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CP violation for B+
c
→ D

+
(s)π

+π− in Perturbative QCD
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In the perturbative QCD (PQCD) approach we study the direct CP violation in
B+

c → D+
(s)ρ

0(ω) → D+
(s)π

+π− via the ρ − ω mixing mechanism. We find that the CP vio-

lation can be enhanced by ρ − ω mixing when the invariant masses of the π+π− pairs are in the
vicinity of the ω resonance. For the decay process B+

c → D+ρ0(ω) → D+π+π−, the maximum CP
violation can reach 7.5 %.

PACS numbers: 13.25.Hw, 11.30.Er

I. INTRODUCTION

CP violation is an important topic in particle physics.
Within the Standard Model (SM), CP violation is orig-
inated from the weak phase in the Cabibbo–Kobayashi–
Maskawa (CKM) matrix, along with the strong phase
which usually arises from strong interactions [1, 2]. In
the past few years more attention has been focused on
the decays of B meson system both theoretically and
experimentally. Some events of Bc mesons have been
observed at Tevatron. Fortunately, a great number of
events will appear at LHC in the foreseeable future. Re-
cently, the LHCb Collaboration focused on three-body
decays channels of B± → π±π+π− and B± → K±π+π−

to probe large CP violation [3–5]. The intriguing dis-
coveries present us opportunities to detect CP violation
mechanism. The research of three-body decays of Bc me-
son may be next topic for the LHCb experiments in the
following years. In this paper, we focus on the interfer-
ence from intermediate ρ and ω mesons in the Bc meson
decays.
There has been remarkable progress in the study of

exclusive B0
d → h1h2 and B± → h1h2 decays, where

h1, h2 are light pseudo-scalar and/or vector mesons. His-
torically, these decays were calculated in the so-called
naive factorization approach [6], which was improved by
including perturbative QCD contributions [7, 8]. Cur-
rently, there are three popular theoretical approaches
to study the dynamics of these decays, which go under
the name QCD factorization (QCDF) [9], perturbative
QCD (PQCD) [10, 11], and soft-collinear effective theory
(SCET) [12]. All three are based on power expansion in
1/mb, where mb is the b-quark mass. Factorization of the
hadronic matrix elements 〈h1h2|Oi|B〉, where Oi is typ-
ically a four-quark or a magnetic moment type operator,
is shown to exist in the leading power in 1/mb in a class
of decays. But, these methods are different significantly
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due to the collinear degree or transverse momenta. The
power counting is different from the hard kernels between
QCDF and PQCD. It is important to extract the strong
phase difference for CP violation. The more different
feature of QCDF and PQCD is the strong interaction
scale at which of PQCD is low, typically of order 1 ∼ 2
GeV, the case of QCDF is order O(mb) for the Wilson
coefficients.
Direct CP violating asymmetries in b-hadron decays

occur through the interference of at least two amplitudes
with the weak phase difference φ and the strong phase
difference δ. The weak phase difference is determined by
the CKM matrix, while the strong phase is usually diffi-
cult to control. In order to acquire a large CP violating
asymmetries signal, we need to apply some phenomeno-
logical mechanism to obtain a large δ. It has been shown
that the charge symmetry violating mixing between ρ and
ω can be used to obtain a large strong phase difference
which is required for large CP violating asymmetries [13–
21]. In this paper, we will investigate the CP violation
via ρ− ω mixing using PQCD approach in the decays of
Bc mesons.
In the perturbative QCD approach, at the rest frame of

heavy B meson, B meson decays into two heavy quarks
with large momenta. The hard interaction dominants the
decay amplitude from short distance due to not enough
time to exchange soft gluons with final mesons. Since
the final mesons move very fast, a hard gluon kicks the
light spectator quark of B meson to form a fast mov-
ing final meson. Hence, the hard interaction is consist
of six quark operator. The non-perturbative dynamics
are included in the meson wave function which can be
extracted from experiment. The hard one can be calcu-
lated by perturbation theory. Since Bc meson has two
heavy quarks (b and c quark), each of them can decay
individually. It has been pointed out the c-quark decay
processes can only produce about 1% CP violation [17].
Hence, we only consider the contribution of b-quark de-
cay in the processes that we are considering.
The remainder of this paper is organized as follows. In

Sec. II we present the form of the effective Hamiltonian.
In Sec. III we give the calculating formalism of CP vi-
olation from ρ − ω mixing in B+

c → D(s)π
+π− decay.
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We present the numerical results in Sec. IV. A summary
and discussion are included in the Sec. V. The related
functions defined in the text are given in Appendix.

II. THE EFFECTIVE HAMILTONIAN

Based on the operator product expansion, the effective
weak Hamiltonian can be expressed as [22]:

Heff =
GF√
2
{
∑

q=u,c

ξq[(C1(µ)O
q
1(µ)

+ C2(µ)O
q
2(µ)) +

10∑

i=3

Ci(µ)Oi(µ)]}, (1)

where ξq = VqpV
∗
qb(p = d, s) are CKM matrix elements,

and ci(µ)(i = 1, 2, .., 10) are the Wilson coefficients,
which are calculable in the renormalization group im-
proved perturbation theory and are scale dependent.
In the present case, we work with the renormalization
scheme independent Wilson coefficients and use the val-
ues of the Wilson coefficients at the renormalization scale
µ ≈ mb. GF represents Fermi constant and Oi is the ef-
fective four quark operator, which can be written as

Ou
1 = d̄αγµ(1 − γ5)uβūβγ

µ(1− γ5)bα,

Ou
2 = d̄γµ(1− γ5)uūγ

µ(1− γ5)b,

O3 = d̄γµ(1− γ5)b
∑

q′

q̄′γµ(1 − γ5)q
′,

O4 = d̄αγµ(1 − γ5)bβ
∑

q′

q̄′βγ
µ(1− γ5)q

′
α,

O5 = d̄γµ(1− γ5)b
∑

q′

q̄′γµ(1 + γ5)q
′,

O6 = d̄αγµ(1 − γ5)bβ
∑

q′

q̄′βγ
µ(1 + γ5)q

′
α,

O7 =
3

2
d̄γµ(1 − γ5)b

∑

q′

eq′ q̄
′γµ(1 + γ5)q

′,

O8 =
3

2
d̄αγµ(1− γ5)bβ

∑

q′

eq′ q̄
′
βγ

µ(1 + γ5)q
′
α,

O9 =
3

2
d̄γµ(1 − γ5)b

∑

q′

eq′ q̄
′γµ(1− γ5)q

′,

O10 =
3

2
d̄αγµ(1− γ5)bβ

∑

q′

eq′ q̄
′
βγ

µ(1 − γ5)q
′
α,

(2)

where α and β are color indices, and q′ running through
all the light flavour quarks. In Eq.(2) Ou

1 and Ou
2 are

the tree level and QCD corrected operators, O3–O6 are
QCD penguin operators and O7–O10 are the operators
associated with electroweak penguin diagrams.
In the PQCD approach, three scales are involved: the

W-boson mass mW associated weak interaction, the hard

scale t, and factorization scale 1/b (b is the conjugate vari-
able of the parton transverse momenta kT ). The decay
amplitude is then factorized into the convolution of the
hard subamplitude, the Wilson coefficient and the Su-
dakov factor with the meson wave functions, all of which
are well-defined and gauge invariant. Therefore, the three
scale factorization formula for exclusive nonleptonic B
meson decays is then written as

C(t)⊗H(x, t)⊗ Φ(x) ⊗ exp[−s(P, b)

− 2

∫ t

1/b

dµ

µ
γq(αs(µ))], (3)

where C(t) are the corresponding Wilson coefficients.
Φ(x) are the meson wave functions and the variable t
denotes the largest mass scale of hard process H that is
six-quark effective theory. Sudakov factor coming from
renormalization summation and threshold summation is
introduced to solve the endpoint diverging. It can handle
with endpoint diverging problem properly by introducing
Sudakov factor [23]. The Sudakov evolution exp [-s(P,b)]
are from the resummation of double logarithms ln2(Pb),
with P denoting the dominant light-cone component of
meson momentum. γq = −αs/π is quark anomalous di-
mension in axial gauge.

III. CP VIOLATION IN

B+
c → D+

(s)
ρ0(ω) → D+

(s)
π+π−

A. Formalism

In the vector meson dominance model, the photon
propagator is dressed by coupling to vector meson. Based
on the same mechanism, ρ−ω mixing was proposed. Ac-
cording to the effective Hamiltonian, the amplitude A for
B+

c → D+
(s)π

+π− can be divided into two parts:

A =
〈
D+

(s)π
+π−|HT |B+

c

〉
+
〈
D+

(s)π
+π−|HP |B+

c

〉
,

(4)

with HT and HP being the Hamiltonian for the tree and
penguin operators, respectively.
We can define the relative magnitudes and phases be-

tween the tree and penguin operator contributions as fol-
lows:

A =
〈
D+

(s)π
+π−|HT |B+

c

〉
[1 + rei(δ+φ)], (5)

where δ and φ are strong and weak phases, respectively.
φ arises from the CP-violating phase in the CKM matrix,
which is arg[VtbV

∗
tq/(VubV

∗
uq)](q = d, s). The parameter

r is the absolute value of the ratio of penguin and tree
amplitudes:

r ≡
∣∣∣∣∣

〈
D+

(s)π
+π−|HP |B+

c

〉
〈
D+

(s)π
+π−|HT |B+

c

〉
∣∣∣∣∣. (6)
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The amplitude for B−
c → D−

(s)π
+π− is

Ā =
〈
D−

(s)π
+π−|HT |B−

c

〉
+
〈
D−

(s)π
+π−|HP |B−

c

〉
.

(7)

In this work, we only consider ρ0 and ω resonances. The
CP violating asymmetry for B+

c → D+
(s)π

+π− is defined
as

Acp ≡ |A|2 − |Ā|2
|A|2 + |Ā|2 =

−2rsinδsinφ

1 + 2rcosδcosφ+ r2
. (8)

From Equation (8), one can find the CP violation de-
pends on the weak phase difference and the strong phase
difference. The weak phase is determined for a specific
decay process. Hence, in order to obtain a large CP vi-
olation, we need some mechanism to make sinδ large. It
has been found that ρ − ω mixing (which was proposed
based on vector meson dominance [24]) leads to a large
strong phase difference [14–21]. Based on ρ − ω mixing
and working to the first order of isospin violation, we
have the following results:

〈
D+

(s)π
+π−|HT |B+

c

〉
=

gρ
sρsω

Π̃ρωtω +
gρ
sρ

tρ, (9)

〈
D+

(s)π
+π−|HP |B+

c

〉
=

gρ
sρsω

Π̃ρωpω +
gρ
sρ

pρ. (10)

where tv(v = ρ or ω) is the tree amplitudes and pv is the
penguin amplitudes for producing an intermediate vector

meson V. gρ is the coupling for ρ0 → π+π−; Π̃ρω is the
effective ρ − ω mixing amplitude which also effectively
includes the direct coupling ω → π+π−. sV , mV and
ΓV (V=ρ or ω) is the inverse propagator, mass and decay
rate of the vector meson V , respectively.

sV = s−m2
V + imV ΓV . (11)

with
√
s being the invariant masses of the π+π− pairs.

We stress that the direct coupling ω → π+π− is ef-

fectively absorbed into Π̃ρω , leading to the explicit s de-

pendence of Π̃ρω [25]. However, the s dependence of Π̃ρω

is negligible in practice. We can make the expansion

Π̃ρω(s) = Π̃ρω(m
2
ω) + (s−mω)Π̃

′
ρω(m

2
ω). The ρ−ω mix-

ing parameters were determined in the fit of Gardner and
O’Connell [26]:

ReΠ̃ρω(m
2
ω) = −3500± 300MeV2,

ImΠ̃ρω(m
2
ω) = −300± 300MeV2,

Π̃′
ρω(m

2
ω) = 0.03± 0.04. (12)

From Eqs. (4)(5)(9)(10) one has

reiδeiφ =
Π̃ρωpω + sωpρ

Π̃ρωtω + sωtρ
, (13)

Defining

pω
tρ

≡ r′ei(δq+φ),
tω
tρ

≡ αeiδα ,
pρ
pω

≡ βeiδβ , (14)

where δα, δβ and δq are strong phases. One finds the
following expression from Eqs. (13)(14):

reiδ = r′eiδq
Π̃ρω + βeiδβsω

Π̃ρωαeiδα + sω
. (15)

In order to get the CP violating asymmetry in Eq.
(8), sinφ and cosφ are needed. The weak phase φ is
fixed by the CKM matrix elements. In the Wolfenstein
parametrization [27], one has

sinφ =
η√

[ρ(1 − ρ)− η2]2 + η2
,

cosφ =
ρ(1− ρ)− η2√

[ρ(1 − ρ)− η2]2 + η2
. (16)

B. Calculational details

From Equations (8)(13)(14), in order to obtain the for-
mulas of the CP violation, we calculate the amplitudes
tρ, tω, pρ and pω in PQCD approach, which can be de-
composed in terms of tree-level and penguin-level ampli-
tudes due to the CKMmatrix elements of VudV

∗
ub, VusV

∗
ub,

VtdV
∗
tb and VtsV

∗
tb. In the following, we calculate the de-

cay amplitudes for B+
c → D+ρ0(ω) and B+

c → D+
s ρ

0(ω)
which we will use in the next paragraph. The PQCD
function of F and M can be found in appendix.

1. The decay amplitudes of B+
c → D+ρ0(ω)

With the Hamiltonian (1), depending on CKM matrix
elements of VudV

∗
ub , VusV

∗
ub , VtdV

∗
tb and VtsV

∗
tb, the decay

amplitudes for B+
c → D+ρ0 in PQCD can be written as

√
2A(B+

c → D+ρ0) = VudV
∗
ubtρ + VtdV

∗
tbpρ (17)

where

tρ = (C1 +
1

3
C2)F

LL
e + C2M

LL
e

+ (C2 +
1

3
C1)F

LL
a + C1M

LL
a (18)

and

Pρ = (C2 +
1

3
C1)F

LL
a + C1M

LL
a

− [(
3

2
C10 − C3 +

1

2
C9)M

LL
e

− (C3 + C9)M
LL
a + (−C5 +

1

2
C7)M

LR
e

+ (−C4 −
1

3
C3 − C10 −

1

3
C9)F

LL
a

+ (C10 +
5

3
C9 −

1

3
C3 − C4 −

3

2
C7 −

1

2
C8)F

LL
e

+ (−C6 −
1

3
C5 +

1

2
C8 +

1

6
C7)F

SP
e

− (C5 + C7)M
LR
a

+ (−C6 −
1

3
C5 − C8 −

1

3
C7)F

SP
a ] (19)
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The decay amplitude for B+
c → D+ω can be written as

√
2A(B+

c → D+ω) = VudV
∗
ubtω − VtdV

∗
tbpω, (20)

where

tω = (C1 +
1

3
C2)F

LL
e + C2M

LL
e

− [(C2 +
1

3
C1)F

LL
a + C1M

LL
a ] (21)

and

pω = (C2 +
1

3
C1)F

LL
a + C1M

LL
a

+ [(2C4 + C3 +
1

2
C10 −

1

2
C9)M

LL
e

+ (C3 + C9)M
LL
e

+ (C5 −
1

2
C7)M

LR
e + (C5 + C7)M

LR
a

+ (C4 +
1

3
C3 + C10 +

1

3
C9)F

LL
a

+ (
7

3
C3 +

5

3
C4 +

1

3
(C9 − C10))F

LL
e

+ (2C5 +
2

3
C6 +

1

2
C7 +

1

6
C8)F

LR
e

+ (C6 +
1

3
C5 −

1

2
C8 −

1

6
C7)F

SP
e

+ (C6 +
1

3
C5 + C8 +

1

3
C7)F

SP
a ] (22)

Based on the definition of (14), we can get

αeiδα =
tω
tρ
, (23)

βeiδβ =
pρ
pω

, (24)

r′eiδq =
pω
tρ

×
∣∣∣∣
VtbV

∗
td

VubV ∗
ud

∣∣∣∣, (25)

where
∣∣∣∣
VtbV

∗
td

VubV ∗
ud

∣∣∣∣ =
√
[ρ(1− ρ)− η2]2 + η2

(1− λ2/2)(ρ2 + η2)
(26)

2. The decay amplitudes of B+
c → D+

s ρ0(ω)

The decay amplitudes for B+
c → D+

s ρ
0 can be written

as
√
2A(B+

c → D+
s ρ

0) = VusV
∗
ubtρ − VtsV

∗
tbpρ, (27)

where

tρ = (C1 +
1

3
C2)F

LL
e + C2M

LL
e (28)

and

pρ = [(
1

2
(3C9 + C10)F

LL
e +

1

2
(3C7 + C8))F

LR
e

+
3

2
C10M

LL
e +

3

2
C8M

SP
e ] (29)

The decay amplitudes for B+
c → D+

s ω can be written
as

√
2A(B+

c → D+
s ω) = VusV

∗
ubtω − VtsV

∗
tbpω, (30)

where

tω = (C1 +
1

3
C2)F

LL
e + C2M

LL
e (31)

and

pω = [(2C4 +
1

2
C10)M

LL
e + (2C6 +

1

2
C8)M

SP
e

+ (2C3 +
2

3
C4 +

1

2
C9 +

1

6
C10)F

LL
e

+ (2C5 +
2

3
C6 +

1

2
C7 +

1

6
C8)F

LR
e ] (32)

Similarity, we can also obtain the strong phase from the
Eqs. (23)(24)(25)(26).

IV. NUMERICAL RESULTS

A. Input parameters

In the numerical calculations, we have several param-
eters. The Wilson coefficients, Ci(µ), take the following
values [11]:

C1 = −0.2703, C2 = 1.1188,

C3 = 0.0126, C4 = −0.0270,

C5 = 0.0085, C6 = −0.0326,

C7 = 0.0011, C8 = 0.0004,

C9 = −0.0090, C10 = 0.0022, (33)

The CKM matrix, which should be determined from
experiments, can be expressed in terms of the Wolfenstein
parameters, A, λ, ρ and η [27]:




1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 , (34)

where O(λ4) corrections are neglected. The latest values
for the parameters in the CKM matrix are [28]:

λ = 0.2253± 0.0007, A = 0.808+0.022
−0.015,

ρ̄ = 0.132+0.022
−0.014, η̄ = 0.341± 0.013, (35)

with

ρ̄ = ρ(1− λ2

2
), η̄ = η(1− λ2

2
). (36)

From Eqs. (35) ( 36) we have

0.121 < ρ < 0.158, 0.336 < η < 0.363. (37)
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We adopt the results from [28]:

|Vub| = (3.89± 0.44)× 10−3, |Vud| = 0.97425,

|Vcb| = 0.0406, |Vcd| = 0.23

|Vus| = 0.2252, |Vcs| = 1.023,

mb = 4.2GeV, mπ
0 = 1.4GeV,

mK
0 = 1.6GeV, m

ηq

0 = 1.07GeV,

γ = (73+22
−25)

◦ mc = 1.27GeV,

mηs

0 = 1.92GeV, Λ5
QCD = 0.112GeV.

(38)

B. CP violation in B+
c → D+

(s)π
+π−

In the numerical results, we find that the CP violation
can be enhanced via ρ− ω mixing for the decay channel
B+

c → D+
(s)π

+π− when the invariant mass of π+π− is

in the vicinity of the ω resonance. The CP violation
depends on the weak phase difference from CKM matrix
elements and the strong phase difference which is difficult
to control. The CKM matrix elements, which relate to ρ,
η, λ and A, are given in Eq.(35). The uncertainties due
to the CKM matrix elements come from ρ, η, λ and A.
In our numerical calculations, we let ρ, η, λ and A vary
among the limiting values. The numerical results are
shown from Fig.1 to Fig.6 with the different parameter
values of CKM matrix elements. The dash line, dot line
and solid line corresponds to the maximum, middle, and
minimum CKM matrix element for the decay channel of
B+

c → D+
(s)π

+π−, respectively. In Fig.1 and Fig.2, we

give the central value of CP violating asymmetry as a
function of

√
s. From the Fig.1 and Fig.2 one can see the

CP violation parameter is dependent on
√
s and changes

rapidly due to ρ − ω mixing when the invariant mass of
π+π− is in the vicinity of the ω resonance. We can see
that the CP violating asymmetry vary from around 2%
to around 7.5% for the decay channel of Bc → D+π+π−

when
√
s = 0.786GeV in Fig.1. As can be seen from Fig.2

the CP violating asymmetry vary from around 5.3% to
around 7.2% for the decay channel of Bc → D+

s π
+π−

when
√
s = 0.774GeV .

From Eq.(8), we can see that the CP violating pa-
rameter is related to sinδ and r. The plots of sin δ and
r as a function of

√
s are shown in Fig.3, Fig.4, Fig.5

and Fig.6, respectively. It can be seen that sin δ and
r change sharply at the range of ρ − ω resonance. In
Fig.3 and Fig.4, we show the plot of sin δ as a function
of

√
s. We can see that the ρ − ω mixing mechanism

leads to the strong phase at the ω resonance for the pro-
cesses of B+

c → D+π+π− and B+
c → D+

s π
+π−. One

can find ρ−ω mixing make the sin δ value oscillate from
−0.03 to −0.095 and 0.118 to 0.223 for the decay pro-
cesses of B+

c → D+π+π− and B+
c → D+

s π
+π−, respec-

tively. From Fig.5 and Fig.6, one can see that r increases
slowly for the channel of B+

c → D+
(s)π

+π− when the in-

variant masses of the π+π− pairs are in the vicinity of

FIG. 1. The CP violating asymmetry, Acp, as a function
of

√
s for different CKM matrix elements. The dash line,

dot line and solid line corresponds to the maximum, middle,
and minimum CKM matrix element for the decay channel of
B+

c → D+π+π−, respectively.

FIG. 2. The CP violating asymmetry, Acp, as a function
of

√
s for different CKM matrix elements. The dash line,

dot line and solid line corresponds to the maximum, middle,
and minimum CKM matrix element for the decay channel of
B+

c → D+
s π+π−, respectively.

the ω resonance.
For the processes of above decay channels, ρ− ω mix-

ing does enhance CP violating asymmetries and provide
a mechanism for producing large CP violation in pertur-
batibe QCD. Meanwhile we find ρ − ω mixing presents
strong phase so as to make sinδ big and can also change
the value of r. However, we find that the effect of the
change of r on Acp is small compared with the case of
sinδ for the processes we are considering.

V. SUMMARY AND DISCUSSION

In this paper, we have studied the CP violation in
the decay of B+

c → D+
(s)ρ

0(ω) → D+
(s)π

+π− due to the

contribution of ρ − ω mixing in PQCD approach. It is



6

FIG. 3. sinδ as a function of
√
s for different CKM matrix

elements. The dash line, dot line and solid line corresponds to
the maximum, middle, and minimum CKM matrix element
for the decay channel of B+

c → D+π+π−, respectively.

FIG. 4. sinδ as a function of
√
s for different CKM matrix

elements. The dash line, dot line and solid line corresponds to
the maximum, middle, and minimum CKM matrix element
for the decay channel of B+

c → D+
s π+π−, respectively.

found that ρ − ω mixing can cause a large strong phase
difference so that large CP violation can be obtained
at the ω resonance. As a result, it is found that the
maximum CP violation can reach 7.5%.

The LHC is a proton-proton collider currently have
started at CERN. With the designed center-of-mass en-
ergy 14 TeV and luminosity L = 1034cm−2s−1, the LHC
gives access to high energy frontier at TeV scale and an
opportunity to further improve the consistency test for
the CKM matrix. The production rates for heavy quark
flavours will be large at the LHC, and the bb̄ production
cross section will be of the order 0.5 mb, providing as
many as 0.5 × 1012 bottom events per year [29]. The
heavy quark physics is one of the main topics of LHC
experiments. Especially, LHCb detector is designed to
make precise studies on CP asymmetries and rare decays
of b-hadron systems. The other two experiments, ATLAS

FIG. 5. r as a function of
√
s for different CKM matrix ele-

ments. The dash line, dot line and solid line corresponds to
the maximum, middle, and minimum CKM matrix element
for the decay channel of B+

c → D+π+π−, respectively.

FIG. 6. r as a function of
√
s for different CKM matrix ele-

ments. The dash line, dot line and solid line corresponds to
the maximum, middle, and minimum CKM matrix element
for the decay channel of B+

c → D+
s π+π−, respectively.

and CMS, are optimized for discovering new physics and
will complete most of their B physics program within
the first few years [29, 30]. Recently, the LHCb collab-
oration found clear evidence for direct CP violation in
some three-body decay channels in charmless decays of
B meson. Meanwhile, large CP violation is obtained in
B± → π±π+π− in the region 0.6 GeV2< m2

π+π−low < 0.8
GeV2 and m2

π+π−high > 14 GeV2. A zoom of the low

π+π− invariant mass from the B± → π±π+π− decay,
showing the region 0.6 GeV2< m2

π+π−low < 0.8 GeV2

zone[31]. Fortunately, the experiments on Bc mesons
have been planned at LHCb. The predicted CP vio-
lation for the decay processes we are considering can be
searched in the region of the invariant masses of π+π−

associated ω resonance on these experiments.
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VI. APPENDIX: RELATED FUNCTIONS

DEFINED IN THE TEXT

In this paper, the related functions can be written as
[10, 11][32][33]:

FLL
e = 2

√
2

3
CF fBfPπM

4
B

∫ 1

0

dx2

∫ ∞

0

b1b2db1db2

× φD(x2, b2){[(1− 2rD)x2 + (rD − 2)rb]

× αs(ta)he(αe, βa, b1, b2)St(x2) exp[−Sab(ta)]

− (rD − 2)rD(x1 − 1)αs(tb)he(αe, βb, b2, b1)

× St(x1) exp[−Sab(tb)], (39)

FLR
e = −FLL

e (40)

FSP
e = −4

√
2

3
CffBfPπM

4
B

∫ 1

0

dx2

∫ ∞

0

b1b2db1db2

× φD(x2, b2){[rD(4rb − x2 − 1)− rb + 2]αs(ta)

× he(αe, βa, b1, b2)St(x2) exp[−Sab(ta)]

+ [rD(2− 4x1) + x1]αs(tb)he(αe, βb, b2, b1)

× St(x1) exp[−Sab(tb)]. (41)

MLL
e =

8

3
CF fBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3

× φD(x2, b2)φ
A
P (x3){[rD(1− x1 − x2) + x1

+ x3 − 1]αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]

− [rD(1− x1 − x2) + 2x1 + x2 − x3 − 1]αs(td)

× he(βd, αe, b3, b2) exp[−Scd(td)]}, (42)

MLR
e =

8

3
CF fBπM

4
BrP (1 + rD)

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3

× φD(x2, b2){[(x1 + x3 − 1 + rD(2x1 + x2 + x3 − 2))

× φP
P (x3) + (x1 + x3 − 1 + rD(x3 − x2))φ

T
P (x3)]

× αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]

− [(x1 − x3 + rD(2x1 + x2 − x3 − 1))φP
P (x3)

+ (x3 − x1 + rD(x3 + x2 − 1))φT
P (x3)]αs(td)

× he(βd, αe, b3, b2) exp[−Scd(td)]}, (43)

MSP
e =

8

3
CF fBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3

× φD(x2, b2)φ
A
P (x3){[rD(x1 + x2 − 1)− 2x1 − x2

− x3 + 2]αs(tc)he(βc, αe, b3, b2) exp[−Scd(tc)]

− [x3 − x1 − rD(1− x1 − x2)]αs(td)

× he(βd, αe, b3, b2) exp[−Scd(td)]}, (44)

FLL
a = FLR

a = −8CFfBπM
4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3

× φD(x2, b2){[φA
P (x3)(x3 − 2rDrc) + rP [φ

P
P (x3)

× (2rD(x3 + 1)− rc) + φT
P (x3)(rc + 2rD(x3 − 1))]]

× αs(te)he(αa, βe, b2, b3) exp[−Sef (te)]St(x3)

− [x2φ
A
P (x3) + 2rP rD(x2 + 1)φP

P (x3)]αs(tf )

× he(αa, βf , b3, b2) exp[−Sef (tf )]St(x2)}, (45)

FSP
a = 16CFfBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b2b3db2db3

× φD(x2, b2){[−φA
P (x3)(2rD − rc) + rP [φ

P
P (x3)

× (4rcrD − x3) + φT
P (x3)x3]]αs(te)he(αa, βe, b2, b3)

× exp[−Sef (te)]St(x3)− [x2rDφA
P (x3) + 2rPφ

P
P (x3)]

× αs(tf )he(αa, βf , b3, b2) exp[−Sef (tf )]St(x2)};
(46)

MLL
a = −8

3
CF fBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2

× φD(x2, b2){[φA
P (x3)(rc − x1 + x2) + rP rD

× [φT
P (x3)(x2 − x3) + φP

P (x3)(4rc − 2x1 + x2

+ x3)]]αs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)]

+ [−φA
P (x3)(rb + x1 + x3 − 1) + rP rD[(x2 − x3)

× φT
P (x3)− φP

P (x3)(4rb + 2x1 + x2 + x3 − 2)]]

× αs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (47)

MLR
a =

8

3
CF fBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2

× φD(x2, b2){[−φA
P (x3)rD(rc + x1 − x2) + rP

× [−φT
P (x3)(−rc − x1 + x3) + φP

P (x3)(rc + x1

− x3)]]αs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)]

+ [−φA
P (x3)rD(−rb + x1 + x2 − 1) + rP [(−rb

+ x1 + x3 − 1)(φP
P (x3) + φT

P (x3))]]αs(th)

× he(βh, αa, b1, b2) exp[−Sgh(th)]}, (48)

MSP
a = −8

3
CF fBπM

4
B

∫ 1

0

dx2dx3

∫ ∞

0

b1b2db1db2

× φD(x2, b2){[−φA
P (x3)(x1 − x3 − rc) + rP rD

× [−φT
P (x3)(x2 − x3) + φP

P (x3)(4rc − 2x1 + x2

+ x3)]]αs(tg)he(βg, αa, b1, b2) exp[−Sgh(tg)]

+ [−φA
P (x3)(rb + x1 + x2 − 1) + rP rD[(−4rb

− 2x1 − x2x3 + 2)φP
P (x3)− (x2 − x3)φ

T
P (x3))]]

× αs(th)he(βh, αa, b1, b2) exp[−Sgh(th)]}, (49)
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where rD = mD/MB, rb = mb/MB, CF = 4/3 is a color
factor, rP = m0

P /MB, with m0
P as the chiral mass of the

pseudoscalar meson P.
For the D(s) meson wave function, we adopt the same

model as of the B meson:

φD(s)
(x, b) = ND(s)

[x(1 − x)]2

exp

(
−
x2m2

D(s)

2ω2
D(s)

− 1

2
ω2
D(s)

b2

)
(50)

with ωD = 0.6 GeV.
We show here the functions he, coming from the

Fourier transform of hard kernel.

he(α, β, b1, b2) = h1(α, b1)× h2(β, b1, b2),

h1(α, b1) =

{
K0(

√
αb1), α > 0

K0(
√
−αb1), α < 0

h2(β, b1, b2) =

{
θ(b1 − b2)I0(

√
βb2)K0(

√
βb1)

θ(b1 − b2)J0(
√
−βb2)K0(i

√
−βb1)

+

{
+(b1 ↔ b2), β > 0
+(b1 ↔ b2), β < 0

(51)

Where J0 is the Bessel function and K0, I0 are modi-
fied Bessel function with K0(ix) =

π
2 (−N0(x) + iJ0(x)).

The hard scale t is chosen as the maximum of the vir-
tuality of the internal momentum transition in the hard
amplitudes, including 1/bi(i = 1, 2, 3):

ta = max{
√
|αe|,

√
|βa|, 1/b1, 1/b2},

tb = max{
√
|αe|,

√
|βb|, 1/b1, 1/b2},

tc = max{
√
|αe|,

√
|βc|, 1/b2, 1/b3},

td = max{
√
|αe|,

√
|βd|, 1/b2, 1/b3},

te = max{
√
|αa|,

√
|βe|, 1/b2, 1/b3},

tf = max{
√
|αa|,

√
|βf |, 1/b2, 1/b3},

tg = max{
√
|αa|,

√
|βg|, 1/b1, 1/b2},

th = max{
√
|αa|,

√
|βh|, 1/b1, 1/b2}, (52)

where

αe = (1− x1 − x2)(x1 − r2D)M2
B,

αa = −x2x3(1− r2D)M2
B,

βa = [r2b − x2(1 − r2D)]M2
B,

βb = −(1− x1)(x1 − r2D)]M2
B,

βc = −(1− x1 − x2)[1− x1 − x3(1− r2D)]M2
B,

βd = (1− x1 − x2)[x1 − x3 − r2D(1− x3)]M
2
B,

βe = [r2c − x3 − (1− x3)r
2
D]M2

B,

βf = −x2(1 − r2D)]M2
B,

βg = [r2c − (x1 − x3(1− r2D))(x1 − x2)]M
2
B,

βh = [r2b − (1− x1 − x3 + x3r
2
D)(1− x1 − x2)]M

2
B,

(53)

The St re-sums the threshold logarithms ln2 x appear-
ing in the hard kernels to all orders and it has been pa-
rameterized as

St(x) =
21+2cΓ(3/2 + c)√

πΓ(1 + c)
[x(1 − x)]c, (54)

with c = 0.4. In the nonfactorizable contributions, St(x)
gives a very small numerical effect to the amplitude [34].
Therefore, we drop St(x) in FLL

e , FSP
e , FLL

a and FSP
a .

The Sudakov factors used in the text are defined by

Sab(t) = s

(
MB√
2
x1, b1

)
+ s

(
MB√
2
x2, b2

)

+
5

3

∫ t

1/b1

dµ

µ
γq(µ) + 2

∫ t

1/b2

dµ

µ
γq(µ) (55)

Scd(t) = s

(
MB√
2
x1, b2

)
+ s

(
MB√
2
x2, b2

)

+ s

(
MB√
2
x3, b3

)
+ s

(
MB√
2
(1− x3), b3

)

+
11

3

∫ t

1/b2

dµ

µ
γq(µ) + 2

∫ t

1/b3

dµ

µ
γq(µ) (56)

Sef (t) = s

(
MB√
2
x2, b2

)
+ s

(
MB√
2
x3, b3

)

+ s

(
MB√
2
(1− x3), b3

)
+ 2

∫ t

1/b2

dµ

µ
γq(µ)

+ 2

∫ t

1/b3

dµ

µ
γq(µ) (57)

Sgh(t) = s

(
MB√
2
x1, b1

)
+ s

(
MB√
2
x2, b2

)

+ s

(
MB√
2
x3, b2

)
+ s

(
MB√
2
(1 − x3), b2

)

+
5

3

∫ t

1/b1

dµ

µ
γq(µ) + 4

∫ t

1/b2

dµ

µ
γq(µ) (58)

γq = −αs/π is the anomalous dimension of the quark.
The explicit form for the function s(Q, b) is:

s(Q, b) =

∫ Q

1/b

dµ

µ
[ln(

Q

µ
)A(αs(µ)) +B(αs(µ))], (59)

where the anomlous dimensions A two loops and B to
one loop are

A = CF
α

π
+ [

67

9
− π2

3
− 10

27
nf +

2

3
β0ln(

eγE

2
)](

αs

π
)2,

B =
2αs

3π
ln(

e2γE−1

2
), (60)

with CF = 4/3 a color factor and γE the Euler con-
stant. The one-loop expression of the running coupling
constant,

αµ =
4π

β0ln(µ2/Λ2)
(61)
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is substituted into Eq.(59) with the coefficient β0 = (33−
2nf)/3. nf is the number of the quark flavors.
Here, we specify the light-cone distribution am-

plitudes(LCDAs) for pseudoscalar and vector mesons.
The twist-2 pseudoscalar meson distribution amplitude
φA
p (P = π,K), and the twist-3 ones φP

p and φT
p have

been parametrized as [33],

φA
p (x) =

fP√
6
3x(1 − x)[1 + aP1 C

3/2
1 (t)

+ aP2 C
3/2
2 (t) + aP4 C

3/2
4 (t)] (62)

φP
p (x) =

fP

2
√
6
[1 + (30η3 −

5

2
ρ2P )C

1/2
2 (t)

− 3(η3ω3 +
9

20
ρ2P (1 + 6ap2))C

1/2
4 (t)] (63)

φT
p (x) =

fP

2
√
6
(1− 2x)[1 + 6(5η3 −

1

2
η3ω3

− 7

20
ρ2P − 3

5
ρ2Pa

P
2 )(1 − 10x+ 10x2)] (64)

Where t = 2x − 1. For pseudoscalar mesons, we
choose η3 = 0.015 and ω3 = −3. The mass ratio

ρπ(K) = mπ(K)/m
π(K)
0 and ρηq(s)

= 2mq(s)/mqq(ss), and

the Gegenbauer polynomials Cν
n(t) read

C
1/2
2 (t) = 1

2 (3t
2 − 1), C

1/2
4 (t) = 1

8 (+3− 30t2 + 35t4),

C
3/2
2 (t) = 3

2 (5t
2 − 1), C

3/2
4 (t) = 15

8 (1− 14t2 + 21t4),

C
3/2
1 (t) = 3t.

(65)
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[11] C.-D. Lü, K. Ukai and M.-Z. Yang, Phys. Rev. D63,
074009(2001).

[12] C. W. Bauer, D. Pirjol, I.W. Stewart, Phys. Rev. Lett.
87, 201806 (2001); Phys. Rev. D65, 054022(2002).

[13] R. Enomoto and M. Tanabashi, Phys. Lett. B386, 413
(1996).

[14] S. Gardner, H.B. O’Connell, and A.W. Thomas, Phys.
Rev. Lett. 80, 1834 (1998).

[15] X.-H. Guo and A.W. Thomas, Phys. Rev. D58, 096013

(1998).
[16] X.-H. Guo, O. Leitner, and A.W.Thomas, Phys. Rev.

D63, 056012 (2001).
[17] X.-H. Guo and A.W. Thomas, Phys. Rev. D61, 116009

(2000).
[18] O. Leitner, X.-H. Guo, and A.W. Thomas, Eur. Phys. J.

C31, 215 (2003).
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