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1. Introduction

Various methods for the symbolical computation of multi-loop Feynman integrals rely on prop-
erties of classical polylogarithms

Lin(z) =
∞

∑
j=1

zj

jn
, |z|< 1,

and their generalizations. By now the class of multiple polylogarithms [24,25]

Lin1,...nk (z1, ...,zk) = ∑
0< j1<...< jk

zj1
1 ...zjk

k

jn1
1 ... jnk

k
, |zi |< 1,

is well-established in particle physics.
One of the advantages of these functions is their iterated integral structure. For example a

classical polylogarithm of weightn≥ 2 can be written as

Lin(z) =

∫ z

0

dx
x

Lin−1(x) (1.1)

and similar relations hold for the generalizations.

One of the computational approaches making use of this property is the method of differential
equations [29, 34]. Here a Feynman integral is computed by integrating over a linear combination
of other Feynman integrals. If the latter are known in terms of generalized polylogarithms and if
they appear with integral kernels in an appropriate set of differential forms, then the integral over
these expressions can be computed by use of relations such aseq. 1.1 and the result belongs to the
same class of functions.

The computations summarized in these notes are motivated bythe fact, that multiple poly-
logarithms are not sufficient to express every Feynman integral. We consider several cases of the
massive sunrise integral, which is a famous showcase of thisproblem. Various classes of functions
different from polylogarithms were applied to this integral in the past. More recently, the case of
equal masses in two space-time dimensions was expressed with the help of an elliptic dilogarithm
in [14].

We define a related class of elliptic generalizations of polylogarithms, including a general-
ization depending on several variables. With the help of these functions, we compute the sunrise
integral in the case of arbitrary masses at two and, with the help of dimension shift relations, near
four space-time dimensions. We furthermore show for the case of equal masses and two dimen-
sions, that all orders of the Laurent expansion can be expressed with the help of our framework
of functions. We provide an explicit algorithm for the computation of these orders, relying on
corresponding differential equations and on the iterated integral structure of our class of functions.

2. A class of elliptic generalizations

We define a class of functions of variablesq, x1, ...,xl , y1, ...,yl . They are related with polylog-
arithms and known elliptic generalizations.
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2.1 Definitions

For l = 1 we define

ELin;m(x;y;q) =
∞

∑
j=1

∞

∑
k=1

x j

jn
yk

kmq jk (2.1)

and forl > 1 we define

ELin1,...,nl ;m1,...,ml ;2o1,...,2ol−1 (x1, ...,xl ;y1, ...,yl ;q)

=
∞

∑
j1=1

...
∞

∑
jl=1

∞

∑
k1=1

...
∞

∑
kl=1

x j1
1

jn1
1
...

x jl
l

jnl
l

yk1
1

km1
1

..
ykl

l

kml
l

q j1k1+...+ jl kl

∏l−1
i=1 ( j iki + ...+ j lkl )

oi
(2.2)

We will refer to these as ELi-functions.

By construction, this class of functions is closed under multiplication with the(l = 1)-case
ELin;m and under integration overdq

q . We have

ELin1,...,nl ;m1,...,ml ;2o1,...,2ol−1 (x1, ...,xl ;y1, ...,yl ;q)

= Io1ELin1;m1(x1;y1;q′)ELin2,...,nl ;m2,...,ml ;2o2,...,2ol−1

(

x2, ...,xl ;y2, ...,yl ;q
′)

whereIoi denotes theoi-fold integration

Ioi =

∫ q

0

dq1

q1

∫ q1

0

dq2

q2
...

∫ qoi−2

0

dqoi−1

qoi−1

∫ qoi−1

0

dq′

q′
for oi > 0

andI0 = 1.

Combining the above ELi-functions, we furthermore define a class which we will refer to as
E-functions by

En;m(x;y;q) = dn,m

(

1
2

Lin(x)+cn,m
1
2

Lin(x
−1)+ELin;m(x;y;q)+cn,mELin;m(x

−1;y−1;q)

)

wherecn,m = −1, dn,m =−i for evenn+m andcn,m = 1, dn,m = 1 for oddn+m. We furthermore
define

En1,...,nl ;m1,...,ml ;2o1,...,2ol−1 (x1, ...,xl ;y1, ...,yl ;q)

= Io1
(

En1;m1(x1;y1;q′)−En1;m1(x1;y1;0)
)

ELin2,...,nl ;m2,...,ml ;2o2,...,2ol−1

(

x2, ...,xl ;y2, ...,yl ;q
′) .

Our results for the sunrise integral, discussed below, willbe expressed in terms of E-functions and
multiple polylogarithms.

2.2 Relations with known functions

In the case of allo−indices being zero, the ELi-functions are products of the(l = 1)-case:

ELin1,...,nl ;m1,...,ml ;0,...,0 (x1, ...,xl ;y1, ...,yl ;q) =
l

∏
i=1

ELini ;mi (xi ;yi ;q).
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For q= 1 the latter is furthermore just a product of polylogarithmsdue to

ELin;m(x;y;q) =
∞

∑
k=1

yk

kmLin(q
kx) and ELin;m(x;y;1) = Lin(x)Lim(y).

More notably, the E-functions are related to known versionsof elliptic polylogarithms. Let us
briefly recall a basic principle behind such functions. We consider a lattice of pointsL = Z+ τZ
whereτ ∈C with Im(τ)> 0. A function ofx∈C is called elliptic with respect toL if it is periodic
underx→ x+λ with λ ∈ L. For a functionF of z= e2π ix ∈C

⋆ this condition translates to

F(z) = F(zq) for q= e2π iλ , λ ∈ L.

This concept was first applied to define an elliptic dilogarithm in [11]. Generalizations were intro-
duced in [9,23,31,40].

In [17] elliptic polylogarithms are defined as coefficients of the regular part of the Laurent
expansion aroundα = 0 of functions

Em(z;u;q) = ∑
n∈Z

unLim(q
nz) (2.3)

with u = e2π iα . The latter functions are related to the above functions En;m(x;y;q). We have for
example

E2;0(x;y;q) =
1
i

(

E2(x;y;q)− 1
2

1+y
1−y

ζ (2)− 1
4

1+y
1−y

ln2(−x)

− y
(1−y)2 ln(−x) ln(q)− 1

2
y(1+y)
(1−y)3 ln2(q)

)

. (2.4)

The functions En;m(x;y;q) can furthermore be understood as generalizations of Clausen- and Glaisher-
functions, which are defined by

Cln(ϕ) =
1
2i

(

Lin
(

eiϕ)−Lin
(

e−iϕ)) , Gln (ϕ) =
1
2

(

Lin
(

eiϕ)+Lin
(

e−iϕ))

for evenn and by

Cln(ϕ) =
1
2

(

Lin
(

eiϕ)+Lin
(

e−iϕ)) , Gln(ϕ) =
1
2i

(

Lin
(

eiϕ)−Lin
(

e−iϕ))

for oddn. We have

limq→0En;m
(

eiϕ ;y;q
)

= Cln(ϕ)

for m being zero or even and

limq→0En;m
(

eiϕ ;y;q
)

= Gln (ϕ)

for m being odd.
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3. Cases of the massive sunrise integral

The massive sunrise integral

S(D, t) =
∫

dDk1dDk2
(

iπD/2
)2

1
(

−k2
1+m2

1

)(

−k2
2+m2

2

)

(

−(p−k1−k2)
2+m2

3

) ,

which in various versions was considered by many authors [5–8, 10, 15, 16, 18–22, 26–28, 30, 33,
35, 36, 39], is a showcase for the mentioned problem, that there are Feynman integrals which can
not be expressed entirely in terms of multiple polylogarithms. For arbitrary masses and arbitrary
dimensionD, the integral was computed in [10] in terms of Lauricella functions of type C. The fact
that none of the existing techniques provides a way to expandthese functions in terms of multiple
polylogarithms so far may be seen as a confirmation of the mentioned problem.

With respect to the variablet = p2 which we consider in the regiont ≤ 0, the integralS(D, t)
satisfies a differential equation

L4S(D, t) = T(D, t).

HereL4 is a differential operator of fourth order and the inhomogeneous partT(D, t) is a com-
bination of tadpole integrals, all of whose coefficients arepolynomials inm2

1, m2
2, m2

3, t, D. In the
following we will consider coefficients in the Laurent series ofS(D, t), satisfying differential equa-
tions of fourth or lower order. These coefficients will arisefrom the expansion atD = 2 and at
D = 4 dimensions:

S(2−2ε , t) = S(0)(2, t)+S(1)(2, t)ε +O
(

ε2) , (3.1)

S(4−2ε , t) = S(−2)(4, t)ε−2+S(−1)(4, t)ε−1+S(0)(4, t)+O(ε). (3.2)

3.1 The case ofD = 2 dimensions

The case of exactlyD = 2 dimensions is a good starting point for several reasons. Firstly,
the Feynman integral is finite here. The Laurent expansion ineq. 3.1 begins withS(0)(2, t) which
satisfies a differential equation [32]

L2S(0)(2, t) = P(t), (3.3)

whereL2 is a second order differential operator with respect tot whose coefficients are polynomials
in the squared masses andt. The inhomogeneous partP(t) furthermore involves logarithms of the
squared masses.

Secondly, if we write the Feynman integral in terms of Feynman parameters, the first Symanzik
polynomial drops out inD = 2 dimensions and the integrand only involves the second one,which
reads

F =−x1x2x3t +
(

x1m2
1+x2m2

2+x3m2
3

)

(x1x2+x2x3+x1x3) .

Even though we do not attempt to integrate out the Feynman parameters, this polynomial plays
an important role in our computations. The zero set of this polynomial intersects the domain of
the Feynman parametric integral at three points in its corners. By choosing one of these points as
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the origin, we obtain an elliptic curve defined byF . The corresponding Weierstrass normal form
defines three zerose1, e2, e3 of the cubical equation. Using these as integration boundaries, one
canonically defines two period integralsψ1, ψ2 of the elliptic curve. These evaluate to

ψ1 =
4

D̃
1
4

K(k), ψ2 =
4i

D̃
1
4

K(k′)

where

K(x) =
∫ 1

0
dt

1
√

(1− t2)(1−x2t2)

is the complete elliptic integral of first kind and where

k=

√

e3−e2

e1−e2
, k′ =

√

1−k2 =

√

e1−e3

e1−e3

and

D̃ = (t − (m1+m2−m3)
2)(t − (m1−m2+m3)

2)(t − (−m1+m2+m3)
2)(t − (m1+m2+m3)

2).

As ψ1 andψ2 are solutions of the homogeneous equationL2S(0)(2, t) = 0, the special solution of
the inhomogeneous eq. 3.3 can be constructed by classical variation of constants as an integral
over a certain combination of the homogeneous solutions. Inthis way, we obtain the full solution
involving an integral over complete elliptic integrals [1].

However, we find [2] that the solution can be written alternatively as

S(0)(2, t) =
ψ1(q)

π
E(0), (3.4)

E(0) =
3

∑
i=1

E2;0(wi(q); −1;−q) (3.5)

where E2;0 is one of the E-functions. The dependence ont is now given in terms ofq which we

define asq= e
π i

ψ2(t)
ψ1(t) in terms of the period integrals of our elliptic curve. The three argumentsw1,

w2, w3 are obtained explicitly from the mentioned intersection points by transformations on the
elliptic curve.

3.2 Higher orders and four dimensions

Computing higher orders in the Laurent expansion is interesting for several reasons. First
of all, we obtain a result for the four-dimensional case in this way. While the pole terms of eq.
3.2 were already known, we obtain [3] the coefficientS(0)(4, t) in terms ofS(0)(2, t), S(1)(2, t),

∂
∂m2

i
S(0)(2, t), ∂

∂m2
i
S(1)(2, t), i = 1, 2, 3 by use of dimension shift relations [37, 38]. AsS(0)(2, t) is

given by eq. 3.4, the missing ingredient here isS(1)(2, t). This coefficient satisfies a fourth order
differential equation

L1,aL1,bL2S(1)(2, t) = I1(t)

where the inhomogeneous partI1(t) involves a polynomial of the squared masses andt, logarithms
of the squared masses and the coefficientS(0)(2, t). The differential operator factorizes into two

5
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operators of first orderL1,a, L1,b and an operatorL2 of second order which we already know from
eq. 3.3. Due to this factorization, we obtain the second order differential equation

L2S
(1)(2, t) = I2(t)

where the only difference to eq. 3.3 is a more complicated inhomogeneous partI2(t). Applying
variation of constants as above, we obtain an explicit result for S(1)(2, t) which we express in terms
of E-functions. We arrive at [3]

S(1)(2, t) =
ψ1(q)

π
E(1),

E(1) =

(

3

∑
j=1

(

E1;0(w j ;1;−q)− 1
3

E1;0(w j ;−1;−q)

)

− 2
3

3

∑
j=1

ln

(

m2
j

µ2

)

−6E1;0(−1;1;−q))E(0)+E(1)
R

whereE(1)
R is a linear combination of the functions Li2, Li3, Li2,1, E3;1 and E0,1;−2,0;4 and where

E(0) is defined in eq. 3.5. With the help of this result, one obtainsthe coefficientS(0)(4, t) of the
sunrise integral around four dimensions.

The other reason for computing even higher orders in the Laurent series is our interest in the
functions appearing there. Now we consider the case of equalmassesm= m1 = m2 = m3. As a
first step, we define

S̃(2−2ε , t) =
∞

∑
j=0

ε j S̃( j)(2, t)

by

S(2−2ε , t) = Γ(1+ ε)2
(

3µ4√t
m(t −m2)(t −9m2)

)ε

S̃(2−2ε , t).

The differential equations simplify for̃Sand allow us to recursively express any coefficient in the
Laurent series as

S̃( j) =−ψ1

π

∫ q

q0

dq1

q1

∫ q1

q0

dq2

q2

(

a j +bS̃( j−2)
)

for j ≥ 2.

We can show that all functionsa j and thej-independent functionb in this equation can be expressed
as products of ELi-functions. The lowest coefficientsS̃(0), S̃(1) are immediately obtained from our
previous results in terms of E- or ELi-functions. Therefore, due to the properties of our classes of
functions discussed in section 2.1, all coefficientsS̃( j) can be expressed in terms of E-functions,
together with classical and multiple polylogarithms. As a consequence, the same is true for all
orders ofS(2−2ε , t) [4].

4. Conclusions

By use of the class of functions defined in section 2.1 we have computed the sunrise integral
to orderO(ε) in two dimensions and to orderO(ε0) in four dimensions. For the case of equal
masses and two dimensions, we presented an algorithm to compute all orders. The iterated integral
structure of our class of functions has shown to be useful in the systematic use of the method
of differential equations. It therefore suggests itself tobe used in future computations of further
integrals, beyond multiple polylogarithms and beyond the sunrise.
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