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Abstract

In this paper, we study the productions of the newly detected states DsJ(3040) and DJ(3000)

observed by BABAR Collaboration and LHCb Collaboration. We assume these states to be the

Ds(2P ) andD(2P ) states with the quantum number JP = 1+ in our work. The results of improved

Bethe-Salpeter method indicate that the semi-leptonic decays via Bs and B into DsJ(3040) and

DJ(3000) have considerable branching ratios, for example, Br(B
0
s → D+

sJ(3040)e
−νe)=5.79×10−4,

Br(B
0 → D+

J (3000)e
−νe)=2.63× 10−4, which shows that these semi-leptonic decays can be acces-

sible in experiments.
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I. INTRODUCTION

The studys of charmed and charmed-strange mesons have made great progress in re-

cent years, which intrigues great deal of interests in revealing their properties. More

and more new resonances have been observed in experiments. For example, in charmed-

strange family, D∗
s1(2700)

± was reported by Belle Collaboration through the cascaded decay

B+ → D
0
Ds1 → D

0
D0K+ and identified as a 1− assignment [1], and D∗

sJ(2860)
± was dis-

covered by BABAR Collaboration in DsJ(2860) → D0K+, D+K0
s [2], which is very likely

to be 3− state. In charmed family, D(2550), D(2600), D(2750), D(2760) were observed by

BaBar Collaboration with analysis of helicity distribution [3]. (D(2550), D(2600)) are tenta-

tively identified as 2S doublet (0−, 1−) while D(2750) and D(2760) are 1D doublet (2−, 3−)

[4]. Recently, two new resonances have been detected experimentally with masses around

3000 MeV, DsJ(3040)
+ was observed in the D∗K invariant mass spectrum in inclusive e+e−

collision by BABAR [5], which is a good candidate as the radial excitation of Ds1(2460)
+

[6]. In D+π− and D0π+ mass spectra, DJ(3000)
0 was observed by LHCb Collaboration [7],

which could be interpreted as the radial excitation of D1(2430)
0, and their masses and full

widths are [5, 7]

mDsJ (3040)+ =
(

3044± 8+30
−5

)

MeV,

ΓDsJ (3040)+ =
(

239± 35+46
−42

)

MeV,

mDJ (3000)0 = (2971.8± 8.7)MeV,

ΓDJ (3000)0 = (188.1± 44.8)MeV.

(1)

Regarding to the topic of radial excited states of Ds and D mesons, several works have

been done about their mass spectra and strong decays [8–11]. One thing drawing our

attention is that no other heavy-light 2P state has been confirmed by experiment except

charmonium and bottomonium, which means the study of charmed and charmed-strange

2P states will enlarge our knowledge of bound states and deepen the understanding of

nonperturbative QCD.

We notice that DsJ(3040) and DJ(3000), assumed to be radial excitation of Ds1(2460)

and D1(2430) in recent studies, can be produced via the semileptonic decays of Bs and B,

which are different from the observed production processes. Previous studies show that semi-

leptonic decays could be a good platform to produce charmed and charmed-strange mesons,

for instance, the process of Bs → Ds1(2460)lνl has been calculated through relativistic quark

model based on the quasipotential approach [12], three point QCD sum rule methods [13],
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QCD sum rules under HQET [14], constituent quark meson model [15], and instantaneous

Bethe-Salpeter method [16]. The same order 10−3 of the results in various models indicates

that semi-leptonic decays have considerable branching ratios. In addition, the study of semi-

leptonic decay provide an extra source of information for the determination of CKM matrix

elements and the relativistic quark dynamics inside heavy-light mesons. In this paper, we

explore the production of DsJ(3040) and DJ(3000) by the improved B-S(Bethe-Salpeter)

method, and give the results of form factors as well as branching ratios.

The rest of this paper is organized in the following arrangements. In section 2 we deduce

the formulation of semi-leptonic decay. The hadronic matrix elements of production are

given in section 3, numerical results and discussions are presented in section 4.

II. THE FORMULATIONS OF SEMI-LEPTONIC DECAY

We take B
0

s → D+
sJ(3040)l

−ν l as an example to illustrate this type of process. The

feynman diagram of this semi-leptonic decay is drawn in figure 1.

FIG. 1. Feynman diagram of semi-leptonic decay B
0
s → D+

s (2P )l−νl

The amplitude of B
0

s → D+
sJ(3040)l

−ν l is [16]

T =
GF√
2
Vcbu(pl)γ

ξ(1− γ5)ν(pνl)
〈

D+
sJ(3040)(Pf)|Jξ|B

0

s(P )
〉

, (2)

where Vcb is the CKM matrix element, GF is the fermi constant, Jξ = Vξ −Aξ is the charged

weak current, in which Vξ = cγξb, Aξ = cγξγ5b, P and Pf are the momenta of the initial

meson B
0

s and final meson D+
sJ(3040) respectively. Thus the square of the amplitude is:

|T |2 = G2
F

2
|Vbc|2lξξ

′

hξξ′, (3)
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where the leptonic tensor could be simplified as:

lξξ
′

= 8
(

pξνlp
ξ′

l + pξl p
ξ′

vl
− pvlplg

ξξ′ + iǫξξ
′αβp1αp2β

)

, (4)

and hadronic tensor is defined as:

hξξ′ =
〈

B
0

s(P )|J†
ξ |D+

sJ(3040)(Pf)
〉〈

D+
sJ(3040)(Pf)|Jξ′|B

0

s(P )
〉

, (5)

which can be described as form factors. Explicit forms are present in next subsection.

III. HADRONIC MATRIX ELEMENT OF SEMI-LEPTONIC DECAY

The calculation of hadronic matrix element is model-dependent. In this paper, we deter-

mine the hadronic matrix element through the instantaneous Bethe-Salpeter method with

Mandelstam formalism. As a relativistic quark model, the instantaneous Bethe-Salpeter

method has been applied in many transitions among heavy-light mesons. More details

about instantaneous Bethe-Salpeter equation are given in Appendix A.

Regarding to the classification of heavy-light meson, the heavy-light mesons can be clas-

sified in doublets based on the total angular momentum of the light quark sl. We can

categorize the heavy mesons into several doublets, for example, the S doublet is (0+, 1+)

with sl =
1
2
, and the T doublet is (1+, 2+) with sl =

3
2
, thus the 1+ states can be labeled as

P
1/2
1 and P

3/2
1 . But in our method, we solved the Salpeter equation and obtained the wave

functions of the 3P1 and
1P1 states, whose forms are given in Appendix B, then the physical

states are mixtures of the 3P1 and 1P1:
∣

∣

∣

∣

3

2

〉

= cos θ
∣

∣

1P1

〉

+ sin θ
∣

∣

3P1

〉

,

∣

∣

∣

∣

1

2

〉

= −sin θ
∣

∣

1P1

〉

+ cos θ
∣

∣

3P1

〉

.

(6)

In the heavy quark limit, which is mQ → ∞, the mixing angle θ ≈ 35.3◦ [17]. DsJ(3040)

is assumed to be the radial excitation of Ds1(2460) in this paper, which is P
1/2
1 state. The

partner has not been discovered yet, which is correspondent to P
3/2
1 state. By the B-S

method with the instantaneous approach, the hadronic matrix element can be written as

the overlapping integral over the initial and final B-S wave functions [16]:
〈

D+
sJ (Pf)

(

1P1

)

|Jξ|B
0

s (P )
〉

= i

∫

d4q

(2π)4
Tr
[

χDsJ
(Pf , P, q1)(α1 /P + /q −ms)γξ(1− γ5)χB0

s
(P, q)

]

=

∫

d~q

(2π)3
Tr

[

ϕ++
1+

(

1P1

)

(~q1) γξ (1− γ5)ϕ
++
0− (~q)

/P

M

]

= ǫµ

(

t1PξP
µ + t2PfξP

µ + t3g
µ

ξ + t4ǫ
PP1µ

ξ

)

, (7)
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〈

D+
sJ(Pf)

(

3P1

)

|Jξ|B
0

s(P )
〉

=

∫

d~q

(2π)3
Tr

[

ϕ++
1+

(

3P1

)

(~q1) γξ (1− γ5)ϕ
++
0− (~q)

/P

M

]

= ǫµ

(

t5PξP
µ + t6PfξP

µ + t7g
µ

ξ + t8ǫ
PP1µ

ξ

)

, (8)

where ~q and ~q1 are relative three-momentum between the quark and anti-quark for initial

state and final state. t1 to t8 are the form factors, which are given in Appendix C.

The wave functions we adopt above are for 1P1 and 3P1 states. Due to the mixture of

physical states, the form factors for P 1/2 and P 3/2 states are given as:

xi+4 = ti cos θ + ti+4 sin θ,

xi = −ti sin θ + ti+4 cos θ,
(9)

where i = 1, 2, 3, 4.

Another thing we should notice is that the masses of 1P1 and
3P1 are different from P 1/2

and P 3/2. There is also a mixture between them and the relation is given as [18]:

m2
1P1

= m2
1

2

sin2 θ +m2
3

2

cos2 θ,

m2
3P1

= m2
1

2

cos2 θ +m2
3

2

sin2 θ.
(10)

By giving the form factors, the width of semi-leptonic decay is

Γ =
G2

FV
2
cbM

3

32π3

∫

pl
El

d~pl

∫

pf
Ef

d~pf

{

2α
( y

M2

)

+ β++

[

4

(

2x

(

1−
M2

f

M2
+ y

)

− 4x2 − y

)

+
m2

l

M2

(

8x+ 4
M2

f

M2
− 3y − m2

l

M2

)]

+ (β± + β∓)
m2

l

M2

(

2− 4x+ y − 2
M2

f

M2

)

+β−−
m2

l

M2

(

y − m2
l

M2

)

+ 2γ

[

y

(

1− 4x+ y −
M2

f

M2

)

+
M2

l

M2

(

1 + y −
M2

f

M2

)]}

,

(11)

where Mf and M are masses of the final and initial meson respectively, ml is the mass of

the corresponding lepton. α, β±± and γ are coefficients as functions of the form factors:
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x =
El

M
, y =

(p− pf)
2

M2
,

α = x23 + x24M
2p2f ,

β++ = p2f
(x1 + x2)

2

4M2
f

+

(

2MEf −M2 −M2
f

)

x24
4

+
x23
4M2

f

+

(

ME

M2
f

− 1

)

(x1 + x2) x3
2M

,

β+− = β−+ = p2f
(x1 + x2)(x1 − x2)

4M2
f

+

(

M2 −M2
f

)

4
−
(

x1 +
x2EM

M2
f

)

x3
2M

− x23
4M2

f

,

β−− = p2f
(x1 − x2)

2

4M2
f

−
(

2ME +M2
f +M2

)

x24
4

+
x23
4M2

f

+

(

1 +
ME

M2
f

)

(x2 − x1)x3
2M

,

γ = −x3x4.

(12)

IV. NUMERICAL RESULTS AND ANALYSIS

A. form factors

In our model, the input parameters of calculation are chosen as following: λ =0.21 GeV2,

ΛQCD=0.27 GeV, a=e=2.71, α=0.06 GeV, mb=4.96 GeV, ms=0.50 GeV, mc=1.62 GeV,

md=0.311 GeV, which are the best results to fit the mass spectrum of related mesons [19].

For semi-leptonic decay, we also need CKM matrix elements: Vbc=0.0406, and the lifetime

of initial meson τBs0
= 1.469× 10−12 s, the masses of mB0=5279.58 MeV and mB0

s
=5366.77

MeV are taken from PDG [20]. We notice that the partners of DsJ(3040) and DJ(3000)

are not discovered yet, the masses required in our calculation are taken as 3022.3 MeV and

2913.8 MeV for Ds(2P
3/2
1 ) and D(2P

3/2
1 ) respectively. Varying all the input parameters

simultaneously within ± 5% of the central values, we obtain the uncertainties of branching

ratios.

To show the numerical results of wave functions explicitly, we plot the 1P1 and
3P1 state

for Ds(2P ) meson in figure 2. We can see that 1P1 and 3P1 states share the same shape.

As an example, The form factors x1 to x4 are shown in figure 3, where t = (P − Pf)
2 =

M2 +M2
f − 2MEf and tm is the maximum of t.
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FIG. 2. The wavefunctions of 1P1 and 3P1 for Ds(2P ) meson
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FIG. 3. The form factors of B
0
s → DsJ(3040)

+e−νe

B. branching ratios

for DsJ(3040)

In table I, we show the branching ratios of semi-leptonic production of Ds(2P )
+. Gen-

erally, the cases of e and µ are 2 orders of magnitude larger than the case of τ due to the

phase space. We also notice that the branching ratios of B
0

s → D+
sJ(P

3/2
1 )l−νl are 10 times

larger than B
0

s → D+
sJ(P

1/2
1 )l−νl. Ref [21] calculate the same process via covariant light-

front quark model. The result in Ref [22] is obtained through modified harmonic-oscillator

light-front wave function (I) and light-front quark model associated within HQET (II). We

7



can see that our results are well consistent with the light-front quark model associated within

HQET but show a little discrepancy with the other two results. All these results indicate

that more theoretical researches should be done in the future.

TABLE I. Branching ratios of B
0
s → D+

s (2P )l−νl

ours [21] I [22] II [22]

B
0
s → D+

sJ(3040)e
−νe (5.79+2.1

−2.0)× 10−4 (2.49+0.4
−0.4)× 10−4 5.6× 10−4

B
0
s → D+

sJ(P
3/2
1 )e−νe (2.34+1.30

−1.04)× 10−3 (2.42+0.07
−0.14)× 10−3 1.24 × 10−3

B
0
s → D+

sJ(3040)µ
−νµ (5.77+2.15

−2.07)× 10−4 (3.5+1.1
−1.0)× 10−4 (2.46+0.4

−0.42)× 10−4 5.6× 10−4

B
0
s → D+

sJ(P
3/2
1 )µ−νµ (2.36+1.28

−1.06)× 10−3 (4.0+0.4
−0.5)× 10−3 (2.39+0.07

−0.13)× 10−3 1.24 × 10−3

B
0
s → D+

sJ(3040)τ
−ντ (4.07+1.95

−1.74)× 10−6 (9.9+4.4
−3.5)× 10−6 (5.2+0.4

−0.5)× 10−6

B
0
s → D+

sJ(P
3/2
1 )τ−ντ (3.49+2.39

−1.78)× 10−5 (9.7+0.8
−0.8)× 10−5 (0.43+0

−0.01)× 10−6

Due to the lack of data of Ds(2P ) state, as a comparison, we give the informa-

tion about 1P state with JP = 1+. The branching ratio of cascaded decay Br(B0
s →

Ds1(2536)
−µ+νµ)×Br(Ds1(2536)

− → D∗−K0
s )=(2.5± 0.7)× 10−3, and the branching ratio

of strong decay is 0.85±0.12 [20], so the branching ratio of semi-leptonic decay into 1P state

is 2.94+1.44
−1.09 × 10−3. The corresponding first radial excitation of Ds1(2536)

− is Ds1(P
3/2
1 )−,

whose production rate via semi-leptonic decay is 2.34 × 10−3 in our method [16], this may

imply that our results are reliable.

Although the production ratio of DsJ(3040) is very small in B
0

s semi-leptonic decay,

considering that the LHCb experiment will produce more than 106 Bs mesons per running

year [22], the branching ratios of B
0

s → DsJ(3040)
+e−νe around 10−4 are considerable, and

are accessible in the current Bs decay data. So the semi-leptonic approach has a promising

prospect in producing DsJ(3040).

for DJ(3000)

In table II, the results of B
0 → D+(2P )l−ν l are presented. Our results show that the

branching ratios into two doublets are of the same order of 10−4 for e and µ, 10−6 for τ .

While the results from light front quark model [22] are the same of 10−4 for 2P
1/2
1 state,
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TABLE II. Branching ratios of B
0 → D+(2P )l−νl

ours [22]

B
0 → DJ(3000)

+e−νe (2.63+0.33
−0.68)× 10−4 (2.57+0.39

−0.44)× 10−4

B
0 → D(2P

3/2
1 )+e−νe (2.62+0.64

−0.50)× 10−4 (2.72+0.02
−0.11)× 10−3

B
0 → DJ(3000)

+µ−νµ (2.38+0.60
−0.42)× 10−4 (2.54+0.38

−0.44)× 10−4

B
0 → D(2P

3/2
1 )+µ−νµ (2.42+0.57

−0.46)× 10−4 (2.69+0.02
−0.11)× 10−3

B
0 → DJ(3000)

+τ−ντ (1.81+0.54
−0.30)× 10−6 (5.2+0.4

−0.5)× 10−6

B
0 → D(2P

3/2
1 )+τ−ντ (4.44+0.76

−0.59)× 10−6 (0.603+0
−0.02)× 10−4

but one order of magnitude smaller than ours for 2P
3/2
1 state. To give some clues for this

discrepancy, we list the results of B
0 → D+(1P )l−νl as the comparison. In table III, we

give the cascaded decay of D(1P ) states, in which the D1(2430) and D1(2420) are D(1P
1/2
1 )

and D(1P
3/2
1 ) respectively.

Considering that the strong decays of D1 state are dominant channels at around 67%

due to the isospin symmetry, one thing we should notice in table III is that for D1(1P
3/2
1 )

and D1(1P
1/2
1 ), the branching ratios of semi-leptonic productions are almost the same of

4.5× 10−3 in experiment. Our results are consistent with this data. If the behaviors of 2P

states are similar to 1P states, our results seem to be more reasonable.

TABLE III. Cascaded decay of B
0
into D−(1P )

ours exp[20]

Br(B
0 → D1(2430)

−l+νl)× Br(D1(2430)
− → D

∗0
π−) 3.92+0.30

−0.39 × 10−3 (3.1 ± 0.9)× 10−3

Br(B
0 → D1(2420)

−l+νl)× Br(D1(2420)
− → D

∗0
π−) 5.51+0.07

−0.14 × 10−3 (2.80 ± 0.28) × 10−3

Similar with B0
s → D+

s (2P )l
−νl, the branching ratios are large enough to be observed in

experiment, so we suggest that the LHCb and Belle II Collaboration carry out the study of

semi-leptonic decays above.

The possible sources of the uncertainty on the results may come from these following

factors: (1) The spin partners of DJ(3000) and DsJ(3040) are not detected experimentally

yet. In our work, the masses of D(2P
3/2
1 ) and Ds(2P

3/2
1 ) are assumed to be around 3000

MeV and 2913 MeV. It is one of the important sources of uncertainty. (2) P 1/2 and P 3/2

states are mixture of 1P1 and 3P1 states. The mixing equation we use in this paper is

9



determined by the mixing angle, and this angle we use is derived from heavy-quark limit,

which deviates from the realistic mixing angle, especially for the higher radial excitations

[23]. That is another possible way for the uncertainty to be increased. These sources show

that there are a lot of researches to be done in the future to reduce the uncertainty and

make the prediction more precise.

for 3P states

Although no 3P state of Ds or D meson has been observed in experiment yet, we give

a very preliminary prediction in our method. The masses we used are 3421 MeV and 3427

MeV for Ds(3
1P1) and Ds(3

3P1) states, 3215 MeV and 3220 MeV for D(31P1) and D(33P1)

states, which are predicted in our model. The mixing angles θ ≈ 35.3◦. The results are

given in table IV.

TABLE IV. Branching ratios of 3P states of Ds and D meson

Br Br

B
0
s → Ds(3P

1/2
1 )+e−νe (7.24+2.65

−2.18)× 10−6 B
0 → D(3P

1/2
1 )+e−νe (2.35+0.29

−0.28)× 10−6

B
0
s → Ds(3P

3/2
1 )+e−νe (2.70+0.40

−0.31)× 10−4 B
0 → D(3P

3/2
1 )+e−νe (3.48+0.15

−0.12)× 10−4

B
0
s → Ds(3P

1/2
1 )+µ−νµ (7.32+2.69

−2.21)× 10−6 B
0 → D(3P

1/2
1 )+µ−νµ (2.36+0.29

−0.28)× 10−6

B
0
s → Ds(3P

3/2
1 )+µ−νµ (2.68+0.40

−0.31)× 10−4 B
0 → D(3P

3/2
1 )+µ−νµ (3.47+0.14

−0.12)× 10−4

B
0
s → Ds(3P

1/2
1 )+τ−ντ (7.36+2.33

−2.09)× 10−10 B
0 → D(3P

1/2
1 )+τ−ντ (7.35+0.85

−0.87)× 10−9

B
0
s → Ds(3P

3/2
1 )+τ−ντ (1.62+0.18

−0.14)× 10−7 B
0 → D(3P

3/2
1 )+τ−ντ (1.17+0.06

−0.05)× 10−6

In table IV, the branching ratios of 3P states are much lower than those of 2P states,

which presents challenges in current experiment. In addition, we see an interesting result

that two mixing 3P states of D meson show discrepancy in semi-leptonic decay of B
0
, which

needs more data and researches to give a more precise result.

V. SUMMARY

The accumulative data of charmed and charmed-strange mesons are becoming more and

more abundant with the running of colliders. The study of higher radial excitation in
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charmed and charmed-strange families is becoming a intriguing field. Two of the newly de-

tected states are DsJ(3040)
+ and DJ(3000)

0, which are very likely to be Ds(2P ) and D(2P )

states. The productions of these states in experiment are the inclusive e+e− interaction and

Dπ channel.

Under the instantaneous Bethe-Salpeter framework, we have studied the branching ratios

of semi-leptonic decays into DsJ(3040) and DJ(3000). Our results indicate that the semilep-

tonic production from Bs and B can be a good platform to produce considerable amount of

DsJ(3040) and DJ(3000), so we urge that relevant experiment groups could focus on these

channels. Those phenomenological investigations are important to further experimentally

study of 2P state of Ds and D meson.
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APPENDIX A. INSTANTANEOUS BETHE-SALPETER EQUATION

We define the B-S wavefunction as:

χP (q) =

∫

d4x exp(iq · x)
〈

0|T [ψ1(α2x)ψ2(−α1x)]|P, β
〉

, (A.1)

where χP (q) is the B-S wavefunction of the relevant bound state. β is the index other than

momentum, α1 =
m1

m1+m2
, α2 =

m2

m1+m2
, q = α2p1−α1p2, p1, p2 and m1, m2 are the momenta

and constituent masses of the quark and anti-quark, respectively. P is the momentum of

the initial state while β is the quantum index to identify the state other than momentum.

qP denotes q·P√
P 2

and q⊥ = qP⊥
= q − q·P

P 2 P .

The B-S equation in momentum space can be written as:

(

/p1 −m1

)

χP (q)
(

/p2 +m2

)

= i

∫

d4k

(2π)4
V (P, k, q)χP (k). (A.2)

In the instantaneous approximation, the integral kernel takes a simple form:

V (P, k, q) = V (|k − q|). (A.3)

11



Three-dimensional wavefunction can be written as:

ϕ(qµp⊥) = i

∫

dqp
2π

χP (q). (A.4)

Thus, the B-S equation can be rewritten as:

χP (q) = S1(p1)η(qP⊥
)S2(p2), (A.5)

where

η(qPµ
⊥
) =

∫

d3kP⊥

(2π)3
V (kµP⊥

, qµP⊥
)ϕ(kµP⊥

).

The full Salpeter equation takes the form:

(M − ω1p − ω2p)ϕ
++(qP⊥

) = Λ+
1 (P1p⊥)η(qP⊥

)Λ+
2 (P2p⊥),

(M + ω1p + ω2p)ϕ
−−(qP⊥

) = −Λ−
1 (P1p⊥)η(qP⊥

)Λ−
2 (P2p⊥),

ϕ+−(qP⊥
) = 0,

ϕ−+(qP⊥
) = 0,

ϕ±±(qP⊥
) = Λ±

1 (qP⊥
)
/P

M
ϕ(qP⊥

)
/P

M
Λ±

2 (qP⊥
).

(A.6)

In order to do the numerical integral, we need the explicit form of integral kernel. In

this work, we choose the Cornell potential, which was widely used in this interaction. The

Cornell potential is the sum of a linear scalar interaction and a vector interaction.

V (q) = Vs(q) + Vv(q)γ
0 ⊗ γ0,

Vs(q) = −
(

λ

α
+ V0

)

δ3(q) +
λ

π2

1

(q2 + α2)2
,

Vv(q) = − 2

3π2

αs(q)

q2 + α2
,

αs(q) =
12π

33− 2nf

1

log(a+ q2/Λ2
QCD)

.

(A.7)

where αs(q) is the running coupling constant, λ is the string constant, a and α are phe-

nomenal parameters we introduce to avoid divergences when q2 ∼ Λ2
QCD and q2 ∼ 0, V0 is

a constant in our model to fit the data.

APPENDIX B. WAVEFUNCTIONS FOR DIFFERENT STATES

In this section, we introduce the wavefunctions for different states.
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B.1 Wave function for 1S0

The general form of 1S0 state:

ϕ(0−)(~q) =M

[

/P

M
f1(~q) + f2(~q) +

/q⊥
M
f3(~q) +

/P/q⊥
M2

f4(~q)

]

γ5. (B.1.1)

Due to the constrains equations in full Salpeter equation, we have the condition ϕ+−
0− =ϕ−+

0− =0,

Thus

f3(~q) =
f2(~q)M(ω2 − ω1)

m1ω2 +m2ω1

, f4(~q) = −f1(~q)M(ω2 + ω1)

m1ω2 +m2ω1

. (B.1.2)

Therefore, there are only two independent wavefunctions f1(~q) and f2(~q). The relativistic

positive wavefunction could be written as

ϕ++(1S0)(~q) = a1

[

a2 /P

M
+
a3/q⊥
M

+
a4/q⊥

/P

M2
+ 1

]

γ5, (B.1.3)

where

a1 =
M

2

(

f1(~q) + f2(~q)
ω1 + ω2

m1 +m2

)

, a2 =
m1 +m2

ω1 + ω2

,

a3 = −M ω1 − ω2

m1ω2 +m2ω1
, a4 =M

m1 +m2

m1ω2 +m2ω1
.

B.2 Wave function for 1P1

The general form of 1P1 state:

ϕ(1P1)(~qf ) = qf⊥ · ε
[

g1(~qf) + g2(~qf)
Pf

Mf
+ g3(~qf )/qf⊥ +

/P f/qf⊥
M2

f

g4(~qf)

]

γ5. (B.2.1)

Constrains equations result in

g3(~qf ) = − ω′
1 − ω′

2

m′
1ω

′
2 +m′

2ω
′
1

g1(~qf), g4(~qf) = − (ω′
1 + ω′

2)Mf

m′
1ω

′
2 +m′

2ω
′
1

g2(~qf). (B.2.2)

Thus the relativistic wavefunction is

ϕ++(1P1)(~qf) =
qf⊥ · ε

2

[

g1(~qf ) +
ω′
1 + ω′

2

m′
1 +m′

2

g2(~qf)

] [

1 +
m′

1 +m′
2

ω′
1 + ω′

2

/P f

Mf

− ω′
1 − ω′

2

m′
1ω

′
2 +m′

2ω
′
1
/qf⊥

+
m′

1 +m′
2

m′
1ω

′
2 +m′

2ω
′
1

/qf⊥
/P f

Mf

]

γ5.

(B.2.3)
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The Dirac conjugate form is:

ϕ++(1P1)(~qf ) = −ε · qf⊥
2

a5γ
5

(

1 + a7
/P f

M f
+ a8/qf⊥ + a9

/P f/qf⊥
M f

)

, (B.2.4)

where

a5 = g1(~qf) + g2(~qf)
w′

1 + w′
2

m′
1 +m′

2

, a7 =
m′

1 +m′
2

w′
1 + w′

2

,

a8 = − w′
1 + w′

2

m′
1w

′
2 +m′

2w
′
1

, a9 =
m′

1 +m′
2

m′
1w

′
2 +m′

2w
′
1

.

B.3 Wave function for 3P1

In the same way, we have the wavefunction of 3P1 state:

ϕ++(3P1)(~qf) =
i

2Mf

[

h1(~qf ) +
ω′
1 + ω′

2

m′
1 +m′

2

h2(~qf )

] [

1 +
m′

1 +m′
2

ω′
1 + ω′

2

/P f

M f
− ω′

1 − ω′
2

m′
1ω

′
2 +m′

2ω
′
1
/qf⊥

+
m′

1 +m′
2

m′
1ω

′
2 +m′

2ω
′
1

/qf⊥
/P f

Mf
iǫνλρσγ

νP λ
f q

ρ
f⊥ǫ

σ

]

,

(B.3.1)

and it’s Dirac conjugate

ϕ++(3P1)(~qf) = − i

2Mf

a6ǫνλρσγ
νP λ

f q
ρ
f⊥ε

σ

(

1 + a7
/P f

Mf

+ a8/qf⊥ + a9
/P f/qf⊥
Mf

)

, (B.3.2)

where

a6 = h1(~qf) + h2(~qf)
w′

1 + w′
2

m′
1 +m′

2

.

APPENDIX C. THE FORM FACTOR

In this section, we present the form factors in semi-leptonic decay of B0
s into Ds(2P )

state. For the process of DJ(2P ), the form factors are the same.
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t1 =
a1a5

2M2M2
f1

(2α2Ef1(E
2
f1a9M + a2Ef1a8MMf1 + a4Ef1a9Pf1 · q + a3a8Mf1Pf1 · q) + 2αEf1

×(−MMf1 + 2Ef1M(Ef1a9 + a2a8Mf1)X + a4Ef1(Mf1 + 2a9Pf1 · q)X + a3(a7(Pf1 · q + E2
f1X)

+a8Mf1(q
2
⊥ + Pf1 · q))) + Ef1(2(−MMf1 + a3a7Pf1 · q + a3a8Mf1q

2
⊥)X −Ef1(a3Ef1a7

+Ef1a9M + a4Mf1 + a2a8MMf1 + a4a9Pf1 · q)q2⊥Y + (a3Ef1a7 + Ef1a9M + a4Mf1

+a2a8MMf1 + a4a9Pf1 · q)q2⊥Z),

t2 =
a1a5

2M2M2
f1

Ef1(−2αM(αEf1a9 + a2(a7 + αa8Mf1)) + 2αa4a9q
2
⊥ − 2(a2a7M + α(a3Ef1a7

+2Ef1a9M + a4Mf1 + 2a2a8MMf1 + a4a9Pf1 · q)− a4a9q
2
⊥)X + (a3Ef1a7 + Ef1a9M + a4Mf1

+a2a8MMf1 + a4a9Pf1 · q)q2⊥Y ),

t3 =−a1a5(a3Ef1a7 + Ef1a9M + a4Mf1 + a2a8MMf1 + a4a9Pf1 · q)q2⊥Z
2MMf1

,

t4 =
ia1a5(a9(αa4Ef1 +M) + a3(a7 + αa8Mf1))q

2
⊥Z

2M2Mf1
,

t5 =
a1a6

2M2M2
f2

(2α2Ef2(a2Ef2a9MM2
f2 + a8MM3

f2 + CE2
f2a9Pf1 · q + a4Ef2a8Mf2Pf1 · q + Ef2

(Ef2 −Mf2)(Ef2 +Mf2)(a3Ef2a9 + a4a8Mf2)X) + Ef2(2(a7MM2
f2 + a8MMf2Pf1 · q

−a3Pf1 · q(Mf2 + a9Pf1 · q) + a3a9M
2
f2q

2
⊥)X + Ef2(Mf2(a3Ef2 + a4a7Mf2 −M(Ef2a8 + a2a9Mf2))

+a3Ef2a9Pf1 · q)q2⊥Y )− (Mf2(a3Ef2 + a4a7Mf2 −M(Ef2a8 + a2a9Mf2)) + a3Ef2a9Pf1 · q)

q2⊥Z + α(Ef2(2(−a3Mf2Pf1 · q + a8MMf2Pf1 · q − a3a9(Pf1 · q)2 + a3a9M
2
f2q

2
⊥

+Mf2(−a3E2
f2 + E2

f2a8M + 2a2Ef2a9MMf2 + a8MM2
f2 + a4Ef2a8Pf1 · q)X

+a7M
2
f2(M − a4Ef2X)) + Ef2(−Ef2 +Mf2)(Ef2 +Mf2)(a3Ef2a9 + a4a8Mf2)q

2
⊥Y )

+(Ef2 −Mf2)(Ef2 +Mf2)(a3Ef2a9 + a4a8Mf2)q
2
⊥Z)),

t6 =
a1a6

2M2M2
f2

(−2α2E2
f2M(a2Ef2a9 + a8Mf2)− 2a3Mf2q

2
⊥ + 2M(a7Pf2 · q + a8Mf2q

2
⊥)

−2(a7(MM2
f2 + a4Ef2Pf2 · q)− Pf2 · q(a2Ef2a9M + a3Mf2 − a8MMf2 + a3a9Pf2 · q)

+a3a9M
2
f2q

2
⊥)X + 2α(E3

f2(a4a7 − a2a9M)X + a8MMf2(Pf2 · q −M2
f2X)− E2

f2(a7M + (−a3Mf2

+a8MMf2 + a3a9Pf2 · q)X) + Ef2(a2a9M(Pf2 · q −M2
f2X) + a4a8Mf2(q

2
⊥ − 2Pf2 · qX)))

+αEf2(Ef2 −Mf2)(Ef2 +Mf2)(a3Ef2a9 + a4a8Mf2)q
2
⊥Y − Ef2(Mf2(a3Ef2 + a4FMf2

−M(Ef2a8 + a2a9Mf2)) + a3Ef2a9Pf2 · q)q2⊥Y ),

t7 =
a1a6

2MM2
f2

(2α2Ef2M(Ef2 −Mf2)(Ef2 +Mf2)(a2Ef2a9 + a8Mf2)− (a4a7 − a2a9M)(2(Pf2 · q)2

−M2
f2q

2
⊥(2 + Z)) + Ef2(−2a7MPf2 · q + q2⊥(−a8MMf2(2 + Z) + a3(a9Pf2 · qZ

+Mf2(2 + Z)))) + α(E2
f2(2a7M − a3a9q

2
⊥Z) + Ef2Mf2(−2a7MMf2 + 2a3Pf2 · q − 4a8MPf2 · q
15



+a3a9Mf2q
2
⊥Z) + a4a8Mf2(−2(Pf2 · q)2 +M2

f2q
2
⊥(2 + Z)) + E2

f2(−4a2a9MPf2 · q

+a4(2a7Pf2 · q − a8Mf2q
2
⊥(2 + Z))))),

t8 =− a1a6
2M2M2

f2

i(2Ef2(a4a7Pf2 · q +Mf2(a2M + a4a8(αPf2 · q + q2⊥)) + Ef2(a7M + a3a9(αPf2 · q

+q2⊥)))(α +X) + (a8MMf2 + αEf2(a3Ef2a9 + a4a8Mf2)− a3(Mf2 + a9Pf2 · q))q2⊥Z),

where Ef1 and Ef2 are the energies of 1P1 and 3P1 states, Mf1 and Mf2 are the masses of

1P1 and 3P1 states. X = q cos θ

|~Pf |
,Y = −1+3 cos2 θ

|~Pf |
,Z = −1 + cos2 θ.
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