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Landau levels of cold dense quark matter in a strong magnetic field
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The occupied Landau levels of strange quark matter are investigated in the framework of the SU(3)
NJL model with a conventional coupling and a magnetic-field dependent coupling respectively. At
lower density, the Landau levels are mainly dominated by u and d quarks. Threshold values of the
chemical potential for the s quark onset are shown in the µ-B plane. The magnetic-field-dependent
running coupling can broaden the region of three-flavor matter by decreasing the dynamical masses of
s quarks. Before the onset of s quarks, the Landau level number of light quarks is directly dependent
on the magnetic field strength B by a simple inverse proportional relation ki,max ≈ B0

i /B with
B0

d = 5× 1019 G, which is approximately 2 times B0

u of u quarks at a common chemical potential.
When the magnetic field increases up to B0

d , almost all three flavors are lying in the lowest Landau
level.

PACS numbers: 12.39.-x, 12.40.jn, 12.38.Mh

I. INTRODUCTION

The study of Quantum Chromodynamics (QCD) matter subject to a strong magnetic field has been a hot topic
of intense investigation [1]. The strange quark matter (SQM) is regarded as a ground state composed of deconfined
u, d, and s quarks [2]. The new state is expected to be searched in extreme conditions of high density and/or high
temperature. In addition to these environments, the SQM is argued to be subject to strong magnetic fields. The
extreme strong magnetic field theoretically seems beyond the scope of the conventional condensed matter, and its
origin remains not very clear until now. However, it has been recently proposed to be produced in noncentral collision
experiments in the Relativistic Heavy Ion Collider and the Large Hadron Collider on the one hand [3, 4], or to be
naturally existing in the core of pulsars on the other hand. The large magnetic fields in nature are normally associated
with astrophysical objects, where the density is much higher than the nuclear saturation. The typical strength could
be the order of 1012 G on the surface of pulsars [5]. Some magnetars can have even larger magnetic fields, reaching
the surface value as large as 1014 − 1015 G [6]. By comparing the magnetic and gravitational energies, the physical
upper limit to the total neutron star is of the order 1018 G. For self-bound quark stars, the limit could go higher [7].
Maximum strengths of 1018− 1020 G in the interior of stars are proposed by an application of the viral theorem [3, 5].
In the LHC/CERN energy, it is possible to produce a field as large as 5× 1019 G [4].
The special properties of QCD matter are widely affected by strong magnetic fields in many branches, such as the

(inverse) magnetic catalysis [8–12], the anisotropies [13, 14], the magnetic oscillations [15], the magnetization [14], the
phase diagram with a critical end point [16, 17] etc. The magnetic field larger than 1019 G can obviously change the
spherical symmetry [18]. All of these are essentially resulted due to the Landau levels arrangement of charged particles
in magnetic fields. In principle, not only quark masses will change in the medium, but also the coupling constant will
run in the medium, such as the magnetic-field-dependent coupling and magnetic-temperature-dependent coupling [19].
It is well known that the dressed masses of three flavors are very different, which leads to a flavor-dependent fraction
in quark matter and strangelets [20]. Similarly, the threshold condition and the quantum numbers of the Landau
level of quarks are also flavor dependent. Generally, u and d quarks dominate the bulk matter at low densities. As
the density increases, strange flavor begins to take part in its Landau levels. Therefore, the phase was argued to be
divided into three regions such as the chirally broken phase (B-phase), the massive phase (C-phase), and the chirally
restored phase (A-phase) in previous work [21, 22], where the detailed locations of the two-flavor Landau Levels were
shown in the µ-B phase panel. However, at a proper density, the s quark cannot participate in the previous discussion
because its dressed mass is larger than the chemical potential, thus the s quark could not occupy its lowest Landau
level (LLL). In this work, we will show the critical density for the appearance of s quarks by considering the two
kinds of coupling interactions, the conventional coupling constant and the magnetic-field-dependent running coupling
respectively. The main aim of this work is to perform a detailed analysis of the Landau levels with and without the
s quark depending on the magnetic field strength .
This work is organized as follows. In Sec. II, a brief review of the Nambu−Jona-Lasinio (NJL) model description of
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cold SQM in a strong magnetic field is provided. The magnetic-field-dependent running scalar coupling in the SU(3)
version is introduced as well as the model parameters in the computation. In Sec. III, the numerical results and
discussion are given at common chemical potential and under the β equilibrium respectively. A detailed analysis of
the occupied Landau Levels with respect to the magnetic field is given. The last section is a short summary.

II. THERMODYNAMICS OF MAGNETIZED SQM IN THE SU(3) NJL MODEL

The SU(3) NJL Lagrangian density includes both a scalar-pseudoscalar interaction and the t’Hooft six-fermion
interaction [23] and can be written as [22],

LNJL = ψ̄(i/D −m)ψ +G

8
∑

a=0

[(ψ̄λaψ)
2 + (ψ̄γ5λaψ)

2]−K{det[ψ̄(1 + γ5)ψ] + det[ψ̄(1− γ5)ψ]}. (1)

The field ψ = (u, d, s)T represents a quark field with three flavors. Correspondingly, m = diag(mu,md,ms) is the

current mass matrix with mu = md 6= ms. λ0 =
√

2/3I where I is the unit matrix in the three-flavor space. λa
with 0 < a ≤ 8 denotes the Gell-Mann matrix. The gap equations for three-flavor are coupled and should be solved
consistently,

Mi −mi + 4Gφi − 2Kφjφk = 0, (2)

where (i, j, k) is the permutation of (u, d, s). The contribution from the quark flavor i is

φi = φvaci + φmag
i + φmed

i . (3)

The terms φvaci , φmag
i , and φmed

i representing the vacuum, magnetic field, and medium contribution to the quark
condensation are respectively [24]

φvaci = −
MiNc

2π2
[Λ
√

Λ2 +M2
i −M2

i ln(
Λ +

√

Λ2 +M2
i

Mi

)], (4)

φmag
i = −

Mi|qi|BNc

2π2

{

ln[Γ(xi)]−
1

2
ln(2π) + xi −

1

2
(2xi − 1) ln(xi)

}

, (5)

φmed
i =

ki,max

∑

ki=0

aki

Mi|qi|BNc

2π2
ln

[

µi +
√

µ2
i − s2i

si

]

. (6)

The effective quantity si =
√

M2
i + 2ki|qi|B sensitively depends on the magnetic field. The dimensionless quantity

is xi = M2
i /(2|qi|B). The degeneracy label of the Landau energy level is aki

= 2 − δk0. The quark condensation is
greatly strengthened by the factor |qiB| together with the dimension reduction D− 2 [25, 26]. The Landau quantum
number ki and its maximum ki,max are defined as

ki ≤ ki,max = Int[
µ2
i −M2

i

2|qi|B
], (7)

where “Int” means the number before the decimal point.
The total thermodynamic potential density in the mean field approximation reads

Ω =
∑

i=u,d,s

(Ωvac
i +Ωmag

i +Ωmed
i + 2Gφ2i )− 4Kφuφdφs. (8)

where the first term in the summation is the vacuum contribution to the thermodynamic potential, i.e.,

Ωvac
i =

Nc

8π2

[

M4
i ln(

Λ + ǫΛ
Mi

)− ǫΛΛ(Λ
2 + ǫ2Λ)

]

, (9)

where the quantity ǫΛ is defined as ǫΛ =
√

Λ2 +M2
i . The ultraviolet divergence in the vacuum part of the thermody-

namic potential Ω is removed by the momentum cutoff. In the literature, a form factor is introduced in the diverging
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zero energy as a smooth regularization procedure [27]. The magnetic field and medium contributions are respectively

Ωmag
i = −

Nc(|qi|B)2

2π2

[

ζ′(−1, xi)−
1

2
(x2i − xi) ln(xi) +

x2i
4

]

, (10)

Ωmed
i = −

|qi|BNc

4π2

kmax
∑

k=0

aki

{

µi

√

µ2
i − (M2

i + 2ki|qi|B)− (M2
i + 2ki|qi|B) ln[

µi +
√

µ2
i − (M2

i + 2ki|qi|B)
√

M2
i + 2ki|qi|B

]

}

,(11)

where ζ(a, x) =
∑∞

n=0
1

(a+n)x is the Hurwitz zeta function. From the thermodynamic potential (8), one can easily

obtain the quark density as

ni(µ,B) =

ki,max

∑

k=0

aki

|qi|BNc

2π2

√

µ2
i − (M2

i + 2ki|qi|B). (12)

The corresponding pressure from the flavor i contribution is

Pi(µi, B) = −Ωi = −(Ωvac
i +Ωmag

i +Ωmed
i ). (13)

Under strong magnetic fields, the system total pressure should be a sum of the matter pressure and the field pressure
contribution [24, 28]. So we have

Pi(µi, B) = −Ωi +
B2

2
, (14)

where the magnetic field term B2/2 is due to the electromagnetic Maxwell contribution. It is well known to us that
the energy density and pressure should vanish in vacuum. So the pressure and the thermodynamic potential should
be normalized by requiring the zero pressure at the zero density as [24]

P eff
i (µi, B) = Pi(µi, B)− Pi(0, B). (15)

In the normalization result, the field term is automatically absent. According to the fundamental thermodynamic
relation, the free energy density at zero temperature is

εi = −P eff
i + µini. (16)

The system pressure and energy density are written as

P =
∑

i

P eff
i , ε =

∑

i

εi, (17)

where the summation goes over u, d quarks, and electrons.
In principle, the interaction coupling constant between quarks should be solved by the RG equation, or can be

phenomenological expressed in an effective potential [29–31]. In the infrared region at low energy, the dynamical
gluon mass represents the confinement feature of QCD [32]. Furthermore, in the presence of a strong magnetic field,
the gluon mass becomes large together with a decreasing of the interaction constant, which leads to a damping of the
chiral condensation. For sufficiently strong magnetic fields eB ≫ Λ2

QCD, the coupling constant αs is proposed to be

related to the magnetic field [11, 25]. Motivated by the work of Miransky and Shovkovy [25], the similar ansatz of
the magnetic-field-dependent coupling constant is introduced in the SU(3) NJL models [11]. The simple ansatz of the
running coupling is probably suitable for the SU(3) NJL model if we include the s quarks [11],

G′(eB) =
G

ln(e+ |eB|/Λ2
QCD)

, (18)

where the parameter ΛQCD = 300 MeV. We can find the running coupling constant versus the field B approaches
gradually to the constant value G′(B → 0) ∼ G. In the computation of the SU(3) NJL model, we adopt the parameters
Λ = 602.3 MeV, mu = md = 5.5 MeV, ms = 140.7 MeV, G = 1.835/Λ2, and K = 12.36/Λ5 [33].
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FIG. 1: The lines [solid and dashed lines for couplings G and G′(eB) respectively] for the critical chemical potential µ separate
the panel into two regions. In the region above the line, there are strange quark distributions in Landau levels. In the region
below the line, only two-flavor light quarks fill in their Landau levels, where the s quark is excluded because of its dressed mass
larger than µ.

III. NUMERICAL RESULTS AND DISCUSSION

In a strong magnetic field with a certain direction, quarks wrap around the magnetic field and the orbital motion
will be ruled by the Landau energy level. Because dressed masses of quarks are different, the occupations of the
discretized Landau level are flavor dependent. At a proper density, the dynamical masses of the u and d quarks are
smaller than their chemical potential and have a real distribution in the Landau Levels. But the dynamical mass of
the s quark is much heavier than that of the u/d quark, and thus it cannot occur until the critical chemical potential
above its dynamical mass is reached. In Fig. 1, the critical chemical potential is shown by the solid line for the
conventional constant coupling G, and by the dashed line for the running coupling G′(eB) respectively. When the
chemical potential is above the line, the s quarks have real distributions in the Landau Levels. In the region below the
line, there are only two-flavor quarks in their Landau levels, and the s quark is excluded because of its dressed mass
larger than µ. It can be found that at much higher field strengths, the regions of three quark matter in the µ-B plane
become wider. Furthermore, the region is much wider with the running coupling G′(eB) than the constant coupling
G. Therefore, it is concluded that the running coupling interaction could broaden the region of three-flavor quark
matter. In other words, the strange quark can exist at lower density with the running coupling than the constant
coupling case.

TABLE I: The quantum number of Landau Levels occupied by quarks for the fixed chemical potential µ = 350 MeV at several
magnetic fields. The number “0” means the LLL.

Magnetic field (G) ku,max kd,max ks,max

1.0× 1017 115 230 No

1.0× 1018 15 30 No

1.0× 1019 1 3 No

2.0× 1019 0 1 0

It is well known that the chemical potential dominates the energy spectrum of the particle without the magnetic
field. Now we study how large the magnetic field effect is on the distribution of Landau levels at a fixed chemical
potential. In Table I, we adopt µ = 350 MeV, and give the maximum number of the Landau levels of the u, d, and s
quarks for several magnetic fields. It can be found that the much higher magnetic field can accommodate quarks in
lower levels. Furthermore, the onset of the s quark can be seen in its LLL until the field reaches 2 × 1019 G. While
at lower magnetic field, the quantum number of filled Landau levels is larger and the quantization effects are washed
out.
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FIG. 2: The maximum Landau Levels for u and d quarks change with the strong magnetic field. The solid line and dashed line
are, respectively, for the constant coupling G and the running coupling G′(eB).
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FIG. 3: The chemical potential versus the baryon number density at several values of the magnetic field.

Before the onset of the s quark, the u and d quarks dominate the quark matter. Because of the identity qu = −2qd,
the level number of the d quarks is exactly 2 times the level number of the u quark in order to meet the global charge
neutrality. In Fig. 2, the Landau Levels of the u and d quarks with the same chemical potential µ are shown in the
range of the magnetic field (1016 − 1019 G). We use the logarithm to label both the vertical axis and the horizonal
axis. Then the Landau level number as functions of the magnetic field vary linearly, which is very near the red dotted
line (log k = 19.7 − logB) for d quarks. Consequently, we can easily find that the u/d quark Landau level number
ki,max and the magnetic field B nearly satisfy a simple inverse proportional relation,

ki,max ≈ B0
i /B (19)

at the coupling G, where the scale is B0
d = 5× 1019 G for d quarks, which is 2 times B0

u of u quarks. The experiential
formula indicates the constraint on the strong magnetic field. In strong magnetic fields, charged fermions acquire
infrared phase space proportional to |eB|. As the magnetic field strength increases, quarks are suppressed to the
lower levels. At the same time the degeneracy factor of each energy level is enlarged to eB. When the magnetic field
increases up to the order of B0 or so, almost all three flavors are concentrated on the LLL. The LLL would make the
QCD matter more interesting, where the quarks are independent on the magnetic field with zero transverse energy
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[26]. After taking into account the running coupling G′(eB) (marked by dashed lines) in Fig. 2, the line deviates
from the straight line at the field strength larger than 1018 G. Therefore the running coupling can move the location
of the LLL to a field strength slightly lower than B0. It can be expected that at the same magnetic field, the SQM
can be more easily realized at the running coupling than the conventional coupling.
The strong magnetic field drastically affects the structural properties and the thermodynamics. As far as we know,

the chemical potential increases together with the number density. But for the SQM under a strong magnetic field,
the variation relation between the chemical potential and the number density is not always monotonous. In Fig. 3,
the quark chemical potential changes with the baryon number density at several values of the magnetic fields. The
curves from top to down denote the increasing of the magnetic field. At a low density less than 0.35 fm−3, the effect
of the magnetic field strength is very important, where the degeneracy contribution from the magnetic field is much
larger than the fermion momentum. So at the same density, the chemical potentials are very different for different
magnetic fields. Furthermore, a small number of quarks under the influence of the strong fields can easily produce
the oscillation behavior of the chemical potential. While in the high density region, the fermion momentum increases
and the oscillation behavior cannot be easily found anymore.
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FIG. 4: The critical chemical potential µs as the Fig. 1 is shown under the β equilibrium condition.

In realistic situations for neutron stars, the chemical potentials for different flavors will be different and related by
the physical constraints in a neutron star. So we can do the calculation by assuming the three-flavor quark matter
is in β equilibrium. Now there are three dynamical masses and two independent chemical potentials, which can be
determined by the three gap equations (2), the baryon number conservation, and the neutral charge condition,

2nu − nd − ns − 3ne = 0. (20)

Under the β equilibrium condition µd = µs = µu + µe in Fig. 4, we can get the similar result as in Fig. 1, namely,
the critical potential µs for the onset of s quark is about 465 MeV with the coupling G. But at much higher magnetic
field, the value of µs has an apparent drop due to the contribution of electrons.
Before the onset of the s quarks, the Landau level number is approximately inverse proportional to the magnetic

field. In Fig. 5, we can also find the similar inverse proportional relation between the maximum Landau quantum
number and the magnetic field. Under the β equilibrium, it should be changed as

kβi,max ≈ Bβ
i /B. (21)

We can see that the contribution of electrons can hardly change the relation of d quarks. But the value of Bβ
u is

decreased to 1.7× 1019 G because its chemical potential is reduced to µs − µe. In fact, the charge neutral condition
can still be reached due to the reduction of the d quark density in addition to the contribution of electrons. In Fig. 6,
the corresponding contribution of the electron density is shown on the left axis. The chemical potential µe is shown
on the right axis. We can see that the µe will decrease as the magnetic field increases. On the contrary, due to the
degeneracy factor eB, the density will keep increasing monotonously at the higher magnetic field.
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FIG. 5: The maximum Landau Levels for u and d quarks versus the magnetic field as in Fig. 2 are shown under the β
equilibrium.
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FIG. 6: The density (on the left axis) and the chemical potential (on the right axis) of electrons versus the magnetic field.

IV. SUMMARY

In this paper we have studied the energy level of the SQM in a strong magnetic field within the SU(3) NJL model.
The critical chemical potential was shown for the onset of s quarks. We found that the running coupling scheme
can broaden the existing region of the three-flavor quarks in the µ-B plane. As the density increases, the quarks in
the high level participate in the system. Just before the onset of s quarks, we found that the maximum quantum
number of the u/d Landau level is directly dependent on the field strength through a simple inverse proportional
relation ki,max ≈ B0

i /B. The value of B0 is certainly flavor dependent. In particular, the value B0
d of d quarks is

approximately 2 times B0
u of u quarks. It should be pointed that the chemical potential does not monotonously vary as

the density increases. At high densities, the chemical potential keeps increasing with the density. But at low density,
the chemical potential could be a decreasing function of the baryon number density, otherwise, the oscillation behavior
becomes clear. The corresponding work can be done under the β equilibrium. The running coupling can still broaden
the window of three-flavor matter. Because the common chemical potential relation is changed to µd = µs = µu +µe,

the inverse proportional relation should be written as kβi,max ≈ Bβ
i /B, where Bβ

u is no longer half of Bβ
d . These results

will be helpful in realistic situations for neutron stars. The magnitude of magnetic field in compact stars decreases
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from the core to the surface of stars. The study of the relation of magnetic field and Landau level is helpful to know
the components of stars for a given radius.
The quarks in the LLL make the QCD more interesting and illustrate the nonperturbative effects, which is further

enhanced by the strong magnetic field. We give the condition of the magnetic field larger than B0
i , under which all

three-flavor quarks are lying in the LLLs. We expect that all of these considerations would be helpful to the theoretical
investigation and future experiments searching for the SQM under an extremely strong magnet field.
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