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Abstract

In this paper, we consider the exclusive production of proton-antiproton pairs in the interaction

between two quasireal photons in e+e− collision. The differential and total cross section of the

process γγ → pp̄ at a beam energy of photons from 2.1 GeV to 4.5 GeV in the center-of-mass and

for different values of |cosθ∗| is calculated. At energy <
√
se+e− > = 197 GeV the total cross

section process of the e+ + e− → e+ + e− + p+ p̄ is calculated by the two-photon mechanism. The

results are in satisfactory agreement with the experimental data.
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I. INTRODUCTION

As before, one of the main problems in the microworld physics is the confirmation of

the standard model and the search for possible exits beyond its limits [1–3]. Therefore,

e+ + e− → e+ + e−, e+ + e− → µ+ + µ−, e+ + e− → τ+ + τ−, e+ + e− → q+ q̄, e+ + e− →
e+ + e− + p + p̄ reactions are the main processes studied at electron-positron colliders. In

studying these processes by the L3, OPAL, ALEPH, and DELPHI Collaborations in the LEP

experiments no deviations from the predictions of the Standard Model (SM) were observed

[4–15].

At the present time, an experiment conducted at the LHC pp-beams with energies of

14 TeV in the center-of-mass system gives a unique opportunity for comparing different

predictions of the SM in this energy range. At high energies new experimental facts, may

appear which are not consistent with the predictions of the SM.

High-energies of electron-positron colliders are an appropriate object for studying the

two-photon process e+e− → e+e−γ⋆γ∗ → e+e−X , where γ∗ denotes a virtual photon. It

should be noted that this process is an extensive source of hadrons. In this reaction, the

outgoing electron and positron beam carry almost the full energy, and usually due to their

small transverse momenta. The final state of X has, therefore, a small mass compared to

the e+e− center-of-mass energy
√
s and the transverse momentum is almost zero.

Small virtuality of photons allows one to extract the cross section σ(γγ → X) for real

photon collisions, which are calculated by the QED [16].

For the critical test of perturbative QCD experiment of proton-antiproton pair produc-

tion at e+e− colliders was investigated at LEP energies [15, 17]. The study of two-photon

processes γγ → X represents an important section of the modern high-energy physics

[16, 18]. Traditionally, they are studied in experiments with the e+e− colliding beams

at the interaction of virtual photons, that are emitted by the initial particles (that is

e+e− → e+e−γ∗γ∗ → e+e−X). Is this case, a system of particles X with invariant mass

of W is formed, and the cross-section of this process in the equivalent photon approximation

has the form

dσe+e−→e+e−X(s) = dn1dn2dσ
γγ→X(W 2), (1)
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where dni are the spectra of equivalent photon emission:

dni =
α

π

dωi

ωi

d(−q2i )

(−q2i )

[

1− ωi

E
+

ω2
i

2E2
+

m2ω2
i

q2iE
2

]

. (2)

Here E is the energy in the center-of-mass system of an electron (positron) beam, m is the

electron mass, ωi and qi are the energy and four-momentum of the virtual photon (i=1,2),

W =
√
4ω1ω2.

To check the predictions of QCD the exclusive production of the proton-antiproton pairs

(pp̄) in the collision of two quasireal photons is studied. This process has been studied in a

LEP experiment. In the LEP experiment, the photons are emitted by electron beams and

pp̄ pairs are produced in the process e+e− → e+e−γ∗γ∗ → e+e−pp̄ [19].

Quantum chromodynamics has been used for predicting cross-sections for exclusive

hadron pairs of high transverse momentum in the collision of two photons.

General theory of hard exclusive processes in QCD is studied in detail in Refs.[20–24], and

at high energies and fixed center-of-mass angle, an analytic expression for the differential

cross section of the process of γγ → pp̄ is obtained.

One of these processes for the study of the perturbative QCD is hadron production in

the final state by photon-photon interactions. Therefore, many authors [25, 28, 29, 33–35]

performed in the developed framework [22, 23] and presented calculations of the total cross

section for γγ → pp̄.

Using the wave function of the proton on the basis of the QCD sum rules [27], the first

estimate of the cross section for the process γγ → pp̄ was obtained in the three-quark system

(nc=8) [25, 26]. For example, in the diquark model [28–30] the proton is considered as a

quark-diquark system.

Other approaches, for example, the bags model [31] was developed for large transfer

momentum, and calculations were applied at intermediate energies (Wγγ >2.55 GeV). In

recent years calculation in the perturbative QCD was successfully applied to describe many

of the inclusive scattering processes with large transfer momentum [32]. In addition, in

exclusive hadron scattering one can find cross-sections in good agreement with the power

energy dependence predicted by QCD [36–38], for transmitting momentum |t| > 5 GeV 2,

for example, in the experimental data on nucleon-nucleon scattering, Compton scattering,

photoproduction and form factors of the pion and proton. The cross sections for production

of proton-antiproton pairs in γγ collisions were also calculated in perturbative QCD [25, 39,
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40].

The hadron production in the interaction of two photons is the study of the process

γ∗ + γ∗ → hadrons (3)

at fixed virtual photons q2i = −Q2
i < 0, and as for large squares of the center-of-mass energy

W 2 = (q1 + q2)
2 with qi of photon momenta. In the present case, if one considers a high

limit for W , the cross-section behaves as expected as follows:

σγ∗γ∗ ∼ 1

W 2
. (4)

A simple way to study this process is through the reaction,

e+ + e− −→ e+ + e− + γ∗ + γ∗

︸ ︷︷ ︸

|−→ hadrons;
(5)

namely, e+e− collisions, are considered selecting those events in which incoming leptons

produce two photons, which eventually initiate hard scattering, that is hadron production.

It is clear, the multitude of Feynman diagrams contributes to the process, which is really

observed

e+ + e− → e+ + e− + hadrons. (6)

Investigation of production of proton-antiproton pairs in γγ collisions at high energy is one

of the most interesting problems for the phenomenology of the γγ collisions.

In this study, we apply the two photon mechanism to compute the exclusive production of

proton-antiproton pairs in the interaction between two quasireal photons in electron-positron

collision.

We are interested in the calculation and analysis of the dependence of differential and total

cross sections on the center-of-mass energy for different scattering angles and also angular

distribution of the differential cross-section of the process e+e− → e+e−γ∗γ∗ → e+e−pp̄ and

finally results are compared with experimental ones.

In this paper, we present the studying of the differential and total cross-sections of the

process γγ → pp̄ in the energy region 2.1 GeV< Wγγ <4.5 GeV and different values of
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cosθ∗, where θ∗ is the scattering angle of the proton or antiproton relative to the direction

of the incoming photons in the γγ center-of-mass system of the reaction e+ + e− → e+e−pp̄.

We also study the angular dependence and the energy behavior of the cross-section of the

process γγ → pp̄, and calculate the total cross-section of the process e+ + e− → e+e−pp̄ by

the two-photon mechanism.

Experimental results of the proton-antiproton pair production by two photons collisions

in processes e+ + e− → e+e−pp̄ and γγ → pp̄ were presented in Refs. [14, 15].

The paper is planned as follows. The formulae for the calculation differential and total

cross-sections of the process γγ → pp̄ are provided in Section II. Some formulae and analysis

of the cross-section of the process e+ + e− → e+e−pp̄ the dependence on the center-of-mass

energy and the angular distributions within two-photon mechanism approach is presented

in Section III. Finally, some concluding remarks are stated in Section IV.

II. THE PROCESS γγ → pp̄

Here, we are on process to develop this direction, for this reason, at the first stage we

will consider the proton-antiproton pair production in γγ collisions

γ + γ → p+ p̄. (7)

The Feynman diagrams process (7) is shown in Fig. 1

γ(p2)

γ(p1)

p̄(k2)

p(k1)

γ(p2)

γ(p1)

p̄(k2)

p(k1)

a) b)

Figure 1: Feynman diagrams for the production of pp̄ in γγ collisions

The amplitude of the process (7), which is depicted by two Feynman diagrams (see Fig. 1),

can be written as follows:
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Ma = −e2ū(k1)Γ
t
µ(k1, k1 − p1)

/p2 − /k2 +Mp

(k2 − p2)2 −M2
p

Γt
ν(k1 − p1,−k2)v(k2)εµ(p1)εν(p2),

Mb = −e2ū(k1)Γ
u
ν(k1, k1 − p2)

/k1 − /p2 +Mp

(p2 − k1)2 −M2
p

Γu
µ(k1 − p2,−k2)v(k2)εµ(p1)εν(p2), (8)

where Mp is the proton mass, k1 and k2 are the proton and antiproton momenta,

εµ(p1), εν(p2) are the polarization vectors of the photons with initial state momentum p1

and p2, respectively.

Here, Γ
t(u)
µ(ν) is the photon-proton vertex functions (form factors), which are determined in

the following form:

Γt
µ(ν) = γµ(ν)F1(t) +

i

2Mp

σµ(ν)ρ(p1 − k1)
ρF2(t),

Γu
µ(ν) = γµ(ν)F1(u) +

i

2Mp

σµ(ν)ρ(k2 − p1)
ρF2(u),

σµρ =
i

2
(γµγρ − γργµ), (9)

Here, F1(t), F2(t), F1(u) and F2(u) are the Dirac and Pauli proton form factors for the t

and u channels, respectively.

Following Refs.[53, 54], the form factors F1(t) F2(t), F1(u) and F2(u) can be parametrized

as:

F1(t) =
Λ4

Λ4 + (t−M2
p )

2
, F2(t) = kpF1(t),

F1(u) =
Λ4

Λ4 + (u−M2
p )

2
, F2(u) = kpF1(u), (10)

which, in the real photon limit, coincide with the static values F1(M
2
p ) = 1, F2(M

2
p ) = kp.

kp = 1.798 is the anomalous magnetic moment of the proton with respect to the coupling

with photon, and Λ = 0.911 is an empirical cutoff.

If it is required to produce summation over the photon polarization, it is necessary to

replace εµ(p1, λ)ε
∗
ν(p1, λ) by the expression

∑

λ

εµ(p1, λ)ε
∗
ν(p1, λ) = −gµν . (11)

6



The cross section of the process (7) is parameterized in terms of the following Mandelstam

variables:

s = (p1 + p2)
2 = (k1 + k2)

2;

t = (p1 − k1)
2 = (p2 − k2)

2;

u = (p1 − k2)
2 = (p2 − k1)

2. (12)

They are connected, as one can easily, by the relation

s+ t+ u = 2M2
p . (13)

By considering the fact that the real photon doesn’t have mass, then we obtain:

p21 = p22 = 0, (14)

Then the square of the full amplitude has the form:

|M|2 = 1

4

∑

(MaM∗
a +MbM∗

b + 2Re(MaM∗
b)). (15)

The differential cross section of the process (7) after spin averaging can be written in the

following form:

dσ

dt
=

1

16πs2
kc.m.

pc.m.

|M|2, (16)

where kc.m. =
1
2

√
s− 4M2

p , pc.m. =
1
2

√
s.

For obtaining the total cross section of the process (7) we use the following formula:

σ(s) =

t+∫

t−

dt
dσ

dt
. (17)

For a given
√
s energy of center-of-mass system the relation between t and u defined by the

border equation in this form

tu = M4
p , (18)
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Then for given value of the center-of-mass energy and together solving of these two

equations (13) and (18) we can find upper and lower bounds of the integral (17) in this

form:

t± =
−s+ 2M2

p ±
√

s(s− 4M2
p )

2
. (19)

Using the trace techniques, the squared amplitudes (15) explicitly take the following form,

we calculate the square of the amplitudes (15), and instead of u make the substitution

u = 2M2
p − s− t, from Eq. (13) and then we get
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|M|2 =
1

1
4
(M4

p − 2M2
p t+ t2)

[

F1(t)F
3
2 (t)

(

144Mpt
3 − 288M3

p t
2 + 144M5

p t

)

+

+F 2
1 (t)F

2
2 (t)

(

−8M2
p st+ 36M2

p t
2 + 60M4

p t− 52M6
p + 8st2 − 44t3

)

+

+F 3
1 (t)F2(t)

(

48Mpt
2 − 96M3

p t+ 48M5
p

)

+ F 4
1 (t)

(

2M2
p s− 6M4

p − 2st− 2t2
)

+

+F 4
2 (t)

(

8M2
p st

2 + 48M2
p t

3 + 24M4
p t

2 − 32M6
p t− 8st3 − 40t4

)]

+

+
1

1
4
(M4

p − 2M2
p s−M2

p t+ 2st+ s2 + t2)

[

F 2
1 (u)F

2
2 (u)

(

240M2
p st+ 108M2

p s
2 +

+132M2
p t

2 − 164M4
ps− 180M4

p t+ 76M6
p − 76st2 − 68s2t− 20s3 − 28t3

)

+

+F 4
1 (u)

(

6M2
p s+ 8M2

p t− 14M4
p − 2st− 2t2

)

+ F 4
2 (u)

(

776M2
pst

2 + 736M2
p s

2t+

+232M2
ps

3 + 272M2
p t

3 − 1232M4
pst− 584M4

p s
2 − 648M4

p t
2 + 608M6

p s+ 640M6
p t−

−224M8
p − 152st3 − 216s2t2 − 136s3t− 32s4 − 40t4

)

+

+
1

1
4
(−M4

p + 2M2
p s+M2

p t− st− t2)

[

F1(t)F2(t)F
2
1 (u)

(

40Mpst+ 32Mpt
2 − 24M3

p s−

−64M3
p t + 32M5

p

)

+ F1(t)F2(t)F
2
2 (u)

(

112Mpst
2 + 80Mps

2t + 32Mpt
3 −−304M3

p st−

−64M3
p s

2 − 144M3
p t

2 + 192M5
ps+ 192M5

p t− 80M7
p

)

+ F 2
1 (t)F

2
1 (u)

(

4M2
p s− 16M4

p

)

+

+F 2
1 (t)F

2
2 (u)

(

36M2
p st+ 12M2

p s
2 + 24M2

p t
2 − 28M4

p s− 36M4
p t+ 16M6

p − 8st2 −

−4s2t− 4t3
)

+ F 2
2 (t)F

2
1 (u)

(

4M2
p st+ 12M4

p t− 8M6
p − 4st2 − 4t3

)

+

+F 2
2 (t)F

2
2 (u)

(

−32M2
p st

2 − 32M2
ps

2t+ 112M4
p st+ 48M4

p t
2 −

−80M6
p s− 96M6

p t+ 48M8
p

)]

. (20)

In the Eq.(20) we use the following expressions:

k2
1 = k2

2 = M2
p , (p1p2) = s/2; (k1k2) = s/2−M2

p ; (p1k1) = (M2
p − t)/2;

(p2k2) = (M2
p − t)/2; (p1k2) = (M2

p − u)/2; (p2k1) = (M2
p − u)/2. (21)

We calculated the total cross section of the process (7) proton-antiproton production in γγ

interactions (7) at center-of-mass energy from
√
s = 2 GeV to 6 GeV. Also we investigated
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the energy distribution of the total cross section of the γγ → pp̄ process for different value,

of |cosθ∗|.
In Fig. 2 is shown the dependence of the total cross section of the process σ(γγ → pp̄) as a

function of the center-of-mass energy
√
s . In Fig. 3 the energy dependence of the total cross

2 3 4 5 6

6

7

8

9

10

11

s HGeVL

Σ
HΓ
Γ
-
>

p
p- L
Hn

bL

Figure 2: The total cross section of the process γγ → pp̄ as a function of the CM energy.

section of the process γγ → pp̄ as a function of the energy at |cosθ∗| < 0.6 is presented. The

differential cross section for the angular distribution is expressed in the following form:

dσ

dcosθ∗
=

(4πα)2

32πs

√

1−
4M2

p

s
· |M|2. (22)

The parameter t is defined in the following form:

t = (p1 − k1)
2 = M2

p − s

2
+

√
s

2

√

s− 4M2
p cosθ

∗. (23)

Now we will study the angular distribution of the differential cross section for the process

(7) in different regions of the two-photon center-of-mass energy. After integration over the

energy Wγγ in the region of energy 2.1 GeV < Wγγ < 2.5 GeV, 2.5 GeV< Wγγ < 3.0 GeV,

3.0 GeV < Wγγ < 4.5 GeV, in the formulae (20), (22) and (23), we get the formula for

the differential cross section as a function of |cosθ∗|. In Figs. (4 - 6), we present separate

dependences of the differential cross section on |cosθ∗| at the two-photon energy 2.1 GeV

< Wγγ < 2.5 GeV, 2.5 GeV< Wγγ < 3.0 GeV, 3.0 GeV < Wγγ < 4.5 GeV, respectively.

Now we will study the dependence of the total cross section on the energy of the process

10



2.5 3.0 3.5

0.01

0.05

0.10

0.50

1.00

5.00
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Σ
HΓ
Γ
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>

p
p- L
Hn
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Figure 3: The total cross section of the process γγ → pp̄ as a function of the CM energy for

the large angle region, |cosθ∗| < 0.6 is compared with the experimental data [14] with the total

center-of-mass energy
√
s = 2.1 ÷ 4.5 GeV.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

2

4

6

8

10

12

ÈcosΘ*È

dΣ
HΓ
Γ
-
>

p
p- L
�d
Èc

os
Θ*
È
Hn

bL

Figure 4: The differential cross section of the process γγ → pp̄ as a function of the |cosθ∗| for the

energy region 2.1 GeV< Wγγ <2.5 GeV is compared with the experimental data [14].

(7) in a large angle region |cosθ∗|. In formula (22) we carry out numerical integration over

|cosθ∗| using formulae (20) and (23) in the region of |cosθ∗| <0.3, 0.3 < |cosθ∗| < 0.6. We

obtain the total cross section of the dependence on the two photons center-of-mass energy
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.4

0.6

0.8

1.0
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ÈcosΘ*È
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HΓ
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-
>

p
p- L
�d
Èc

os
Θ*
È
Hn

bL

Figure 5: The differential cross section of the process γγ → pp̄ as a function of the |cosθ∗| for the

energy region 2.5 GeV< Wγγ <3.0 GeV is compared with the experimental data [14].

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.00

0.05

0.10

0.15

ÈcosΘ*È

dΣ
HΓ
Γ
-
>

p
p- L
�d
Èc

os
Θ*
È
Hn

bL

Figure 6: The differential cross section of the process γγ → pp̄ as a function of the |cosθ∗| for the

energy region 3.0 GeV< Wγγ <4.5 GeV and is compared with the experimental data [14].

√
s.

In Figs. 7 and 8 by using (22), (20), and (23) we present several types of energy depen-

dence in region 2.1 GeV <
√
s <4.5 GeV of the total cross section for pp̄ pair production

inγγ collision
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In Figs. 7 and 8 we present separate energy dependence in region 2.1 GeV <
√
s <4.5

GeV of the total cross section for pp̄ pair production in γγ collision on calculated by (22),

(20), and (23).

2.5 3.0 3.5

0.01

0.1

1

s HGeVL

Σ
HΓ
Γ
-
>

p
p- L
Hn

bL

Figure 7: The total cross section of the process γγ → pp̄ as a function of
√
s for the large angle

region |cosθ∗| < 0.3, is compared with the experimental data [14].

2.5 3.0 3.5

0.01

0.02

0.05

0.10

0.20

0.50
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2.00

s HGeVL
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-
>

p
p- L
Hn

bL

Figure 8: The total cross section of the process γγ → pp̄ as a function of the
√
s for the small angle

region 0.3 < |cosθ∗| < 0.6, is compared with the experimental data [14].

Note that the results we have obtained for the process γγ → pp̄ are in satisfactory

13



agreement with the known experimental data of the L3 Collaboration at LEP [14].

For massive outgoing particles is the squared transverse momentum

p2T =
tu−M4

p

s
, (24)

when masses are introduced in the final state.

The Mandelstam invariants of the processes satisfy

t = (p1 − k1)
2 = (p2 − k2)

2 = M2
p − XTp

2
se−yp = M2

p̄ − XT p̄

2
seyp̄ ,

u = (p1 − k2)
2 = (p2 − k1)

2 = M2
p − XTp

2
seyp = M2

p̄ − XT p̄

2
se−yp̄. (25)

The transverse momentum pT distributions can be written in the following form

dσ

dp2T
=

∫

dyp

∫

dyp̄ ·
dσ

dp2Tdypdyp̄
, (26)

the integration limits are

yp̄min = max{ln( xT p̄

2− xTpe−yp
);−Yp̄},

yp̄max = min{ln(2− xTpe
yp

xT p̄

); Yp̄}, (27)

ypmax = −ypmin = min{Yp; cosh
−1

(
1

xTp

(1 +
M2

p −M2
p̄

s
)

)

; ln(
2− xT p̄e

−Y p̄

xTp

)}. (28)

The xTp range would be

2Mp√
s

≤ xTp ≤ 1 +
M2

p −M2
p̄

s
. (29)

Starting from this basic distribution, always assuming Mp = Mp̄, and imposing the cuts

|yp| = Yp, |yp̄| = Yp̄ with Yp = Yp̄, (30)

in the numerical applications we take Yp,p̄ = 2.
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III. THE PROCESS e+ + e− → e+ + e− + p+ p̄

The two-photon mechanism of lepton and hadron production in experiments with col-

liding electron-positron beams at high energies was studied by several groups [41–47]. For

the production of the proton-antiproton pairs within two-photon mechanism we have the

process of the type

The two-photon mechanism of lepton and hadron production by colliding electron-

positron beams at high energy was studied experimentally by several groups [41–43, 45, 47].

For the production of the proton-antiproton pairs there exists the process of this type within

two-photon mechanism

e+ + e− → e+ + γ∗ + e− + γ∗ → e+ + e− + p+ p̄. (31)

The Feynman diagrams of the process (31) are shown in Fig. 9. Also, in a particular case the

γ

γ

e
−

e
+

e
−

p

p̄

e
+

Figure 9: Feynman diagram of the process e+ + e− → e+ + e− + p+ p̄.

production of heavy objects by means of two virtual photons in electron-positron collisions

was investigated by [41, 42, 48–52]. The total cross section of the e++ e− → e++ e−+ p+ p̄

process can be written as follows [16, 47]:

σ(s)e
+e−→e+e−pp̄ =

(
α

π

)2
4E2
∫

4M2
p

ds1
s1

σγγ→pp̄(s1)

[(

ln
sM2

p

s1m2
e

)2

f

(
s

s1

)

− 1

3

(

ln
s

s1

)3]

, (32)

f(x) =

(

1 +
1

2x

)2

ln x− 1

2

(

1− 1

x

)(

3 +
1

x

)

, (33)
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where σγγ→pp̄(s1) is the cross section of the γγ → pp̄ process.

Now we will study the dependence of the differential cross section for the process e++e− →
e+ + e− + p+ p̄ on the energy in a large angle region |cosθ∗|.
The calculation of the differential cross section of the e+ + e− → e+ + e− + p + p̄ process

by formulas (32) is carried out in the energy region
√
see = 183–189 GeV for the OPAL

Collaboration at LEP. Also, in formula (32) for dσγγ→pp̄(s1)
d|cosθ∗|

in a numerical integration over

|cosθ∗| in the region |cosθ∗| < 0.6 is carried out using formulae (20), (22), and (23), and the

two-photon center-of-mass energy
√
s1 the defined in 2.15 GeV <

√
s1 <3.95 GeV.

In Fig. 10, we illustrated the dependence of the differential cross section of the process

e+ + e− + p+ p̄ on the center-of-mass energy of the pp̄ system.
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Figure 10: The e++e− → e++e−+p+ p̄ differential cross section as a function of
√
s for the large

angle region |cosθ∗| < 0.6 is compared with the experimental data [15] of the OPAL Collaboration

at LEP.

It should be noted that as is seen from Fig. 10 the differential cross section of the process

e+ + e− → e+ + e− + p + p̄ is in satisfactory agreement with the known experimental data

of the OPAL Collaboration at LEP [15].

For the calculation of the total cross section of the e++e− → e++e−+p+ p̄ process using

formulae (20) and (23), the integration in (22) over |cosθ∗| < 0.6 and 2.1 GeV <
√
s1 <4.5

GeV is carried out, and after that, according to (32), we obtain the formula for the cross

section of the e+ + e− → e+ + e− + p + p̄ process as a function of
√
s. For energy of e+e−
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collisions in the L3 Collaboration at LEP the
√
s dependences are combined into a single

measurement in <
√
s > = 197 GeV. In this energy value we have calculated the total cross

section of the e+ + e− → e+ + e− + p+ p̄ process, and we have

σtheor(e+ + e− → e+ + e− + p+ p̄) = 27.78 pb. (34)

The experimental data are [14]

σexp(e+e− → e+e−pp̄) = 26.7± 0.9± 2.7 pb. (35)

IV. CONCLUSIONS

In this paper, we have studied the proton-antiproton production in the process e+e− →
e+e−pp̄ by the two-photon mechanism γγ → pp̄.

The total cross section of the e+e− → e+e−pp̄ process was measured in the pp̄ in which

center-of-mass energy of the two-photon in the range of 2.1 GeV < Wγγ < 4.5 GeV by using

the data taken from the L3 detector at
√
see = 183 – 209 GeV at LEP.

The differential cross section of the e+e− → e+e−pp̄ process was measured in the pp̄ with

center-of-mass energy of the two-photon in the range of 2.15 GeV < Wγγ < 3.95 GeV using

the data taken from the OPAL detector at
√
see = 183 – 189 GeV at LEP.

Using the luminosity function, the total cross section of the process σ(γγ → pp̄) as a

function of Wγγ was obtained from the differential cross section of the process dσ(e+e− →
e+e−pp̄)/dW .

We got the master formula for the differential and total cross section of the γγ → pp̄

process. We investigated the characteristics of the differential and total cross section of

these processes.

The characteristics of the total cross section of the γγ → pp̄ process in the energy interval

of the two-photon system
√
s = 2 GeV ÷ 6 GeV is studied. The total cross section of the

γγ → pp̄ process was studied for large angle region |cosθ∗| <0.6 and the energy of the

two-photon system was changed (
√
s) in the interval 2.1 GeV <

√
s < 4.5 GeV.

In this work, the angular distribution of the differential cross section dσ(γγ→pp̄)
dcosθ∗

of the

γγ → pp̄ process was studied in detail. Namely, for this, we have separately considered

the angle regions in the interval of 0< |cosθ∗| <0.6, and regions of the energies of the two-

17



photons 2.1 GeV <
√
s < 2.5 GeV, 2.5 GeV <

√
s < 3.0 GeV, 3.0 GeV <

√
s < 4.5 GeV,

respectively.

For full analyzing also we investigated the dependence of the total cross section of the

γγ → pp̄ process on the energy of two photons in the case of large angle regions |cosθ∗| <0.3

and in the angle region 0.3< |cosθ∗| <0.6.

Moreover, we considered the main process for the proton-antiproton production in the

e+e− → e+e−pp̄ process and studied the characteristics of the differential cross section

dσ(e+e−→e+e−pp̄)
dW

of this process by the two-photon mechanism in the large angle regions

|cosθ∗| <0.6. In Fig.10 we present the dependence of the differential cross section e+e− →
e+e−pp̄ process on the energy of the two-photon 2.15GeV< Wγγ <3.95 GeV .

Also, the total cross section of the e+e− → e+e−pp̄ process was calculated by using the

two-photon mechanism in the large angle regions |cosθ∗| <0.6, at the energy 197 GeV on

the LEP.

All our results are compared with the experimental data of the L3 and OPAL Collabo-

rations at the LEP [14, 15], and they are in satisfactory agreement.

V. ACKNOWLEDGEMENTS

I am very grateful to Yu. M. Bystritskiy and Egle Tomasi-Gustafsson for the useful

discussions.

[1] S. L. Glashow, Nucl. Phys. B22 (1961)579.

[2] S. Weinberg, Phys. Rev. Lett. 19 (1967)1264.

[3] A. Salam, Elementary Particle Theory. Stockholm, 1968, p. 367.

[4] P. Abreu et al., (DELPHI Collab.) Eur. Phys. J. C11 (1999)383.

[5] R.Barate et al., (ALEPH Collab.) Eur. Phys. J. C12 (2000)183.

[6] K. Ackerstaff et al., (OPAL Collab.) Eur. Phys. J. C2 (1998)441.

[7] G. Abbiendi et al., (OPAL Collab.) Eur. Phys. J. C6 (1999)1.

[8] G. Abbiendi et al., (OPAL Collab.) Eur. Phys. J. C13 (2000)553.

[9] M. Acciarri et al., (L3 Collab.) Phys. Lett. B479 (2000)101.

18



[10] P. Abreu et al., (DELPHI Collab.) Nucl. Phys. B418 (1994)403.

[11] W. Braunschweig, (TASSO Collab.) Z. Phys. C42 (1989)189.

[12] P. Abreu et al., (DELPHI Collab.) Nucl. Phys. B444 (1995)3.

[13] M. Acciarri et al., (L3 Collab.) Phys. Lett. B408 (1997)450.

[14] P. Achard et al., (L3 Collab.) Phys. Lett. B571 (2003)11.

[15] G. Abbiendi et al., (OPAL Collab.) Eur. Phys. J. C28 (2003)45.

[16] V. M. Budnev, I. F. Ginzburg, G. V. Meledin, V. G. Serbo, Phys. Rep. 15 (1974)181.

[17] P. Achard et al., (L3 Collab.) Phys. Lett. B571 (2003)11.

[18] D. Morgan et al., J. Phys. G: Nucl. Part. Phys. 20 (1994)1.

[19] V.I.Telnov, Proc. of ITP Symp.on Future High Energy Colliders, Santa Barbara, USA,Oct.21-

25,1996. AIP Conf.Proc. No.397, ed.Z.Parza,(AIP.New York 1997), p.259-273; Budker INP

97-47, eprint: hep-physics/9706003.

[20] V. L. Chernyak, A. R. Zhitnitskiy, JETP Lett. 25 (1977)510; Pis’ma Zh. Eksp. Teor. Fiz. 25

(1977)544.

[21] V. L. Chernyak, V. G. Serbo, A.R. Zhitnitskiy, JETP Lett.26 (1977)594; Pis’ma Zh. Eksp.

Teor. Fiz.26 (1977)760.

[22] G. P. Lepage, S. J. Brodsky, Phys. Rev. D22 (1980)2157.

[23] G. P.Lepage, S. J. Brodsky, Phys. Lett. B87 (1979)359.

[24] V. L. Chernyak, A. R. Zhitnitskiy, Phys. Rep. 112 (1984)173.

[25] G. R. Farrar, E. Maina, F. Neri, Nucl. Phys. B259 (1985)702; B263 (1986)746(E).

[26] G. R. Farrar, et al., Nucl. Phys. B311 (1989)585.

[27] V. L. Chernyak, I. R. Zhitnitsky, Nucl. Phys. B246 (1984)52.

[28] M. Anselmino, F. Caruso, P. Kroll, W. Schweiger, Int. J. Mod. Phys. A4 (1989)5213.
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