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1. Introduction

Various methods for the symbolical computation of mulbgd-eynman integrals rely on prop-
erties of classical polylogarithms

: © Z
Lin(z) = Z —, |7 <1,

and their generalizations. By now the class of multiple foggrithms [24, 25]
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is well-established in particle physics.
One of the advantages of these functions is their iteratemial structure. For example a
classical polylogarithm of weight > 2 can be written as

Lin(2) = / X ) (L.1)
0o X
and similar relations hold for the generalizations.

One of the computational approaches making use of this gxojsehe method of differential
equations [29, 34]. Here a Feynman integral is computed tegiating over a linear combination
of other Feynman integrals. If the latter are known in terfgemeralized polylogarithms and if
they appear with integral kernels in an appropriate setftéréintial forms, then the integral over
these expressions can be computed by use of relations sech[&dl and the result belongs to the
same class of functions.

The computations summarized in these notes are motivatedebfact, that multiple poly-
logarithms are not sufficient to express every Feynman lategyVe consider several cases of the
massive sunrise integral, which is a famous showcase opthlslem. Various classes of functions
different from polylogarithms were applied to this intdgrathe past. More recently, the case of
equal masses in two space-time dimensions was expresdethwihelp of an elliptic dilogarithm
in [14].

We define a related class of elliptic generalizations of jpglstrithms, including a general-
ization depending on several variables. With the help ode¢hfenctions, we compute the sunrise
integral in the case of arbitrary masses at two and, with éhe of dimension shift relations, near
four space-time dimensions. We furthermore show for the ch®qual masses and two dimen-
sions, that all orders of the Laurent expansion can be es@dewith the help of our framework
of functions. We provide an explicit algorithm for the contgsion of these orders, relying on
corresponding differential equations and on the iteratéebiral structure of our class of functions.

2. A class of elliptic generalizations

We define a class of functions of variabgsq, ..., X, y1,...,¥i. They are related with polylog-
arithms and known elliptic generalizations.
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2.1 Definitions

Forl =1 we define
ELinm(Xy;q) = E qu (2.1)
kzl ]n km

and forl > 1 we define

ELin,...n:mu,...m 200,20 1 (X2, X5 Y1, .., W150)

=1 == lq:1J1 UK TR T Gk e k)

(2.2)

We will refer to these as ELi-functions.
By construction, this class of functions is closed undertipligation with the (I = 1)-case
ELinm and under integration ovégg. We have

ELin,,..nimy,...m:20r,..20 1 (X150 X3 Y1, Y150)

wherel® denotes the;-fold integration
q q Qoj . (O
|0i:/ do ldﬂ 2%/ 1dqforo.>0
0 Ou Jo O 0 Qoi—1 o

andl®=1.
Combining the above ELi-functions, we furthermore defindagswhich we will refer to as
E-functions by

1 .
En;m(X; y;q) = dn7m <§LI (X) + Cn, m>

Ll n(X~ ) + ELinm(X ;) + Cn,mELin;m(Xil;yili CI)>

wherec,m = —1, dym = —i for evenn+mandcym = 1, dym = 1 for oddn+ m. We furthermore
define

Ene,...ni;mu,...m:201....20 4 (X5, X5 Y15 -, Y15 )

=% (Enl;ml (Xl;Y1;q/) — Eny:my (Xl;Y1;O)) ELin,,...n:mp,...m:205,...20 1 (X27 < X3 Y2, ---7YI;q/) .

Our results for the sunrise integral, discussed below,beilexpressed in terms of E-functions and
multiple polylogarithms.

2.2 Relations with known functions

In the case of alb—indices being zero, the ELi-functions are products of(the 1)-case:

|
ELin,,...n:m,.... m;O,...,O(Xla-'-aXI;YL---aYI;Q):_l_lELini;m(Xi;yi;Q)-
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Forq = 1 the latter is furthermore just a product of polylogarithtu® to
ELinm(Xy;q) = WLin(qu) and ELym(Xy; 1) = Lin(X)Lim(y).
K=1

More notably, the E-functions are related to known versimiralliptic polylogarithms. Let us
briefly recall a basic principle behind such functions. Wasider a lattice of pointk = Z + 17Z
wheret € C with Im(7) > 0. A function ofx € C is called elliptic with respect ta if it is periodic
underx — x+ A with A € L. For a functionF of z= €™ < C* this condition translates to

F(2) =F(zq) forqg=¢€™ A eL.

This concept was first applied to define an elliptic dilodaritin [11]. Generalizations were intro-
ducedin [9, 23,31, 40].

In [17] elliptic polylogarithms are defined as coefficienfstlve regular part of the Laurent
expansion around = 0 of functions

Em(zu;g) = 3 u'Lim(q"2) (2.3)

nezZ

with u= €. The latter functions are related to the above functiops(Ey;q). We have for
example

E20060) = 7 (Ea06%:0) - 57D~ 1o (X
_(1_7)/”2 In(—x)In(q) — %3(/51:;32 Inz(q)> . (2.4)

The functions Em(X;y; q) can furthermore be understood as generalizations of Glaasel Glaisher-
functions, which are defined by

(Lin (€%) +Lin(e7?))

NI =

Ch(9) = 5 (Lin (€9) ~ Lin (7)), Gl (8) =
for evenn and by

Cln(#) = 5 (Lin(€#) +Lin (7)), Ghn(9) =  (Lin (€#) ~Lin (™))

NI =

for oddn. We have
for mbeing zero or even and

liMmg0Enm (€2;y;0) = Gln ()

for mbeing odd.
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3. Cases of the massive sunrise integral

The massive sunrise integral

dPk; dPky 1
D,t — 9
so.0= | (i272)7 (k¢ +mf) (16 +m8) (— (p—ka ko) 1E)

which in various versions was considered by many author8, [B3; 15, 16, 18-22, 26-28, 30, 33,
35, 36, 39], is a showcase for the mentioned problem, tha¢ tie Feynman integrals which can
not be expressed entirely in terms of multiple polylogamish For arbitrary masses and arbitrary
dimensionD, the integral was computed in [10] in terms of Lauricella fumas of type C. The fact
that none of the existing techniques provides a way to exglaesk functions in terms of multiple
polylogarithms so far may be seen as a confirmation of theioreed problem.

With respect to the variable= p? which we consider in the regian< 0, the integralS(D, t)
satisfies a differential equation

L4S(D,t) = T(D,t).

HereL, is a differential operator of fourth order and the inhomagmrs parfT (D,t) is a com-
bination of tadpole integrals, all of whose coefficients pog/nomials inm2, m3, mé, t, D. In the
following we will consider coefficients in the Laurent serigf S(D, t), satisfying differential equa-
tions of fourth or lower order. These coefficients will arfsem the expansion & = 2 and at
D = 4 dimensions:

S2-2¢.t) = SY2t)+ SV (2 t)e + 0 (€2), (3.1)
S(4—2¢et) = S7P(4,0)e 2+ S V4, 0)e 1 +594,t) + 0(e). (3.2)

3.1 The case oD = 2 dimensions

The case of exactlp = 2 dimensions is a good starting point for several reasonssthyi
the Feynman integral is finite here. The Laurent expansi@yif3.]L begins Wit|$<0)(2,t) which
satisfies a differential equation [32]

L,S9(2,t) = P(t), (3.3)

whereL, is a second order differential operator with respectttnose coefficients are polynomials
in the squared masses and he inhomogeneous p&?(t) furthermore involves logarithms of the
squared masses.

Secondly, if we write the Feynman integral in terms of Feynmparameters, the first Symanzik
polynomial drops out i = 2 dimensions and the integrand only involves the secondwhieh
reads

F = —XpXoXat + (X1 + X + XM ) (XqXp + XoX3 + X1X3) -

Even though we do not attempt to integrate out the Feynmaanpeters, this polynomial plays
an important role in our computations. The zero set of thignmomial intersects the domain of
the Feynman parametric integral at three points in its asrnBy choosing one of these points as
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the origin, we obtain an elliptic curve defined I5%. The corresponding Weierstrass normal form
defines three zerosy, e, e3 of the cubical equation. Using these as integration boueslaone
canonically defines two period integrals, - of the elliptic curve. These evaluate to

W= KK, Yo = %K(k’)

O
ENT

where
1

1
KX = /o N e

is the complete elliptic integral of first kind and where
[€3— € /61— €3
k=,/—= K=v1-kK=,/——
61— & € —€3

D = (t— (my +mp — mg)?)(t — (Mg — M+ mg)?) (t — (—my + M+ mg)?) (t — (Mg + mp + mg)?).

and

As (), and Y, are solutions of the homogeneous equaﬂ@ﬁo)(Z,t) = 0, the special solution of
the inhomogeneous eq. 3.3 can be constructed by classicatioa of constants as an integral
over a certain combination of the homogeneous solutionthisnwvay, we obtain the full solution
involving an integral over complete elliptic integrals [1]

However, we find [2] that the solution can be written alteredy as

S92t) = ""1—7(TQ)E<°>, (3.4)
3
EY = 3 Eaolw(@); -1 -9 (3.5)

where B is one of the E-functions. The dependencet a& now given in terms off which we
define ag) = e in terms of the period integrals of our elliptic curve. Thesth arguments,,

Wy, W3 are obtained explicitly from the mentioned intersectionby transformations on the
elliptic curve.

3.2 Higher orders and four dimensions

Computing higher orders in the Laurent expansion is intergdor several reasons. First
of all, we obtain a result for the four-dimensional case iis thay. While the pole terms of eq.
B2 were already known, we obtain [3] the coeffici@® (4,t) in terms ofS9(2,t), SY(2,1),
ﬁs@(z,t), #31)(2,0, i =1, 2, 3 by use of dimension shift relations [37,38]. 89 (2,t) is
given by eq.[3]4, the missing ingredient herés(i]si(z,t). This coefficient satisfies a fourth order
differential equation

L1al1ploSP(2,t) = I1(t)

where the inhomogeneous péirtt) involves a polynomial of the squared massestatoharithms
of the squared masses and the coefficBRt(2,t). The differential operator factorizes into two
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operators of first ordely 5, L1 and an operatalr, of second order which we already know from
eq.[3.B. Due to this factorization, we obtain the secondratifferential equation

LoSY(2,t) = Ix(t)

where the only difference to ed. B.3 is a more complicatedrimbgeneous patb(t). Applying
variation of constants as above, we obtain an explicit tdsuS™V) (2,t) which we express in terms
of E-functions. We arrive at [3]

sY@t) = %T(q)E“)

3 3 m2
ED = <Z (El;o(w,-;l;—Q) - %El;O(Wj;—l;_q)> - % > (u—é>
=1

=

)

—6E10(—1;1;—q))E@ +E

whereEél) is a linear combination of the functionsJl iLiz, Liz1, Ez.1 and By 1.-20,4 and where

EQ is defined in eq[ 3]5. With the help of this result, one obt#éimscoefficientS? (4, t) of the
sunrise integral around four dimensions.

The other reason for computing even higher orders in thedrdigeries is our interest in the
functions appearing there. Now we consider the case of egaasesn=m; = nmp, =nng. As a
first step, we define

S2-2¢t)=Y €821
2,
by
3utvi f
— f— 2 —
S2—-2¢e,t) =T (1+¢) (m(t— ) —9m2)> S(2—2¢,t).
The differential equations simplify fd8 and allow us to recursively express any coefficient in the
Laurent series as

i :_%/qzﬂ ‘q“;—qz (a+b312) for j > 2
Qo Y1 Jao 42

We can show that all functioreg and thej-independent functiohin this equation can be expressed
as products of ELi-functions. The lowest coefficieft¥, SV are immediately obtained from our
previous results in terms of E- or ELi-functions. Therefaige to the properties of our classes of
functions discussed in sectifn]2.1, all coefficiedt8 can be expressed in terms of E-functions,
together with classical and multiple polylogarithms. Ascasequence, the same is true for all
orders ofS(2 — 2¢,t) [4].

4. Conclusions

By use of the class of functions defined in sectioh 2.1 we havepaited the sunrise integral
to order&'(¢) in two dimensions and to orde?(¢°) in four dimensions. For the case of equal
masses and two dimensions, we presented an algorithm touteralborders. The iterated integral
structure of our class of functions has shown to be usefuhénsystematic use of the method
of differential equations. It therefore suggests itselb&oused in future computations of further
integrals, beyond multiple polylogarithms and beyond tharise.
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