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We study the ρπ and b1π decay modes of the 1−+ light hybrid state within the framework of light-

cone QCD sum rules. We use both the tensor current ψ̄σµνψ and the derivative current ψ̄
←→
D µγ5ψ

as interpolating currents to calculate the partial decay width of the b1π decay mode. Comparing
the sum rules obtained by using different currents, we obtain Γ(π1 → b1π) = 8–23, 32–86 and 52–
151MeV for m1−+ = 1.6, 1.8 and 2.0GeV respectively, which favour the results from the flux tube
models and lattice simulations. We also use the tensor current to study the ρπ decay mode, and
although an extended stability criterion is needed, our results suggest a small partial decay width.

PACS numbers: 12.38.Lg, 12.39.Mk, 14.40.Rt

I. INTRODUCTION

The 1−+ light hybrid mesons have attracted particular attention in hadronic physics. The reason is not only such
a state can be distinguished from ordinary qq̄ mesons for its beyond-quark-model exotic quantum number but also
it is expected to be one of the lowest-lying hybrid states. To date, accumulated experimental data have shown the
existence of 1−+ isovector states, i.e. π1(1400), identified in ηπ and η′π channels and π1(1600) seen to decay into b1π,
f1π and η′π 1 [1]. Moreover, there is another 1−+ state, π1(2015), quoted in the extended version of PDG [1], which
is only observed by E852 in f1π and b1π final states and needs further confirmation.
Computations on the light hybrid spectrum have been conducted with lattice QCD and different phenomenological

models (for a review, see [2]). In the bag model, the predicted mass of the low lying 1−+ hybrid nonet is around
1.5GeV [3, 4]. The earliest quenched lattice calculations predicted the 1−+ light hybrid mass lies in the region 1.8–
2.1GeV [5–8], while the more recent dynamical calculations predicted the mass is around 2.2GeV [9, 10]. Isgur and
Paton estimated in the flux tube model the 1−+ light hybrid mass to be 1.9GeV [11, 12] while in the constituent
gluon models, the exotic light hybrid mass are found to lie in the region 1.8–2.2GeV [13–15].
In the framework of QCD Sum Rules [16], the earliest leading-order results obtained by different authors show the

1−+ light hybrid mass lies in the range 1.6–2.1GeV [17–23]. Over the past 15 years, different groups extended and
improved the sum rule calculation. The radiative corrections were calculated in [24] and [25] for the perturbative
terms and in [26] for the OPE. The short distance tachyonic gluon mass effects were also included in [24], and Narison
gave a systematical re-examination of the 1−+ mass with inclusion of all the previous calculated effects and estimated
the mass to be 1.81GeV [27]. Furthermore, the authors of this paper further complemented the sum rule analysis
of the 1−+ mass: instanton effects were studied in Zhang’s PhD thesis [28], and a monte-carlo based uncertainty
analysis was performed in [29]. Both of these efforts show little change in the mass prediction. Moreover, recently
we included the higher power corrections of OPE with consideration of operator renormalization [30]. We considered
violation of factorization of higher dimensional condensates and updated the QCD input parameters. We obtained
a quite conservative range of the 1−+ light hybrid mass, i.e. 1.72–2.60GeV, which only covers π1(2015) and does
not support π1(1600) as a pure hybrid. Given that the analysis in [30] has involved all effects that seem to have
considerable influence in the sum rule mass extraction, the mass range can be considered as a general conclusion from
QCD sum rules.
From the theoretical mass predictions we can see that π1(1400) is not supported to be a hybrid by various theoretical

schemes. Even the mass of π1(1600) is lower than many of the theoretical predictions, although this resonance has
long been considered as a good hybrid candidate. Some people have argued that π1(1600) can involve a four-quark
state, and a mixing of molecular state and four-quark state has been proposed in [27] based on the discussions in
[31] and [32] about 1−+ tetraquark and molecular states. The unconfirmed π1(2015) has been suggested in [27] and

1 The situation is uncertain for the ρπ decay mode: VES and Compass have not claimed the existence of the ρπ decay while some people
have argued that the phase motion results observed by E852 can be resulted from the leakage of π2(1670) [1, 2].
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[30] to be a good hybrid candidate. To shed further light on the nature of these states needs both theoretical and
experimental study of the 1−+ decay modes.
The UKQCD collaboration examined the decay of 1−+ hybrid with two dynamical quarks in the lattice simulation,

and obtained the partial decay widths Γ(π1 → b1π) = 400 ± 120MeV and Γ(π1 → f1π) = 90 ± 60MeV [10]. Later
in [33], Burns and Close found these results agree quite well with the predictions near threshold in the flux tube
model, thus they reduced the partial widths to Γ(π1 → b1π) ≈ 80MeV and Γ(π1 → f1π) ≈ 25MeV, whereas the
results in IKP Model [34, 35] and PSS Model [36, 37] are Γ(π1 → b1π) = 51MeV, Γ(π1 → f1π) = 14MeV and
Γ(π1 → b1π) = 40 − 78MeV, Γ(π1 → f1π) = 10 − 18MeV respectively. The decay modes of the 1−+ light hybrid
state have also been studied within the framework of QCD sum rules. The earliest three-point function sum rule
studies can be seen in [38] and [21], while a recent study can be seen in [39] where the pion mass terms in the
denominator were ignored and only the 1/q2 terms divergent in the limit q2 → 0 were kept. The authors in [39] also
studied the 1−+ decay [40] using the light-cone QCD sum rules (LCSR) [41–44], of which the basic idea is to expand
the correlation function near the light cone. However, the predicted partial decay width of π1 → b1π is somewhat
confusing. The suggestion of very tiny decay width of b1π implies both π1(1600) and π1(2015) may not have much of
a hybrid constituent, and also doesn’t agree with the predictions from various models mentioned above. Considering
the important role of b1π decay mode in identifying the 1−+ hybrid state, it’s worthwhile to re-examine this decay
mode within the same theoretical framework.
In this work, we study the b1π decay mode using the b1 derivative current ψ̄

←→
D µγ5ψ instead of the current ψ̄

←→
∂ µγ5ψ

adopted in [40]. We also use the tensor current ψ̄σµνψ, which not only couples to b1 but also the 1−− ρ meson, thus
an analysis of the ρπ decay mode can be provided simultaneously. Usually, the ρ meson is studied using the simpler
vector interpolating current ψ̄γµψ, as was done in [16, 45] for the mass and in [46, 47] for the decay constant. In
addition, attempts to study the ρ meson using the tensor current have also been made previously in both sum rule
[48, 49] and lattice calculations [47]. Studies using the tensor current can provide a useful re-examine of the results
obtained by using the vector current. Previous sum rule studies using the vector current ψ̄γµψ predict large partial
decay width of ρπ channel [39, 40] while this channel is forbidden in the original flux tube model [35] and the partial
decay width is still small in its modified versions [36, 37, 50], therefore, it is also worth re-examining this channel by
using the tensor current.
We arrange the article as follows: In Sec. II we illustrate the formalism of the light-cone QCD sum rules for deriving

the coupling constants in the 1−+ decay amplitudes. In Sec. III we present our results of the light-cone expansion

of the correlation function of both the tensor current ψ̄σµνψ and the derivative current ψ̄
←→
D µγ5ψ. In Sec. IV we

illustrate the method of calculating the integrals of the spectral densities, from which the contribution from excited
states and continuum can be subtracted. In Sec. V, we present the numerical analysis of b1π and ρπ decay modes
with both currents. In Sec. VI we present the summary and conclusions.

II. LIGHT-CONE QCD SUM RULES FOR THE 1−+ LIGHT HYBRID STATE

We begin with the following correlation function to study the decay modes π1 → b1π and π1 → ρπ:

ΠT,D(k, p) = i

∫

d4xeik·x〈π(q)|T {JT,D(x)JH†

(0)}|0〉, (1)

where p, k and q are respectively the momentum for π1, b1 or ρ and π, which satisfy the four-momentum conservation
p = k + q. JH = JH

µ = ψ̄Gµνγνψ couples to the 1−+ light hybrid, JT = JT
µν = ψ̄σµνψ couples to b1 and ρ, and

JD = JD
µ = ψ̄

←→
D µγ5ψ also couples to b1.

In the practical calculation, we use JH
µ =

√
2
2 (ūGµνγνu− d̄Gµνγνd), J

T
µν = d̄σµνu and JD

µ = d̄
←→
D µγ5u to study the

partial decay widths of decay modes π0
1 → b+1 π

− and π0
1 → ρ+π−, of which the results also hold for π0

1 → b−1 π
+ and

π0
1 → ρ−π+. We define the decay constants through the following formulas:

〈0|JH
µ (0)|π1〉 = fπ1

m3
π1
ηµ , 〈0|JT

µν(0)|b1〉 = ifT
b1εµνρσǫ

ρkσ, (2)

〈0|JT
µν(0)|ρ〉 = ifT

ρ (kµǫν − kνǫµ) , 〈0|JD
µ (0)|b1〉 = fb1ǫµ,

where ǫµ and ηµ are polarization vectors, and the decay amplitudes can be written as:

M(π1 → ρπ) = igρεαβρσǫ
∗αηβkρpσ, (3)

M(π1 → b1π) = ig1b1(η · ǫ
∗) + ig2b1(η · k)(ǫ

∗ · p).
The correlation function can be expanded in the light-cone distribution amplitudes which play the similar role as the

condensates of local operators in the SVZ operator product expansion. The light-cone expansions can be compared
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to the phenomenological expressions of the correlation function so as to estimate the coupling constants in (3) and
then to obtain the partial decay widths. After interpolating the intermediate hadronic states into (1) and using the
definitions in (2) and (3), we arrive at the phenomenological sides:

ΠT
b1(k, p) = i

∫

d4xeik·x〈π−(q)|T {JT
µν(x)J

H†

α (0)}|0〉

→
fπ1

fT
b1

(p2 −m2
π1
)(k2 −m2

b1
)
ǫµνρσ

[

g1b1k
ρ(−pαp

σ

p2
+ g σ

α ) + g2b1k
ρ(−k · p

p2
pαp

σ + kαp
σ)

]

+ · · · , (4)

ΠT
ρ (k, p) = i

∫

d4xeik·x〈π−(q)|T {JT
µν(x)J

H†

α (0)}|0〉

→ gρ
fπ1

fT
ρ

(p2 −m2
π1
)(k2 −m2

ρ)
(−ǫρσναkρpσkµ + ǫρσµαk

ρpσkν) + · · · , (5)

ΠD
b1(k, p) = i

∫

d4xeik·x〈π−(q)|T {JD
µ (x)JH†

ν (0)}|0〉

→ ifπ1
fb1

(p2 −m2
π1
)(k2 −m2

b1
)

[

g1b1(
k · pkµpν
k2p2

− kµkν
k2
− pµpν

p2
+ gµν) (6)

+g2b1(
(k · p)2kµpν

k2p2
− k · p

k2
kµkν −

k · p
p2

pµpν + pµkν)

]

+ · · · ,

where the ellipses denote the contribution from excited states and continuum.
On the QCD side, the correlation function (1) can be expanded near the light-cone x2 = 0 in terms of meson

distribution amplitudes of different twists. After picking out characteristic tensor structures we get invariant parts of
correlation functions corresponding to different coupling constants in (4)–(6). Sometimes this process involves some
technical complications as different tensor structures entangle with each other at first sight. We will discuss these
details in the next section.
In order to subtract the contribution from excited states and continuum in the invariants of correlation functions,

the double dispersion relation can be used:

Π(k2, p2) =

∫ ∞

0

ds1

∫ ∞

0

ds2
ρ(s1, s2)

(s1 − k2 − iǫ)(s2 − p2 − iǫ)
+ subtractions, (7)

where the subtractions eliminate the infinities from the dispersion integral. After taking Borel transformation, which
is defined as

BM2

k2 [f(k2)] = lim
n→∞

(−k2)n+1

n!

(

d

dk2

)n

f(k2) |k2=−nM2 , (8)

the subtraction terms can be removed and then we get

B
1
σ1

k2 B
1
σ2

p2 Π(k2, p2) =

∫ ∞

0

ds1

∫ ∞

0

ds2 e
−s1σ1e−s2σ2 ρ(s1, s2), (9)

from which we can subtract continuum by cutting the integral at continuum thresholds s01 and s02. The spectral
density ρ(k2, p2) can be obtained by taking another double Borel transformations on (9):

ρ(s1, s2) = B
1
s1

−σ1
B

1
s2

−σ2
B

1
σ1

k2 B
1
σ2

p2 Π(k2, p2). (10)

After invoking the double Borel transformations to the phenomenological representations (4), (5) and (6), and compare
them with the QCD side (9) using (10), we get the master equations of light-cone QCD sum rules:

fT
b1fπ1

m3
π1
g1b1e

−m2
b1

σ1−m2
π1

σ2 =

∫ s01

0

ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2 B

1
s1

−σ1
B

1
s2

−σ2
B

1
σ1

k2 B
1
σ2

p2 ΠT
b1;1(k

2, p2) , (11)

fT
b1fπ1

m3
π1
g2b1e

−m2
b1

σ1−m2
π1

σ2 =

∫ s01

0

ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2 B

1
s1

−σ1
B

1
s2

−σ2
B

1
σ1

k2 B
1
σ2

p2 ΠT
b1;2(k

2, p2) , (12)
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fT
ρ fπ1

m3
π1
gρe

−m2
ρσ1−m2

π1
σ2 =

∫ s01

0

ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2 B

1
s1

−σ1
B

1
s2

−σ2
B

1
σ1

k2 B
1
σ2

p2 ΠT
ρ (k

2, p2) , (13)

ifb1fπ1
m3

π1
g1b1e

−m2
b1

σ1−m2
π1

σ2 =

∫ s01

0

ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2 B

1
s1

−σ1
B

1
s2

−σ2
B

1
σ1

k2 B
1
σ2

p2 ΠD
b1;1(k

2, p2) , (14)

ifb1fπ1
m3

π1
g2b1e

−m2
b1

σ1−m2
π1

σ2 =

∫ s01

0

ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2 B

1
s1

−σ1
B

1
s2

−σ2
B

1
σ1

k2 B
1
σ2

p2 ΠD
b1;2(k

2, p2) , (15)

where contributions from excited states and continuum have been subtracted from both phenomenological and QCD
sides.

III. LIGHT-CONE EXPANSION OF THE CORRELATION FUNCTIONS

We expand the correlation function near the light-cone in distribution amplitudes calculated in [51]. Contributions
of different decay modes mix in the final results. Depending on the certain current used in the correlation function,
it is sometimes not quite straightforward to pick out the particular tensor structures corresponding to certain decay
modes, which in our case holds for the tensor current. Before presenting our results of light-cone expansion, we show
how to separate the tensor structures in the light-cone expansion of correlation functions.
For the tensor current correlation function, the tensors that appear in the final results involve Levi-Civita tensors.

Generally we can form six tensor structures with a Levi-Civita tensor and two independent momentums with three
independent Lorentz indices µ, ν and α (µ, ν are anti-symmetric). They are

T1 = ǫµνραp
ρ , T2 = ǫµαρσk

ρpσpν − ǫναρσkρpσpµ , T3 = ǫµνραk
ρ , (16)

T4 = ǫµνρσk
ρpσkα , T5 = ǫµνρσk

ρpσpα , T6 = ǫµαρσk
ρpσkν − ǫναρσkρpσkµ.

Actually, only four of the above tensors are independent. One can prove the formula below:

T5 − T2 = p2T3 − p · kT1. (17)

By exchanging p and k, we get

T4 − T6 = −k2T1 + p · kT3. (18)

By using (17) and (18), T1 and T2 that appear in the final results of the light-cone expansion can be expressed in terms
of T3–T6. On the phenomenological side of correlation function of the tensor current, tensor structures corresponding
to different decay modes are as below:

π1 → b1π : g1b1ǫµνρσk
ρ(−p

σpα
p2

+ g σ
α ) ∼ − 1

p2
T5 + T3

+ g2b1ǫµνρσk
ρ(−k · p

p2
pσpα + pσkα) ∼ −p · k

p2
T5 + T4

π1 → ρπ : gρ(ǫρσµαk
ρpσkν − ǫρσναkρpσkµ) ∼ T6

0++ → b1π : g′b1ǫµνρσk
ρpσpα ∼ T5 (19)

From (19) we can see that T3, T4 and T6 are the characteristic tensors for b1π and ρπ decay modes, of which the
corresponding terms on the QCD side can be extracted to compare with the phenomenological side. After doing this,
we obtain the QCD side of the tensor current correlation function with light-cone expansion.
The tensor structure for the correlation function of the derivative current are much simpler, we can see from (6)

that gµν and pµkν can be the characteristic tensors (the 0++ decay mode has a tensor structure parallel to pν due to
〈0|JH

ν (0)|0++〉 ∼ pν).
Using the method above, we are able to disentangle the tensor structures and get the following results of light-cone

expansion:

B
1
σ1

k2 B
1
σ2

p2 ΠT
b1;1(k

2, p2) = −
√
2πfπm

2
π

108(mu +md)
〈αsG

2〉
{

1

2
[φ′σ(u0)− φ′σ(ū0)] + 3[φp(u0) + φp(ū0)] + 3(φ[u]p + φ[ū]p )

}

, (20)
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B
1
σ1

k2 B
1
σ2

p2 ΠT
b1;2(k

2, p2) = −
√
2fπm

2
π

(mu +md)
(T [α1] + T [α2])

1

σ

+

√
2πfπm

2
π

108(mu +md)
〈αsG

2〉
{

[φσ(u0) + φσ(ū0)](σ1 − σ2) + 6(φ[u]p + φ[ū]p )σ2

}

, (21)

B
1
σ1

k2 B
1
σ2

p2 ΠT
ρ (k

2, p2) =

√
2πfπm

2
π

108(mu +md)
〈αsG

2〉
{

[φσ(u0) + φσ(ū0)]σ − 6(φ[u]p + φ[ū]p )σ2

}

, (22)

B
1
σ1

k2 B
1
σ2

p2 ΠD
b1;1(k

2, p2) =
i
√
2πfπm

2
π

108(mu +md)

{

1

2
[φ′σ(u0)− φ′σ(ū0)]− 3 [φp(u0) + φp(ū0)]

}

1

σ
〈αsG

2〉, (23)

B
1
σ1

k2 B
1
σ2

p2 ΠD
b1;2(k

2, p2)

=
i
√
2πfπm

2
π

54(mu +md)

{

(1− 3u0 −
ū0
u0

)[φσ(u0) + φσ(ū0)] + u0ū0[φ
′
σ(u0)− φ′σ(ū0)]

+ 3u0(1− u0) [φp(u0) + φp(ū0)]

}

〈αsG
2〉

+
i
√
2fπm

2
π

(mu +md)

[

u0T (u0, ū0, 0) + u0T (ū0, u0, 0) + u0

(

∂T
∂α3

− ∂T
∂α2

)[α1]

+ u0

(

∂T
∂α3

− ∂T
∂α1

)[α2]

− T [α1] − T [α2]

]

1

σ2
, (24)

where the Borel variable σ = σ1 + σ2. We have adopted the vacuum saturation approximation and the definitions of
the notations can be found in Appendix A. We have used the same definitions of the pion distribution amplitudes of

those used in [40], which have been calculated in [51]. We also use the current JD
µ = d̄

←→
D µγ5u instead of d̄

←→
∂ µγ5u

used in [40], which lead to discrepancies in the final results of light-cone expansion and contradictory results in the
numerical analysis. We have also compared our results from the non-covariant derivative current with those obtained
in [40], only finding a misprint: there are extra u0 factors in the T [α1] and T [α2] terms of the light-cone sum rules for
g2b1 in [40].

IV. INTEGRALS OF THE SPECTRAL DENSITIES

After substituting the pion distribution amplitudes with the expressions in Appendix A, B
1
σ1

k2 B
1
σ2

p2 ΠT,D(k2, p2) in

(11)–(15) are of three types:
σm
2

(σ1+σ2)n
, ln σ2

σ1+σ2
and σ2 ln

σ2

σ1+σ2
, where m > 0 and n > 0.

For the first type, the general form of the spectral density integral can be calculated in the following procedure:

∫ s01

0

ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2 B

1
s1

−σ1
B

1
s2

−σ2

σm
2

(σ1 + σ2)n

=

∫ s01

0

ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2

1

Γ(n)

∂m

∂sm2

[

δ(s1 − s2)sn−1
2

]

=

∫ s01

0

ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2

1

Γ(n)

∂mδ(s2 − s1)
∂sm2

sn−1
1 , (25)

where s01 < s02 is a reasonable assumption according to mb1,ρ < mπ1
. The power of ∂

∂s2
in the last equation of (25)

can be reduced using integration by parts. Doing this one time, we get the surface term as below:

△ =
(−1)m
Γ(n)

∫ s01

0

ds1 e
−s1σ1

∂m−1δ(s1)

∂sm−1
1

sn−1
1 , (26)
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which is well-defined and vanishing only if n > m. To avoid the ambiguity arising from the surface term, we shift the
lower limit of the integral (25) by a small constant and get

∫ s01

0+
ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2

1

Γ(n)

∂mδ(s2 − s1)
∂sm2

sn−1
1

=
σm
2

Γ(n)

∫ s01

0

ds1e
−s1(σ1+σ2) sn−1

1

= σm
2 (σ1 + σ2)

−n

{

1− Γ[n, (σ1 + σ2)s01]

Γ(n)

}

= σm
2 (σ1 + σ2)

−nfn−1[(σ1 + σ2)s01] , (27)

where fn(x) = 1− e−x
∑n

i=0
xi

i! , Γ[x] is the Eular Gamma fuction, and Γ[x, y] is the incomplete Gamma function .
For the second type of the spectral density integrals, we have

∫ s01

0

ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2 B

1
s1

−σ1
B

1
s2

−σ2
ln

σ2
σ1 + σ2

= ln
σ2

σ1 + σ2
−
∫ ∞

s01

ds1

∫ ∞

s02

ds2 e
−s1σ1e−s2σ2 B

1
s1

−σ1
B

1
s2

−σ2
ln

σ2
σ1 + σ2

= ln
σ2

σ1 + σ2
−
∫ ∞

s01

ds1

∫ ∞

s02

ds2 e
−s1σ1e−s2σ2

1

s2
δ(s1 − s2)

= ln
σ2

σ1 + σ2
− Γ[0, s02(σ1 + σ2)]. (28)

Similarly, we get the third type of the spectral density integrals:

∫ s01

0

ds1

∫ s02

0

ds2 e
−s1σ1e−s2σ2 B

1
s1

−σ1
B

1
s2

−σ2
σ2 ln

σ2
σ1 + σ2

= σ2 ln
σ2

σ1 + σ2
−
∫ ∞

s01

ds1

∫ ∞

s02

ds2 e
−s1σ1e−s2σ2 B

1
s1

−σ1
B

1
s2

−σ2
ln

σ2
σ1 + σ2

= σ2 ln
σ2

σ1 + σ2
−
∫ ∞

s01

ds1

∫ ∞

s02

ds2 e
−s1σ1e−s2σ2

1

s1

d

ds2
δ(s1 − s2)

= σ2 ln
σ2

σ1 + σ2
+ e−s02(σ1+σ2)

1

s02
− σ2Γ[0, s02(σ1 + σ2)]. (29)

Using these integral formula, we can transform the master equations (11)–(15) into forms of

g1b1 = ΠT
b1;1(σ, s01, s02)/(f

T
b1fπ1

m3
π1
e−2m2

b1
m2

π1
/(m2

b1
+m2

π1
)·σ), (30)

g2b1 = ΠT
b1;2(σ, s01, s02)/(f

T
b1fπ1

m3
π1
e−2m2

b1
m2

π1
/(m2

b1
+m2

π1
)·σ), (31)

gρ = ΠT
ρ (σ, s01, s02)/(f

T
ρ fπ1

m3
π1
e−2m2

ρm
2
π1

/(m2
ρ+m2

π1
)·σ), (32)

g1b1 = ΠD
b1;1(σ, s01)/(ifb1fπ1

m3
π1
e−2m2

b1
m2

π1
/(m2

b1
+m2

π1
)·σ), (33)

g2b1 = ΠD
b1;2(σ, s01)/(ifb1fπ1

m3
π1
e−2m2

b1
m2

π1
/(m2

b1
+m2

π1
)·σ) (34)

respectively, where σ = σ1+σ2, and we assume σ2

σ1
=

m2
b1,ρ

m2
π1

.

V. RESULTS AND DISCUSSIONS

To obtain predictions for g1b1 , g
2
b1

and gρ from the master equations (30)–(34), we vary the continuum thresholds s01
and s02 within the physically acceptable ranges to find the stable regions for the couplings, in which the dependence
of the couplings on σ is weak , which allows theoretical predictions. Since there is still different possibilities for the
mass of 1−+ hybrid, we consider three different values of the hybrid mass, i.e., mπ1

= 1.6GeV, 1.8GeV and 2.0GeV,
and we use the decay constant fπ1

= 0.025GeV deduced from QCD sum rules [27, 30].
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A. Numerical analysis for g1b1

We first consider the master equation (30). Numerically we use mb1 = 1.235GeV and fT
b1
(2 GeV) = 0.18GeV in

[52]. There are two continuum thresholds s01 and s02 in this sum rule, which seems tricky to deal with. However, we
find under s02 > s01 (given mπ1

> mb1,ρ), g
1
b1

depends weakly on s02 (see Figure 1), which enter the sum rules with

the incomplete Gamma function. Thus for simplicity, we will set s02 = s01+1.0GeV2 in this sum rule. By varying the
value of s01, we can observe how the g1b1 −σ curves change. In principle, we expect gb1 depend weekly on the external
parameters (σ,s01), which has been emphasized in traditional QCD sum rules [54]. In practice, we find gb1 shows
stability in σ (by the extreme values in Figure 2), but no stability in s01. In fact, gb1 increases gradually with s01,
which means s01 cannot be fixed from the stability criterion. Therefore it is appropriate to consider a conservative
range of gb1 by varying s01 within its physically acceptable range (where σ stability should also be ensured). In Figure
2, we plot the optimal results obtained in the region s01 = 3 ∼ 5GeV2. By reading the extremum values for g1b1 from

the curves, we can obtain estimated values for g1b1 . For mπ1
= 1.6GeV, we find g1b1 = −0.12 ∼ −0.09GeV. If the

mass of 1−+ hybrid is larger than 1.6GeV, we will obtain different values of g1b1 . We find g1b1 = −0.20 ∼ −0.15GeV

for mπ1
= 1.8GeV and g1b1 = −0.22 ∼ −0.17GeV for mπ1

= 2.0GeV.
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FIG. 1: g1b1 −σ curves from the master equation (30) for mπ1
= 1.6GeV, mπ1

= 1.8GeV, mπ1
= 2.0GeV. The dotted line, the

dashed line, dot-dashed line and the dot-dot-dashed line denote {s01, s02} = {3GeV2, 4GeV2}, {3GeV2, 5GeV2}, {3GeV2,
6GeV2} and {3GeV2, 7GeV2} respectively.
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Σ�GeV-2
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1
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FIG. 2: g1b1 − σ curves from the master equation (30). The dotted lines, the dashed lines and the dot-dashed lines denote mπ1

= 1.6GeV, 1.8GeV and 2.0GeV respectively. All thick lines denote {s01, s02} = {5GeV2, 6GeV2} while the other lines denote
{s01, s02} = {3GeV2, 4GeV2}.

The sum rule for the derivative current (33) provides a second way to estimate the value of g1b1 , for which we use
fb1(2 GeV) = 0.18GeV from [53]. In this sum rule, there is only one continuum threshold s01. However, this sum
rule does not reach stability in σ unless we use large values of s01. In Figure 3, we plot curves where stability in
σ is initially reached as we increase s01 , from which we can read the extreme values of g1b1 , i.e., g

1
b1

= −0.8GeV,
−0.58GeV and −0.42GeV for mπ1

= 1.6GeV, 1.8GeV and 2.0GeV respectively. Given that the related s01 here lies
too far away from the square of the ground state mass, we consider values of g1b1 from the tensor current LCSR as
more reliable predictions.
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FIG. 3: g1b1 − σ curve from master equation (33). The dotted line, the dashed line and the dot-dashed line denote

{s01,mπ1
}={7GeV2, 1.6GeV}, {9GeV2, 1.8GeV} and {11GeV2, 2.0GeV} respectively.

B. Numerical analysis for g2b1

To obtain the prediction for g2b1 , we first consider the sum rules for the tensor current. By varying s01 and s02, we

find g2b1 is almost insensitive to the value of s02. As can be seen in Figure 4, curves corresponding to the same s01
and different s02 almost overlap with each other. Thus we can still set s02 = s01 + 1.0GeV2 in this sum rule.
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FIG. 4: g2b1 − σ curves from master equation (31) for mπ1
= 1.6GeV. The dotted line, the dashed line, dot-dashed line and

the dot-dot-dashed line denote {s01, s02} = {5GeV2, 6GeV2}, {5GeV2, 7GeV2}, {5GeV2, 8GeV2} and {5GeV2, 9GeV2}
respectively.

In Figure 5, we can observe how the shape of curves change when we increase the value of s01. The curves are
monotonous at low s01. If we increase s01, the curves will reach stability in σ. But even as the stability is initially
reached, the corresponding s01 (=7, 8, 10GeV2 respectively for mπ1

= 1.6, 1.8 and 2.0GeV) seems too large for the
b1 meson. Therefore we do not intend to extract specific predictions for g2b1 from LCSR with the tensor current.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
-12

-10

-8

-6

-4

Σ�GeV-2

g b
1

2
�G

eV
-

1

0.4 0.6 0.8 1.0 1.2 1.4 1.6

-8

-6

-4

-2

Σ�GeV-2

g b
1

2
�G

eV
-

1

0.4 0.6 0.8 1.0 1.2 1.4 1.6
-7

-6

-5

-4

-3

-2

-1

0

Σ�GeV-2

g b
1

2
�G

eV
-

1

FIG. 5: g2b1 − σ curves from master equation (31) with mπ1
=1.6, 1.8 and 2.0GeV. The dotted line, the dashed line, the

dot-dashed line and the dot-dot-dashed line denote {s01, s02} = {5GeV2, 6GeV2}, {8GeV2, 9GeV2}, {11GeV2, 12GeV2} and
{14GeV2, 15GeV2} respectively.

However, the extreme values of the curves will not increase if the value of s01 has reached a “huge value”, e.g.,
14GeV2 for mπ1

= 1.6GeV. which means we can obtain an upper bound of g2b1 . In Figure 5, we obtain g2b1 <
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FIG. 6: g2b1 − σ curves from master equation (34). The dotted lines, the dashed lines and the dot-dashed lines denote mπ1
=

1.6GeV, 1.8GeV and 2.0GeV respectively. All thick lines denote s01 = 5GeV2 while the other lines denote s01 = 3GeV2.

−6.5GeV−1, < −4.5GeV−1 and < −3GeV−1 for mπ1
= 1.6GeV, 1.8GeV and 2.0GeV respectively.

The upper bounds above can be compared with the predictions of g2b1 from using the derivative current, which are

obtained from the stability criterion in the region s01 = 3 ∼ 5GeV2. We plot all curves in Figure 6, from which we
read g2b1 = −12.8 ∼ −22.4GeV−1, −8.9 ∼ −14.7GeV−1 and −5.7 ∼ −9.8GeV−1 for mπ1

= 1.6GeV, 1.8GeV and
2.0GeV respectively.

C. Numerical analysis for gρ

By using sum rule for tensor current, we can also try to obtain the prediction for gρ. Numerically we adopt
mρ = 0.77GeV and fT

ρ (2 GeV) = 0.159GeV [47, 48]. Again the coupling is insensitive to the variation of s02 when

s01 is fixed, and we still assume s02 = s01 + 1.0GeV2. As shown in Figure 7, although the sum rules for (32) do
not reach exact stability in σ, in the region where the curves are close to stabilizing, there are intersection points
for curves with different (s01,s02). Near these intersection points, gρ depends weakly on the variation of (s01,s02),
which fulfills the s0 stability criterion of which the importance has been emphasized in traditional QCD sum rules
[54]. Taking the value of gρ at the intersection points, we obtain gρ = −0.06,−0.05 and− 0.06GeV−1 respectively for
1.6, 1.8 and 2.0GeV, which suggest gρ to be small.
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FIG. 7: gρ − σ curve for mπ1
= 1.6GeV, 1.8GeV and 2.0GeV, from master equation (32). The dotted line, the dashed line,

the dot-dashed line and the dot-dot-dashed line denote {s01, s02} = {2GeV2, 3GeV2}, {3GeV2, 4GeV2}, {4GeV2, 5GeV2}
and {5GeV2, 6 GeV2} respectively.

D. Decay widths for π1 → b1π and π1 → ρπ

In the previous subsections, we have obtained values and ranges of g1b1 and g2b1 , from both the tensor current LCSR
and derivative current LCSR, and we have also obtained estimates of gρ from tensor current LCSR.
Using these values of g1b1 , g

2
b1

and gρ as our input parameters, we can calculate the decay widths for π1 → b1π and
π1 → ρπ by using

Γ(π1 → b+1 π
− + b−1 π

+) =
1

12πm2
π1

·
[

(g1b1)
2

(

3 +
k2b1
m2

b1

)

kb1 + 2g1b1g
2
b1

mπ1

m2
b1

√

m2
b1

+ k2b1k
3
b1 + (g2b1)

2m
2
π1

m2
b1

k5b1

]

, (35)
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and

Γ(π1 → ρ+π− + ρ−π+) =
g2ρ
6π
k3ρ, (36)

respectively, where kb1/ρ =
√

[(mb1/ρ −mπ1
)2 −m2

π] · [(mb1/ρ +mπ1
)2 −m2

π]/(2mπ1
). From these expressions, we

obtain possible values and lower bounds of Γ(π1 → b1π), which are listed in Table I, from which we can see the
predictions from jD LCSR differs from the very small results obtained in [40]. This discrepancy is mainly due to

our addition of the DAs (distribution amplitudes) contribution from the covariant derivative of the current ψ̄
←→
D µγ5ψ.

Since the light-cone expansion is only known to lower twist, inclusion of any contribution is possible to influence the
sum rules to a large extent. From the last few subsections, we know that some of the sum rules may suffer from lack
of higher twist DAs and are not stable enough within physically acceptable ranges of continuum thresholds, which
cause uncertainties in the predictions. From previous analyses, the best sum rules are g1b1 from jT LCSR and g2b1
from jD LCSR. Therefore we consider the predictions from these sum rules as the most reliable in our calculation.
The decay widths are then Γ(π1 → b1π)=8–23, 32–86MeV and 52–151 for mπ1

=1.6, 1.8 and 2.0GeV, which to some
extent support the findings from the flux tube model [34–37] and the modified lattice result [33].

mπ1
=1.6GeV mπ1

=1.8GeV mπ1
=2.0GeV

Γ(π1 → b1π)/MeV

g1b1 , g
2
b1

from jT LCSR > 2 > 9 > 16

g1b1 , g
2
b1

from jD LCSR 20–40 46–103 62–163

g1b1 from jT LCSR, g2b1 from jD LCSR 8–23 32–86 52–151

g1b1 from jD LCSR, g2b1 from jT LCSR > 12 > 18 > 22

TABLE I: Decay widths for π1 → b1π.

Using the gρ obtained in the last subsection, we obtain Γ(π1 → ρπ) = 0.021, 0.037 and 0.040MeV for mπ1
= 1.6,

1.8, 2.0GeV, suggesting a small ρπ decay width.

VI. SUMMARY AND CONCLUSIONS

We have studied the partial decay widths for decay modes π1 → b1π and π1 → ρπ using the light-cone QCD sum

rules. We use both the tensor current ψ̄σµνψ and the derivative current ψ̄
←→
D µγ5ψ as interpolating currents in our

calculation.
For the b1π decay mode, we find consistent numerical results (within the errors) of the coupling constants from the

sum rules with different interpolating currents. We obtain the partial decay width Γ(π1 → b1π)= 8–23, 32–86 and
52–151MeV for m1−+ = 1.6, 1.8 and 2.0GeV respectively from the most reliable sum rules, which provide support
for the flux tube model predictions [34–37] and the modified lattice predictions [33]. These results support the hybrid
explanations for π1(1600) and π1(2015), both of which have been observed in the b1π channels.
For the ρπ decay mode, we have obtained tiny values of the decay widths, which is quite different from the sum

rules obtained by using the vector current ψ̄γµψ. A similar situation also occurs in the sum rules for ρ mass [49]. The
authors of [49] attribute this difference to two possible reasons: violation of factorization in estimate of four-quark
condensate or weak coupling of the tensor current to the ρ meson. Since the value of the ρ meson decay constant for
tensor current obtained from lattice calculation [47] is in a reasonable region, we are inclined towards the first reason.
Our results go in line with the predictions obtained from the flux tube model [35–37, 50]. Since the existence of the
ρπ decay mode is also uncertain for both π1(1600) and π1(2015) in the experiments [1, 2], follow-up studies of this
decay mode will be of great help for understanding the nature of these exotic states.
As shown from our calculation, higher twist (in our case, twist-5) DAs contributions may play an important role

in stabilizing the sum rules. However, these high twist distribution amplitudes have not been calculated yet. More
solid conclusions await the inclusion of contributions from higher twist DAs in the correlation functions.
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Appendix A: Definitions of Pion Distribution Amplitudes and other notations

The twist-3 light-cone distribution amplitudes of pion φp(u), φσ(u) and T (αd, αu, αg) calculated in [51] are listed
below:

〈0|ū(z)iγ5d(−z)|π(P )〉 =
fπm

2
π

mu +md

∫ 1

0

du ei(2u−1)pz φp(u) , (37)

〈0|ū(z)σαβγ5d(−z)|π(P )〉 = − i
3

fπm
2
π

mu +md
(pαzβ − pβzα)

∫ 1

0

du ei(2u−1)pz φσ(u) , (38)

〈0|ū(z)σµνγ5gsGαβ(vz)d(−z)|π−(P )〉 = i
fπm

2
π

mu +md

(

pαpµg
⊥
νβ − pαpνg⊥µβ − pβpµg⊥να + pβpνg

⊥
αµ

)

∫

Dα e−ipz(αu−αd+vαg)T (αd, αu, αg) , (39)

where the first two DAs are normalized to unity:
∫ 1

0 du φ(p,σ)(u) = 1, and the projector onto the directions orthogonal
to p and x is defined as:

g⊥µν = gµν −
1

pz
(pµzν + pνzµ) , (40)

the integration measure is defined as:

∫

Dα =

∫ 1

0

dαddαudαgδ(1− αu − αd − αg) . (41)

The explicit expressions for the DAs calculated in [51] are:

φp(u) = 1 +

(

30η3 −
5

2
ρ2π

)

C
1/2
2 (ξ) +

(

−3η3ω3 −
27

20
ρ2π −

81

10
ρ2πa2

)

C
1/2
4 (ξ) , (42)

φσ(u) = 6u(1− u)
{

1 +

(

5η3 −
1

2
η3ω3 −

7

20
ρ2π −

3

5
ρ2πa2

)

C
3/2
2 (ξ)

}

, (43)

T (α) = 360η3αuαdα
2
g

{

1 + ω3
1

2
(7αg − 3)

}

, (44)

where ξ = 2u− 1 and Cm
n (ξ) are Gegenbauer polynomials.

Numerically, We use the following values of the light quark masses and the input parameters involved in the
light-cone expansion (at µ = 1 GeV) [51, 55]:

m2
π/(mu +md) = (1.6± 0.2)GeV, mπ = 0.134GeV, ρ2π ≡ (mu +md)

2/m2
π ∼ O(m2

π), fπ = 0.131GeV,

a2 = 0.44, η3 = 0.015, ω3 = −3, 〈αsG
2〉 = 0.07GeV4.

Some other notations that enter in (20)–(24) are defined as follows:

u0 =
σ2

σ1 + σ2
, σ = σ1 + σ2, ū0 = 1− u0, ū = 1− u, (45)

φ[u] =

∫ 1

u0

φ(u)
1

u
du , φ[ū] =

∫ 1

u0

φ(ū)
1

u
du ,

T [α1] =

∫ ū0

0

T (α1, u0, ū0 − α1) dα1 ,

T [α2] =

∫ ū0

0

T (u0, α2, ū0 − α2) dα2 . (46)
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