χi〉 6= 0 (∼ 103) GeV and

〈ν̃R3
〉 = 0, where B−L is spontaneously broken and R-parity is conserved. (ii) 〈χi〉 = 0 and 〈ν̃R3

〉 6= 0 (∼ 103)

GeV, so that both B − L and R-parity are spontaneously broken.

In Ref. [9], it was shown that in BLSSM with type I seesaw, out of more than 2000 scanned points only about

100 points may lead to global non-zero vevs for neutrinos that may break the R-parity, while all other points

preserve R-parity and break B−L only. We confirmed these results by considering a wider range of parameter

space. Our results are presented in Fig. 3, where the VEVs: 〈χ1〉 and 〈ν̃R3〉 are given in terms of the relevant
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FIG. 3: The VEVs of singlet scalar χ1 and right-handed sneutrino ν̃R3 , in BLSSM-type I, as function of gBL, YνR3
and

g̃. The last plot is for the correlation between these two VEVs.

parameters gBL, YνR3
and the gauge coupling mixing, g̃, between U(1)Y and U(1)B−L. We also display the

correlation between 〈χ1〉 and 〈ν̃R3
〉. As can be seen from these plot, although most of the considered points

lead to a non-vanishing 〈χ1〉 and zero 〈ν̃R3
〉, i.e., B − L is spontaneously broken while R-parity remains exact,

there is a non-negligible number of points which induce non-vanishing 〈ν̃R3
〉, hence R-parity is broken along

with the B − L. It is noticeable that the possibility of obtaining non-vanishing 〈ν̃R3
〉 is increased with large

values of Yν̃R3
as found in previous section by the RGE evolution. In addition, the last plot in Fig.3 clearly

shows that for most of the parameter space one gets 〈χ1〉 = O(1) TeV and 〈ν̃R3〉 ' 0. Nevertheless, it is quite

plausible to have 〈ν̃R3
〉 6= 0 and larger than 〈χ1〉. Those points will be the benchmarks of R-parity violation

scenario studied in Ref. [5].

We performed a similar analysis for the BLSSM-IS. We scanned over a large region of parameter space and

checked the VEVs of the scalar fields χ1 and ν̃R3
. Fig. 4 shows the resulting VEVS as functions of g̃, YνR3

and

gBL. Also the correlation between 〈χ1〉 and 〈ν̃R3〉 is given in the last plot in this figure. It is now clear that

unlike the case of BLSSM with type I seesaw, in BLSSM-IS there is no chance of getting non-zero VEV for

the right-handed sneutrinos and one always finds 〈χ1〉 6= 0 with 〈ν̃R3
〉 = 0. This conclusion is independent of
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FIG. 4: The VEVs of singlet scalar χ1 and right-handed sneutrino ν̃R3 , in BLSSM-IS, as function of gBL, YνR3
and g̃.

The last plot is for the correlation between these two VEVs.

the values of gBL, g̃ or Yν̃R3
as shown in Fig. 4. Moreover, the correlation between the VEVs in the last plot

confirms that 〈χ1〉 can be order TeV while 〈ν̃R3
〉 vanishes identically. Therefore, we can conclude that in the

BLSSM-IS the B − L symmetry can be radiatively broken while the R-parity remains as an exact symmetry.

IV. CONCLUSION

We have analysed the radiative symmetry breaking of B−L within the framework of BLSSM-IS. We considered

the RGEs to show that for a wide range of parameters the squared mass of the Higgs singlet can be negative

at TeV scale while the squared mass of the right-handed sneutrino remains positive. Therefore, the B − L

symmetry is spontaneously broken by the VEV of this singlet and R-parity remains exact. We also investigated

the vacuum stability of the BLSSM-IS, using the program of Vevacious. We showed that for a wide region of

parameter space the singlet scalar χ1 gets a non-vanishing VEV ∼ O(1) TeV and 〈ν̃R3
〉 = 0 so that B − L

is spontaneously broken and R-parity is conserved. This conclusion is different from the results obtained in

BLSSM-type I, where R-parity can be spontaneously broken for a non-negligible number of points in parameter
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space.
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