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Fluctuation sound absorption in quark matter
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We investigate the sound absorption in quark matter due to the interaction of the sound wave
with the precritical fluctuations of the diquark-pair field above Tc. The soft collective mode of the
pair field is derived using the time dependent Ginzburg-Landau functional with random Langevin
forces. The strong absorption near the phase transition line may be viewed as a manifestation of
the Mandelshtam-Leontovich slow relaxation time theory.
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I. INTRODUCTION

QCD under extreme conditions has been a subject of
intense study for the last decade. While the properties of
quark-gluon matter at high temperature and zero chemi-
cal potential are theoretically investigated in great detail,
understanding of the quark matter physics in the regime
of non-zero density and moderate or low temperature re-
mains challenging. This is due to the fact that the high
T and zero µ region of the QCD phase diagram is accessi-
ble to lattice simulations. In the non-zero density regime
Monte Carlo simulations fail and one has to resort to
models, like the NJL one. On the experimental side, in-
formation obtained at RHIC and LHC corresponds in
bulk to the high temperature and low density region.
Non-zero density and moderate or low temperature con-
ditions may exist in neutron stars and will be possibly
realized in future experiments at FAIR and NICA.
According to the present understanding of the QCD

phase structure, attractive interaction between quarks
in color antitriplet state leads to the formation of the
color superconducting phase in the moderate and high
density domain [1–3]. Some important features of this
phase are, however, very different from that of the BCS
superconductor [4]. In particular, instead of an almost
sharp dividing line between the normal and supercon-
ducting phases in the BCS case, in color superconductor
the transition is significantly smeared. Correspondingly,
an exceedingly narrow precritical fluctuation region in
the BCS superconductor is replaced by a rather wide
and physically important one in color superconductor.
The fluctuation contribution to the physical quantities
is characterized by the Ginzburg-Levanyuk number Gi
which for the quark matter may be estimated as [4]
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Gi ≃
δT

Tc
≃

(

Tc
µ

)4

≃ 10−4, (1)

where Tc ∼= 40 MeV in the critical temperature for the
2SC phase (u and d quarks pairing), µ ∼= 400 MeV is the
quark chemical potential. Note that for the BCS super-
conductor Gi ∼ 10−12 − 10−14. Fluctuation quark pair-
ing which takes place when the temperature approaches
Tc from above manifests itself in the characteristic tem-
perature dependence of a number of physical quantities.
In BCS superconductors such phenomena have been in-
tensively studied for more than three decades [6]. In our
previous paper [5] we have calculated the fluctuation elec-
trical conductivity of quark matter. It has been shown it
is large and greatly exceeds the Drude one.
In the present paper we investigate the fluctuation

sound absorption and show that it has even more pro-
nounced temperature dependence than the electrical con-
ductivity. Let us point from the very beginning that we
consider the hydrodynamical, or first, sound.
The reason for the strong energy dissipation of the

sound wave in the precritical region has a general nature.
The idea goes back to the seminal paper [7] in which Man-
delshtam and Leontovich formulated the slow relaxation
time theory (see also [8–12]). Suppose that the relax-
ation time corresponding to the equilibrium restoration
is large. Then during the equilibration process strong en-
ergy dissipation occurs. Propagation of the sound wave
changes the critical temperature in the compression – rar-
efraction regions. The fluctuation pairing is a slow pro-
cess and the resulting nonequilibrium results in the sound
wave energy loss [13, 14]. Based on the above ideas we
shall calculate the fluctuation sound absorption in quark
matter. Unlike other transport coefficients (shear viscos-
ity, electrical conductivity, etc.), sound propagation in
quark matter did not receive much attention in the lit-
erature. The quantity (1/3− c2s) reflects the breaking of
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the conformal symmetry and may serve as a measure of
the interaction. Lattice calculation of this quantity may
be found in [15]. The squared speed of the sound c2s as a
function of T at zero density was also calculated in this
work and the minimum which corresponds to the softest
point of the EoS was found. Different problems related
to sound propagation in quark-gluon matter have been
discussed in [16].
The paper is structured as follows. In Sec.II we in-

troduce the time dependent Ginzdurg-Landau functional
with random Langevin forces and derive the fluctuation
propagator (FP) In Sec.III we present the Aslamazov-
Larkin (AL) diagram for the polarization operator. Using
the expression for the FP derived in Sec.II we evaluate
the AL diagram and show that it gives rise to a strong
sound absorption near the critical temperature. The final
Sec.IV is devoted to a summary and concluding remarks.

II. COLLECTIVE MODE PROPAGATOR

Throughout this paper we use the natural system of
units ~ = c = kB = 1. The Matsubara fermion propaga-
tor has the form

G(p, εn) =
1

γ0(iεn + µ)− γp−m
. (2)

Here εn = πT (2n + 1), µ is the quark chemical poten-
tial. Integration in the vicinity of the Fermi surface is
performed making use of the variable ξ defined as

ξ =
√

p2 +m2 − µ. (3)

Then
∫

dp

(2π)3
≃

∫

dξρ(ξ) ≃

≃

∫

dξ

[

ρ(µ) +

(

∂ρ

∂ξ

)

µ

ξ

]

dξ =

=
p0µ

2π2

∫

dξ +
µ

2π2

(

v20 + 1

v0

)
∫

dξ ξ. (4)

Here p0 is the Fermi momentum, v0 = p0/µ is the Fermi
velocity. The second term in (4) takes into account the
energy dependence of the density of states at the Fermi
surface. As will be shown below only the contribution
from this term enters into the final result for the fluctu-
ation sound absorption.
Fluctuations of the pair field in the vicinity of Tc are

described by the collective mode, or the fluctuation prop-
agator (FP) [6]. In [6] and references therein the FP
L(q, ωk) was introduced in the framework of the BCS
theory making use of the nonrelativistic kinematics and
Green’s functions. In [5] it was derived for the relativistic
quark system solving the Dyson equation with Matsub-
ara propagators (2). Graphically the Dyson equation is
represented in Fig.1.

FIG. 1. Dyson equation for FP (wavy line).

Here the FP will be obtained using the time-dependent
Ginzburg-Landau functional TDGL [6, 17, 18] and the
stochastic Langevin forces. In absence of external elec-
tromagnetic field the TDGL for the fluctuating pair field
ψ reads

− γ
∂

∂t
ψ(r, t) =

δF [ψ]

δψ∗
+ η(r, t). (5)

Here γ is the order parameter relaxation time constant.
The GL functional with the quartic term dropped has the
form

F [ψ] = F0 +

∫

dr
{

a|ψ(r, t)|2 + b|∇ψ(r, t)|2
}

, (6)

where a = νε, ν = ρ(µ) = p0µ
2π2 , ε =

T−Tc

Tc
, b = νκ2,κ2 =

π
8Tc

D,D is the diffusion coefficient, γ = πν
8Tc

(for details

see [4, 6, 17, 18] ). With F [ψ] given by (6) we return to
(5) and write

−

[

γ
∂

∂t
+ ν

(

ε+ κ
2
q
2
)

]

Ψ(r, t) ≡ L̂
−1Ψ(r, t) = η(r, t). (7)

The solution of (7) may be formally written as

Ψ(r, t) = L̂η(r, t). (8)

Let us assume that the correlator of the Langevin
forces has a gaussian form

〈η∗(r, t)η(r′, t′)〉 = γ δ(r − r′) δ(t− t′). (9)

According to the fluctuation-dissipation theorem [18]
the retarded propagator (the FP in our case) is given by
the equal time correlator 〈Ψ∗(r, t)Ψ(r′, t)〉. From (8) one
can write

〈Ψ∗(r, t)Ψ(r′, t)〉 = γ

∫

dq

(2π)3
eiq(r−r′)×

×

+∞
∫

−∞

dω

2π
L̂∗(r, ω)L̂(r, ω) =

= −

∫

dq

(2π)3
eiq(r−r′)

+∞
∫

−∞

dω

2π
ω−1 Im L̂(r, ω),

(10)
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where

L̂(r, ω) = −
1

ν

1

ε+ π
8Tc

(

−iω +Dq2
) . (11)

The FP (11) describes the slow diffusion mode near the
critical temperature. At small ω and q close to Tc the
quantity L(q, ω) can be arbitrary large and is rapidly
varying. This will be an important point in the calcu-
lation of the Aslamazov-Larkin diagram for the sound
absorption.

III. PRECRITICAL SOUND ABSORPTION

In this work we study the effects caused by the quark
pair field fluctuations. The possible role of the gluon field
fluctuations has been studied in detail in [4] and also in
[20]. According to [4] the gluon field fluctuations lead to
a shift in Tc and to possible replacement of the second-
order phase transition to the first-order one. However,
the increase of the quark density leads to a suppression
of the gluon fluctuations [4]. The authors of Ref. [20]
also came to the conclusion that the fluctuations of the
pair field dominate those of the gauge field in the strong
coupling regime.

With the FP at our disposal, we can evaluate the
Aslamazov-Larkin (AL) [13, 14] contribution to the
sound absorption in the fluctuation region. Based on
the experience gained in condensed matter physics [6], we
assume that it is of major importance among other quan-
tum fluctuation effects. Previously it was shown that AL
paraconductivity exceeds the Drude one [5]. In [21] pre-
liminary results on the AL term in lepton-pair production
were presented.

The Feynman diagram representing the AL sound ab-
sorption is shown in Fig.2. It contains two wavy lines

FIG. 2. Feynman diagram for the AL polarization operator
for the sound absorption.

corresponding to the FP and this makes this contribu-
tion the most important in the vicinity of Tc. The sound
absorption is determined by the imaginary part of the po-
larization operator given by the AL diagram. The in- and
out- vertices in this diagram are equal to the constant g
of the phonon-quark interaction. The solid lines are the
quark propagators (2). The AL diagram corresponds to
the following polarization operator

Π(k, ων) = 4T
∑

Ωj

∫

dq

(2π)3
B2(k,q, ων ,Ωj)×

×L(q+ k,Ωj + ων)L(q,Ωj).

(12)

Here k is the sound wave momentum, ων is the Mat-
subara sound frequency, B(k,q, ων ,Ωj) is the block of
the three propagators

B(k,q, ων ,Ωj) = g T
∑

εn

∫

dp

(2π)3
×

×tr
{

G(p, ε)G(p+ k, εn + ων)G(q− p,Ωj − εn)
}

.

(13)

The dependence of the FP-s L(k + q,Ωj + ων) and
L(q,Ωj) on Ωj and ων is much stronger than that of the
Green’s functions. The closeness to the transition point
is enclosed in the FP-s at small values of frequencies and
momenta. Therefore we shall keep in the propagators en-
tering into B only the dependence on the fermionic fre-
quencies and momenta. In this approximation one easily
obtains

tr
{

G(p, εn)G(p, εn)G(−p,−εn)
}

=

2m

E

1

(ξ − iεn)2(ξ + iεn)
≃

2m

µ

1

(ξ − iεn)2(ξ + iεn)
.

(14)

Next we transform according to (4) the integration over
dp in (14) into the integration over dξ and perform the
summation over εn. Only the second term in (4) propor-

tional to
(

dρ
dξ

)

µ
gives nonzero contribution in the integral

over dξ. The result for B yields

B = g T
2m

µ

∑

εn

∫

dξ
ξ

(ξ − iεn)2(ξ + iεn)

(

∂ρ

∂ξ

)

µ

=

g
m

2π2

(

v20 + 1

v0

)

ln
ωD

2πTc

.

(15)

The critical temperature for 2SC superconducting
phase is Tc ≃ 40 Mev, the ultraviolet cutoff ωD ≃ 800
MeV [2–4], therefore ln ωD

2πTc
≃ 1.

Upon the substitution of (15) into (12) one gets

Π(k, ων) = g
2m

2

π4

(

v20 + 1

v0

)2

ln2 ωD

2πTc

×

×T
∑

Ωj

∫

dq

(2π)3
L(q+ k,Ωj + ων)L(q,Ωj).

(16)

To proceed further, we shall assume that the acoustic
wavelength is much larger than the correlation radius of
fluctuations, i.e.,
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ε≫
π

8Tc
Dk2. (17)

For Tτ ≪ 1 the diffusion coefficient is D = 1
3v

2
0τ .

As an order of magnitude estimate we take τ ≃ 0.3fm,
Tc = 40MeV , v20 = 1

3 . Then

k2

MeV 2
≪ 106ε. (18)

Therefore (17) imposes a very weak restriction on the
phonon momentum. The inequality (17) allows to neglect
the k-dependence of the FP L(q+ k,Ωj + ων). To eval-
uate the sum over Ωj in (16), we can use a technique of
replacing the summation by contour integration [22, 23].
At the first step, this leads to the following result for the
polarization operator

Π(ω) =
2B2

π

∫

dq

(2π)3

+∞
∫

−∞

dz coth
z

2T

[

LR(q,−iz − iω)+

+LA(q,−iz + iω)
]

ImLR(q,−iz),

(19)

where z = iΩj , ω = iων , and L
R and LA are the retarded

and advanced FP -s. The next step is to expand the in-
tegral in powers of ω and to substract the zeroth order
term which would lead to Meissner effect above Tc. Al-
ternatively, this may be regarded as imposing the Word
identity on the polarization operator. Keeping in (19)
the term proportional to ω and integrating by parts, one
has

Π(ω) = −iωB2 4T

π

∫

dq

(2π)3

+∞
∫

−∞

dz
(ImLR)2

z2
=

−iω
πB2

ν2

∫

dq

(2π)3
1

(

ε+ π
8Tc

Dq2
)3 .

(20)

The final result for the fluctuation sound absorption
coefficient reads

ImΠ =− ω g2
m2

25p40κ
3
(v20 + 1)2×

× ln2
ωD

2πTc

(

Tc
T − Tc

)3/2

,

(21)

where κ
2 =

π

8Tc
D (see definition following Eq. (6))

IV. CONCLUDING REMARKS

In the paper we have examined the sound absorption in
quark matter at moderate density and temperature due
to the precursory fluctuations of the the quark pair field.
The absorption is caused by the interaction of phonons
with the soft collective mode of the quark field. The re-
sults are in line with the Mandelshtam-Leontovich slow
relaxation time theory. The sound propagation changes
the critical temperature in the compression-rarefaction
regions. The fluctuation pairing is a slow process and the
resulting inequilibrium leads to the intense sound wave
energy loss. Assumptions which have been made in the
course of the derivation were clearly exposed. The de-
pendence of the sound absorption on the proximity to
the critical temperature is even more pronounced than
in case of the electrical conductivity [5], where it was
possible to compare the fluctuation contribution with the
Drude one. For the quark matter we are not aware of the
“normal” sound absorption calculations. For the BCS
superconductor it was shown that the fluctuation sound
absorption exceeds the normal one in a wide range of
parameter [13, 14].
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