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Abstract

We perform the covariant canonical quantization of the CPT- and Lorentz-symmetry-violating pho-

ton sector of the minimal Standard-Model Extension, which contains a general (timelike, lightlike,

or spacelike) fixed background tensor kµAF . Well-known stability issues, arising from complex-

valued energy states, are solved by introducing a small photon mass, orders of magnitude below

current experimental bounds. We explicitly construct a covariant basis of polarization vectors, in

which the photon field can be expanded. We proceed to derive the Feynman propagator and show

that the theory is microcausal. Despite the occurrence of negative energies and vacuum-Cherenkov

radiation, we do not find any runaway stability issues, because the energy remains bounded from

below. An important observation is that the ordering of the roots of the dispersion relations is

the same in any observer frame, which allows for a frame-independent condition that selects the

correct branch of the dispersion relation. This turns out to be critical for the consistency of the

quantization. To our knowledge, this is the first system for which quantization has consistently

been performed, in spite of the fact that the theory contains negative energies in some observer

frames.

PACS numbers: 11.30.Cp, 11.30.Er, 12.60.-i, 41.20.Jb
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I. INTRODUCTION

The covariance of physical laws under boosts and rotations is at the basis of the stan-

dard model (SM) of particle physics and general relativity [1]. This Lorentz symmetry is

closely related to the invariance under the combined action of charge conjugation, parity

inversion, and time reversal, i.e. CPT symmetry [2, 3]. Over the last few decades the inter-

est in the possibility of breaking Lorentz and CPT symmetry has been growing. This rise

is motivated by theories that attempt to unify general relativity with quantum mechanics

and that exhibit mechanisms of Lorentz and CPT breaking [4–6]. The detection of a corre-

sponding experimental signal would provide profound new physical insights and could point

us to the correct theory of quantum gravity.

In this context, the Standard-Model Extension (SME) has proven to be a tool of great

value. It is a framework that incorporates Lorentz- and CPT-violating effects into the SM [7],

gravity [8], and for matter-gravity couplings [9], by extending the Lagrangian to include all

possible Lorentz- and CPT-violating operators consisting of the conventional fields. Because

of its generality it allows for broad experimental searches [10] as well as general theoretical

considerations of Lorentz- and CPT-violating effects.

Of particular interest is the pure-gauge matter sector of the minimal SME, which

includes only superficially renormalizable operators. Here, Lorentz violation (LV) can be

introduced, either while preserving CPT, or while violating it. In this paper we consider the

Chern-Simons-like operator of mass dimension three that causes both CPT- and Lorentz-

symmetry breaking, parametrized by a fixed background vector kµAF [11]. Although bounded

observationally to minute levels [10, 11], this term has received intensive attention in the

literature, as it arises as a radiative correction from the fermion sector in the presence of

a LV axial-vector term [12]. It is thus important to establish both in the fermion and the

photon sector, whether such effects impede a rigorous quantization, and if not, in what way

the standard procedures have to be modified. While the quantization of the fermion sector

was implemented successfully in the past [13], the situation is more ambiguous in the photon

sector. Furthermore, while CPT-violating effects are strongly bounded in the photon sector,

this is not at all the case in the gluon and weak gauge-boson sector [10]. Although we

only consider the abelian case here, our analysis may lead to important implications for LV

non-abelian theories as well.
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In this paper, we thus perform the covariant quantization of Maxwell-Chern-Simons

theory. Covariant quantization is extremely useful in performing quantum-field-theoretic

calculations, as the formulas retain explicit covariance throughout the computational pro-

cedure. In a previous work, it was discussed how this can be implemented for the CPT-

preserving case [14, 15]. In Ref. [16] the quantization for purely timelike k0
AF was discussed

and applied to calculate vacuum-Cherenkov-radiation rates, whereas in Ref. [17, 18], atten-

tion was restricted to the (massless) case of purely spacelike kµAF in an axial gauge. Although

some of the present results were already presented in Ref. [16], the approach we take here is

more general and rigorous, while we consider spacelike, lightlike, as well as timelike values

of kµAF in a general class of covariant gauges.

As in Ref. [14], the introduction of a mass regulator turns out to be necessary for a

consistent quantization. This is phenomenologically feasible, due to the fact that ultra-tight

observational bounds on kµAF [10] allow the choice of a photon mass sufficiently large to

fix quantization problems, while simultaneously agreeing with current experimental bounds.

Furthermore, the introduction of a photon mass is often used to regulate infrared divergences

that turn up in loop diagrams in both conventional calculations, and in the context of LV

effects [19]. We note that the introduction of a photon mass in the context of the SME has

been studied in the presence of both CPT-preserving and CPT-violating terms at the level

of the equations of motion and the propagator in Ref. [20].

The outline of this paper is as follows. In section II we introduce the Lorentz- and CPT-

violating model, including a nonzero photon mass that is introduced through the Stückelberg

mechanism. Subsequently, we find a covariant basis of normalized and orthogonal eigenvec-

tors of the equation-of-motion operator in section III. These polarization vectors satisfy

modified orthogonality relations when fixed to be on shell. In section IV we analyze the

equations of motions in momentum space, and show that for the case of timelike kµAF the

introduction of a nonzero mass parameter avoids a region in three-momentum space that

has no corresonding real energy solutions. We also find a condition on kµAF that guarantees

energy positivity. Energy positivity and its connection to stability is further discussed in

section V, where we find a way to distinguish different branches of the dispersion relation

in any observer frame. We derive a relation between the momentum-space propagator and

the polarization vectors in section VI. The field operator is then quantized in terms of cre-

ation and annihilation operators in section VII. Subsequently, the commutator of fields at
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spacelike separation is worked out in section VIII, and it is shown that the theory satis-

fies microcausality. In section IX the Feynman propagator is derived and in section X we

analyze the space of states in the context of BRST quantization. Finally we present our

conclusions in section XI. Some of the more detailed analyses of the dispersion relation, the

photon group velocity, and the energy lower bound are relegated to the appendices.

II. CPT-VIOLATING PHOTON SECTOR OF THE SME

CPT violation in the photon sector of the power-counting renormalizable part of the

SME is given by the Lagrangian

LA,kAF = −1

4
FµνF

µν +
1

2
kκAF εκλµνA

λF µν , (1)

where kµAF is an arbitrary real-valued and fixed background vector with the dimensions of

mass. The CPT-violating term in Eq. (1) is gauge invariant up to total derivative terms,

which, in the absence of topological obstructions, do not influence the physics.

The theory in Eq. (1) breaks so-called particle Lorentz symmetry, while it is invari-

ant under observer Lorentz transformations [7]. Observer Lorentz transformations are just

transformations of the coordinates of the reference frame of the observer and thus transform

both kµAF and the fields. Particle Lorentz transformations, on the other hand, affect only

the particle fields, but leave the tensor kµAF unchanged. This corresponds to changing the

orientation and/or velocity of the experimental system in absolute space.

In this paper, we will consider the cases of spacelike, lightlike, and timelike kµAF . As is

well known [11], for timelike kµAF the dispersion relation following from (1) has a tachyonic

character: there are (small) momenta for which there are no corresponding real solutions

for the energy, signaling an unstable theory that does not permit a consistent quantization

(although proposals have been made for fermionic theories [21]).

As was noted first in [22], a way around this problem is to introduce a small mass term

for the photon through the Stückelberg mechanism [23]. The gauge-fixed photon Lagrangian

becomes

LA = −1

4
FµνF

µν +
1

2
kκAF εκλµνA

λF µν +
1

2
m2
γAµA

µ − 1

2ξ
(∂µA

µ)2 , (2)

where ξ > 0 is a gauge-fixing parameter and mγ is the small photon mass. For spacelike,

lightlike, as well as timelike values of kµAF , a nonzero photon mass is useful. In addition to
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its use as a regulator for infrared divergences [19], it allows for the introduction of so-called

concordant frames [7].

Concordant frames are observer frames in which the LV effects can be treated as small

perturbations to the Lorentz-symmetric physics. For nonzero values of kµAF , this cannot

be the case in all frames, because kµAF changes under the action observer Lorentz transfor-

mations. Therefore, the size of its components is in principle unbounded, if one allows for

arbitrary observer frames. To be compatible with experimental constraints, Earth’s rest-

frame is then presumed to be in a concordant frame. However, to say anything meaningful

about the size of the components of kµAF , we need a nonzero photon mass, since it is the only

other dimensionful parameter in Eq. (2). As mentioned in the introduction, the required

size of photon mass lies many orders of magnitude below its experimental bounds. We will

discuss this in more detail in Section IV.

III. POLARIZATION VECTORS

In momentum space, the classical equation of motion, corresponding to the Lagrangian

in Eq. (2), reads

[
(p2 −m2

γ)η
µ
ν − (1− ξ−1)pµpν − 2iεαβµν(kAF )αpβ

]
e(λ)ν(~p) ≡ Sµνe

(λ)ν(~p) = 0 , (3)

where e(λ)ν(~p) are the eigenvectors of the equation-of-motion operator Sµν . The index λ runs

over 0, 3,+,−, labeling the gauge mode, and three physical modes, respectively. Contraction

of Eq. (3) with pµ yields

(ξ−1p2 −m2
γ)(p · e(λ)) = 0, (4)

demonstrating that there is a gauge mode satisfying p2 − ξm2
γ = 0. This expression also

establishes that the physical polarization vectors, corresponding to the remaining modes,

satisfy p · e(λ) = 0. The contraction of Eq. (3) with (kAF )µ gives a similar expression that

demonstrates the fact that the physical polarization modes either obey the conventional

dispersion relation p2 = m2
γ, or the corresponding polarization vectors satisfy kAF · e(λ) = 0.

These facts are confirmed by the explicit expressions for the polarization vectors in Eq. (9)

and by the functions defining the dispersion relations in Eq. (10).

When the eigenvectors e(λ)ν(~p) satisfy Eq. (3), they are functions of the three-

momentum ~p, since p0 = p0(~p) is fixed by the dispersion relation. As shown in Refs. [14, 16],
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quantization can be carried out referring only to these on-shell polarization vectors. How-

ever, it turns out to be useful to consider e(λ)ν(p) as functions of both p0 and ~p that satisfy

Sµνe
(λ)ν(p) = Λλ(p)e

(λ)µ(p) , (5)

where Λλ(p) is the eigenvalue of Sµν belonging to the polarization mode λ. The relation

Λλ(p) = 0, (6)

can then be imposed to enforce the equation of motion. Each of the resulting dispersion

relations has two solutions, corresponding to the conventional positive and negative ener-

gies. Usually, one then uses the positive root of Λλ(p) to define the energy of the on-shell

polarization vectors. However, in Section IV we show that in the present LV case, the sign

of the roots of Λ+(p) is invariant only in concordant frames [13], i.e. frames where the

components of kµAF are small compared to the photon mass. In non-concordant frames this

sign can depend on the size and direction of ~p. We will discuss this issue in more detail in

Section IV. For now, we let Eλ(~p) denote the root of Λλ(p) that is positive in a concordant

frame. Substituting the solution p0 = Eλ(~p) in the expression for e(λ)ν(p) then gives the

relevant on-shell polarization vector that satisfies the equation of motion in Eq. (3).

We determine the explicit solutions for the polarization vectors e(λ)µ(p) of Eq. (5) by

expanding in the four basis vectors

uµ0 =
pµ

N0

, uµ1 =
εµνρσpνnρ(kAF )σ

N1

, uµ2 =
εµνρσpν(u1)ρ(kAF )σ

N2

, uµ3 =
p2kµAF − (p · kAF )pµ

N3

.

(7)

Here, the four-vector nµ is an arbitrary, observer-covariant, four-vector with at least one

component perpendicular to the subspace formed by pµ and kµAF . Note that it is generally

not possible to use only a single nµ vector to cover all of momentum space due ultimately

to the theorem that “the hair on a sphere cannot be combed”, i.e. it is not possible to

find a single, smooth, non-vanishing vector field on a sphere. This problem exists even in

the conventional case in which one tries to construct a set of polarization vectors for the

transverse, massless photons. There is always at least one direction in momentum space

for which the polarization vectors must be non-smooth. This geometrical impediment to

constructing a single, global frame field forces one to choose another external vector mµ in

a different direction than nµ to define the polarization vectors in a small cone.
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The Ni in Eq. (7) are normalization factors, that we choose to be real. The basis

vectors are orthogonal in the sense that ui · uj = 0 if i 6= j. However, u0 and u3 become

lightlike if p2 = 0 while u2, and u3 become lightlike if (p · kAF )2 = p2k2
AF . Note that this

construction completely fails when pµ ∝ kµAF . This is related to the existence of singular

points on the on-shell energy surfaces there. We will discuss these singular points in more

detail below Eq. (11).

Using the basis in Eq. (7) and noticing that

εαβµν(kAF )αpβ(u1)ν = N2u
µ
2 , (8a)

εαβµν(kAF )αpβ(u2)ν = N−1
2 (p2k2

AF − (p · kAF )2)uµ1 , (8b)

it becomes straightforward to determine the polarization vectors. They are given by

e(0)µ(p) = uµ0 , (9a)

e(3)µ(p) = uµ3 , (9b)

e(±)µ(p) =
1√
2

(
uµ2 ± iN−1

2

√
(p · kAF )2 − p2k2

AF u
µ
1

)
, (9c)

where the square roots in the expressions for e(±)µ(p) are defined by the conventional prin-

cipal value. The eigenvalues corresponding to the eigenvectors, as defined in Eq. (5), are

Λ0(p) =
1

ξ
(p2 − ξm2

γ) , (10a)

Λ3(p) = p2 −m2
γ , (10b)

Λ±(p) = p2 −m2
γ ± 2

√
(p · kAF )2 − p2k2

AF . (10c)

These observer-scalar functions of pµ and kµAF define the dispersion relations for each of the

polarization modes by fixing Λλ(p) = 0. Substituting the resulting solutions p0 = Eλ(~p)

into the expressions in Eq. (9) thus gives the polarization vectors that solve Eq. (3). Note

that the basis set in Eq. (9) is valid in a larger part of momentum space, in the sense that

the four-vectors solve the off-shell condition in Eq. (5). This fact will be convenient for the

analyses of microcausality and the Feynman propagator.

Excluding the hypersurfaces in momentum space where p2 = 0 or (p·kAF )2−p2k2
AF = 0,

it is always possible to choose the normalization factors in Eq. (7) such that the polarization

vectors in Eq. (9) are normalized to +1 or −1. The resulting values for Ni, which we choose
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to be real, are determined by

|N0|2 = |p2| ,

|N1|2 = |p2((n · kAF )2 − n2k2
AF ) + n2(p · kAF )2 + k2

AF (n · p)2 − 2(p · kAF )(n · p)(n · kAF )| ,

|N2|2 = |(p · kAF )2 − p2k2
AF | ,

|N3|2 = |p2(p2k2
AF − (p · kAF )2)| . (11)

As mentioned previously, there are hypersurfaces in momentum space where the def-

initions in Eqs. (7), (9), and (11) are invalid. First, momenta that satisfy p2 = 0 yield

polarization vectors e(0)µ(p) ∝ e(3)µ(p) that are lightlike. This is not a serious problem since

p2 = 0 does not intersect the mass-shell of modes λ = 0, 3, because of the nonzero pho-

ton mass. Ultimately we only need to be able to define the on-shell polarization vectors,

while the off-shell polarization vectors are very convenient, but not necessary. The more

interesting, perturbed physical λ = ± states are not problematic at p2 = 0.

More serious singular points occur when (p · kAF )2 = p2k2
AF , which happens, for exam-

ple, when pµ ∝ kµAF . This only becomes an issue if the mass shell of a physical polarization

mode intersects the momentum-space hypersurface on which the singular points lie. When

k2
AF ≤ 0, the singular hypersurface never intersects the mass shell. In the case k2

AF > 0, an

intersection occurs for all transverse polarization modes if

pµ = ςKµ ≡ ς
mγk

µ
AF√

k2
AF

(12)

with ς either 1 or −1. At these two momenta, the dispersion relations of the modes

λ = 3,+,− are solved simultaneously, while pµ = ςKµ also satisfies (p · kAF )2 = p2k2
AF .

Furthermore, at pµ = ςKµ, the physical polarization vectors in Eq. (9) all vanish. In fact,

the LV term in Eq. (3) also vanishes in these cases, so any polarization vector orthogonal to

pµ will satisfy the equation of motion there. We will choose to define the polarization vectors

at pµ = ςKµ by taking some limit p0 → ςK0 of the off-shell polarization vectors evaluated

at ~p = ς ~K. At this value of the spatial momentum, the polarization vectors are given by

e(3)µ(p0, ς ~K) =
ε(p0 − ςK0)

Ñ3

(
ςηµ0|~kAF |+ ηµik̂

i
AF

√
k2
AFp

0

mγ

)
, (13a)

e(±)µ(p0, ς ~K) =
1

√
2|~kAF |Ñ1

(
εµ0ρσ(ũ1)ρ(kAF )σ ± iε(p0 − ςK0)|~kAF |ũµ1

)
, (13b)
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where ε(x) = x/
√
x2, ũµ1 = εµ0ρσnρ(kAF )σ, and Ñ3 and Ñ1 are normalization factors that

satisfy

|Ñ1|2 = (~kAF × ~n)2, (14a)

|Ñ3|2 =

∣∣∣∣~k2
AF −

(p0)2k2
AF

m2
γ

∣∣∣∣ . (14b)

Note that these definitions fail for ~kAF = ~0. If this is the case, it is always possible to make

a small observer Lorentz transformation to a frame in which ~kAF 6= ~0 and define the theory

there. This choice breaks manifest observer covariance at the singular point, but this seems

unavoidable.

We cannot just put the polarization vectors in Eqs. (13) on the mass shell defined by

p0 = ςK0, since the factor ε(p0 − ςK0) becomes undefined, however, we are free to pick the

positive sign that results from approaching the singular point from the direction p0 > ςK0

and use it to make a choice at the singular point. The price we pay for doing this, is that we

lose manifest observer Lorentz covariance along a singular line (on shell this corresponds to

the two singular points). This does not cause any issues in the current paper as a complete

basis of polarization vectors at each momentum is all that is required for a covariant field

expansion, they need not be continuous through the singular point. In fact, it is not possible

even in the conventional massless photon case to find a smooth set of transverse polarization

vectors that globally covers momentum space due to the topological obstruction involved

in “combing the hair on a sphere”. This means that manifest observer invariance is never

possible as certain choices have to be made as to how the necessary discontinuities are placed

in momentum space. An example of the physical effect of this obstruction can be observed

in Berry’s Phase [24] in which a helicity state, adiabatically transported through a closed

loop in momentum space, picks up a non-trivial phase proportional to the solid angle of the

loop. This would not happen if a globally defined frame field of helicity states was possible.

We can now summarize the orthogonality of the polarization vectors (evaluated at the

same four-momentum) by

e(λ)∗(p) · e(λ′)(p) = gλλ
′
, (15)
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with

g =



diag(1,−1,−1,−1) for p2 > 0

diag(−1, 1,−1,−1) for p2 < 0 and (p · kAF )2 − p2k2
AF > 0 12 0

0 −sgn(u2
1)σ1

 for p2 < 0 and (p · kAF )2 − p2k2
AF < 0

. (16)

In Eq. (16), 12 is the 2× 2 unit matrix and σ1 is the usual Pauli matrix

σ1 =

 0 1

1 0

 . (17)

The indices λ and λ′ in Eq. (15) label the rows and columns of g and run over 0, 3,+,−

in that order. At the on-shell singular points in Eq. (12), where (p · kAF )2 − p2k2
AF = 0,

the lower-right 2 × 2 matrix becomes the negative unit matrix, if we use the definitions in

Eqs. (13).

Eq. (15) establishes the orthogonality of polarization vectors that are evaluated at

the same four-momentum. Since on shell the polarization vectors of different modes are

evaluated at different values of p0 = Eλ(~p), Eq. (15) does not represent an orthogonality

relation for on-shell eigenvectors. In Ref. [16], such a relation was derived. With a slight

change in normalization relative to this reference, it is given by

e∗(λ
′)

µ (~p)
[
(Eλ(~p) + Eλ′(~p))

(
ηµν − (1− ξ−1)δµ0 δ

ν
0

)
− (1− ξ−1)pi(δµi δ

ν
0 + δµ0 δ

ν
i )− 2ikκAF εκ0

µν
]
e(λ)
ν (~p) = gλλ

′
Λ′λ(p)|p0=Eλ

. (18)

where Λ′λ(p) is the derivative of Λλ(p) with respect to p0. The reason for choosing an

alternate normalization will become clear when we perform the quantization. Note that the

only relevant gλλ
′

for the on-shell states is the diagonal one, provided mγ 6= 0.

The fact that Λ′λ(p)|p0=Eλ
indeed corresponds to the normalization in Eq. (15) can

easily be seen by considering the p0-derivative of Eq. (5), which reads

S ′µνe
(λ)ν(p) + Sµνe

′(λ)ν(p) = Λ′λ(p)e
(λ)µ(p) + Λλ(p)e

′(λ)µ(p) , (19)

where the primes denote derivatives with respect to p0. After contracting this equation with

ε
∗(λ)
µ (p) and substituting p0 = Eλ(~p) everywhere, the second term on both the left-hand side

and the right-hand side vanishes. Inspection of the explicit expression for S ′µν then reveals

that we have obtained Eq. (18) for the case λ = λ′, confirming the factor Λ′λ(p)|p0=Eλ
in that
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equation. The derivation of Eq. (18) in Ref. [16] was done for Eλ(~p) 6= Eλ′(~p). However,

using the fact that Eq. (15) holds for on-shell eigenvectors with degenerate energies, we can

use Eq. (19) to show that Eq. (18) also holds if Eλ(~p) = Eλ′(~p).

In a similar way an orthogonality relation for polarization vectors with opposite three-

momenta can derived [16]. As long as Eλ(~p) 6= −Eλ′(−~p) it holds that

e(λ′)
µ (−~p)

[
(Eλ(~p)− Eλ′(−~p))

(
ηµν − (1− ξ−1)δµ0 δ

ν
0

)
− (1− ξ−1)pi(δµi δ

ν
0 + δµ0 δ

ν
i )− 2ikκAF εκ0

µν
]
e(λ)
ν (~p) = 0 . (20)

Note that there is no complex conjugate on the left-side polarization vector in this relation.

IV. ANALYSIS OF THE DISPERSION RELATION

In the previous section we found explicit expressions for the eigenvectors of Sµν in

Eq. (9). These become the on-shell photon polarization vectors if we substitute for p0 the

concordant-frame positive root Eλ(~p) of Λλ(p), with Λλ(p) defined in Eq. (10). In this section

we investigate the dispersion relations, given by Λλ(p) = 0, and in particular the reality,

degeneracy, and positivity of their roots [25].

The full dispersion relation of the CPT-odd photons is given by det(S) =
∏

λ Λλ(p) = 0,

and thus by

1

ξ
(p2 − ξm2

γ)(p
2 −m2

γ)((p
2 −m2

γ)
2 − 4(p · kAF )2 + 4p2k2

AF ) = 0 . (21)

The left-hand side is an eighth order polynomial in p0 and as such has eight (possibly

complex and/or degenerate) roots, which we label by ω1, . . . , ω8. Because there is no term

proportional to the seventh power of p0 in Eq. (21), Vieta’s formulas tell us that the sum of

all roots vanishes, i.e.
8∑
i=1

ωi = 0 . (22)

The polynomial in Eq. (21) can be factorized in three separate polynomials, two of which

are Λ0(p) and Λ3(p), while the third one is given by

ΛT (p) = Λ+(p)Λ−(p) = (p2 −m2
γ)

2 − 4(p · kAF )2 + 4p2k2
AF . (23)

Since Eq. (21) is invariant under p → −p, all roots come in pairs such as ω1(~p) =

−ω2(−~p). In concordant frames, one root of each pair is positive, while the other is negative,

11



e.g. if ω1(~p) > 0, then ω2(~p) < 0. We apply the usual redefinition to the concordant-frame

negative-energy solutions, i.e.

E0(~p) = ω1(~p) = −ω2(−~p) =
√
~p2 + ξm2

γ , (24a)

E3(~p) = ω3(~p) = −ω4(−~p) =
√
~p2 +m2

γ , (24b)

E+(~p) = ω5(~p) = −ω6(−~p) , (24c)

E−(~p) = ω7(~p) = −ω8(−~p) . (24d)

This also defines our labeling of the roots of the different Λλ(p) functions. Although it is

not evident at this point, two of the roots (ω5 and ω6) correspond to the polarization mode

λ = +, while the other two (ω7 and ω8) belong to λ = −. Together they are the roots of the

fourth-order polynomial ΛT (p) in Eq. (23) and obey

8∑
i=5

ωi = 0 . (25)

Since the roots of Λ0(p) and Λ3(p) are trivial and need no further discussion, we will commit

the rest of this section to Λ+(p) and Λ−(p).

When not restricting to an observer frame where kµAF has a convenient form, the

explicit expressions for the roots of Λ±(p) are unwieldy and provide little insight about the

issues we want to discuss (except for lightlike kµAF ). However, even without such explicit

expressions, it is possible to show that if k2
AF < m2

γ, then Λ+(p) and Λ−(p) have two real and

non-degenerate roots each. Moreover, these four roots are all different, except at two points

in momentum space for timelike kµAF . Similarly, we can show that the energy is bounded

from below and that no negative energies occur if (k0
AF )2 < m2

γ.

To prove the statements in the previous paragraph, we define the following functions

of p0:

f0(p0) =
1

2

(
Λ+(p0) + Λ−(p0)

)
, (26a)

fδ(p
0) =

1

2

(
Λ+(p0)− Λ−(p0)

)
, (26b)

where we now view Λ±(p) as functions of p0 by considering them at fixed ~p. It follows that

Λ±(p0) = f0(p0)±fδ(p0) and that for a root, ω, of Λ±(p0), f0(ω) = ∓fδ(ω), i.e. in a plot the

intersections of f0(p0) with ∓fδ(p0) correspond to the roots of Λ±(p), while intersections of

(f0(p0))2 and (fδ(p
0))2 correspond to the roots of the polynomial ΛT (p). Examples of such

plots are given in Figs. 1 and 2.
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The derivatives with respect to p0 of the functions in Eq. (26) are given by

f ′0(p0) = 2p0 p0→∞−→ ∞ , (27a)

f ′δ(p
0) =

4~k2
AFp

0 − 4k0
AF (~p · ~kAF )

fδ(p0)

p0→∞−→ 2|~kAF | , (27b)

where the limiting values are for p0 to positive infinity. Taking p0 to negative infinity will

give the same result with opposite sign. The derivative f ′δ(p
0) shows that if fδ(p

0) ∈ R, then

fδ(p
0) is an increasing (decreasing) function for p0 larger (smaller) than k0

AF (~p · ~kAF )/~k2
AF .

To analyze the functions further, we will make a distinction between k2
AF ≤ 0 and k2

AF > 0.

In the following, we will discuss these timelike and spacelike/lightlike cases separately.

Timelike case – If k2
AF > 0, a typical plot of the functions f0(p0) and ±fδ(p0) looks like

the plot in Fig 1(a). The corresponding plots of (f0(p0))2 and (fδ(p
0))2 are shown in figure

Fig 1(b). From the limiting values of the derivatives in Eqs. (27), together with the fact

that fδ(p
0) is real and non-negative if k2

AF > 0, it is easily seen that fδ(p
0) always intersects

f0(p0) at two different points. These points correspond to the two roots of Λ−(p): ω7 and

ω8. This thus establishes that Λ−(p) always has two non-degenerate roots if k2
AF > 0. One

of these roots is positive, while the other one is negative and these signs are the same in any

observer frame. Moreover, E−(~p) is bounded from below, as shown in Eq. (C5a).

In Fig 1(a), −fδ(p0) also intersects f0(p0) twice, once for positive p0 and once for

negative p0. However, there are two other possible scenarios. The intersections can be on

the same side of the vertical p0 = 0 axis, or the curve of −fδ(p0) might lie entirely below the

one of f0(p0). In the former case, the roots of Λ+(p) have the same sign, while in the latter

case they both have a non-vanishing imaginary part. These three scenarios are summarized

by

(i) −fδ(0) > f0(0) → ω5, ω6 ∈ R , sgn(ω5) = −sgn(ω6) ,

(ii) −fδ(0) < f0(0) and ∃p0 : −fδ(p0) > f0(p0) → ω5, ω6 ∈ R , sgn(ω5) = sgn(ω6) ,

(iii) ∀p0 : −fδ(p0) < f0(p0) → ω5, ω6 ∈ C .

It turns out that a sufficient observer non-invariant condition for scenario (i) is

(k0
AF )2 < m2

γ . (28)

The fact that −fδ(0) > f0(0) if this condition holds is shown in Appendix A. We also find

there that, if (k0
AF )2 > m2

γ, then there exist a range of (generally small) three-momenta for

which −fδ(0) < f0(0), so either scenario (ii) or (iii) applies.
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In Appendix A we show that if the observer Lorentz invariant condition

k2
AF < m2

γ (29)

holds, we can always find a p0 for which −fδ(p0) > f0(p0). This shows that both roots of

Λ+(p) are real and non degenerate if Eq. (29) is satisfied, while their sign is guaranteed to

differ if Eq. (28) applies. Eq. (29) can be enforced on the theory in any observer frame.

However, the size of k0
AF changes when performing an observer Lorentz boost. Therefore it

can only be satisfied in a subset of frames, which we can call concordant frames. In other

words, Eq. (28) provides a quantitative definition of a concordant frame in the case where

kµAF is the only Lorentz-violating coefficient. The fact that such a definition is possible

hinges on the introduction of a nonzero photon mass.

In non-concordant frames, the signs of the two roots of Λ+(p) can thus be equal. If

they are both negative, the energy (given in Eq. (24)) is also negative. However, since this

only happens for a limited range of |~p| values (see Eq. (A4)), E+(~p) must be bounded from

below. In fact, in Eq. (C5b), we determine that E+(~p) ≥
√
m2
γ − k2

AF − |~kAF |.

If Eq. (29) is satisfied, the only degeneracy in the dispersion relation for the λ = ±

modes can come from a root of Λ−(p) being equal to a root of Λ+(p). This requires fδ(p
0) = 0

while p0 simultaneously has to solve p2 = m2
γ. It follows that the roots of Λ−(p) and Λ+(p)

become equal if

pµ = ς
mγk

µ
AF√
k2
≡ ςKµ , (30)

which are points in momentum space where the LV term disappears from the equation of

motion, as already discussed in Section III.

Spacelike/lightlike case – If k2
AF ≤ 0, a typical plot of the functions in Eqs. (26) looks

like the one in Fig. 2(a). One clearly sees that the square root in fδ(p
0) becomes imaginary

for values of p0 between x−1 and x+1, with

xα =
k0
AF (~p · ~kAF )

~k2
AF

+

α

√
k2
AF

(
(~p · ~kAF )2 − ~p2~k2

AF

)
~k2
AF

. (31)

However, we show in Appendix A that |xα| <
√
~p2 +m2

γ for all values of ~p and kµAF . This

means that Λ+(p) and Λ−(p) always have two real roots each, if kµAF is spacelike or light-

like. As in the case of timelike kµAF , we find, by investigating when −fδ(0) < f0(0) (see

Appendix A), that the condition in Eq. (28) is sufficient to make sure that the roots of
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k2
AF (k0

AF )2 sgn(k0
AF (~p · ~kAF )) domain roots sgn(ω5, ω6, ω7, ω8)

k2
AF < 0 < m2

γ + or − R (+,−,+,−)

k2
AF < 0 > m2

γ + R (+,−,+,−) or (+,+,+,−)

k2
AF < 0 > m2

γ − R (+,−,+,−) or (−,−,+,−)

0 < k2
AF < m2

γ < m2
γ + or − R (+,−,+,−)

0 < k2
AF < m2

γ > m2
γ + R (+,−,+,−) or (+,+,+,−)

0 < k2
AF < m2

γ > m2
γ − R (+,−,+,−) or (−,−,+,−)

k2
AF > m2

γ > m2
γ + or − C n.a.

TABLE I. The different conditions on kµAF in the three columns on the left give different possibilities

for the sign and domain of the roots of the λ = ± dispersion relations. The latter are summarized

in the two right-most columns. Which of the options in the right-most column is realized, is

determined by |~p| and the angle between ~p and ~kAF . If |~p| is in the interval in Eq. (A4) and the

angle satisfies Eq. (A5), then three of the four roots will have the same sign (provided (k0
AF )2 > m2

γ).

Λ+(p) have opposite signs. On the other hand, if (k0
AF )2 > m2

γ then there exist observer

frames in which both roots have the same sign. As in the timelike case, E+(~p) can thus

become negative, however in appendix B we show that E±(~p) ≥
√
m2
γ − k2

AF ∓ |~kAF | for

spacelike/lightlike kµAF .

We summarize our findings regarding the signs and the domain of the roots in Table I.

It is clear that k2
AF < m2

γ is a necessary condition for a consistent physical theory in all

observer frames. This shows that introducing a nonzero photon mass is unavoidable if kµAF

is timelike. This was already found in Ref. [22]. In addition, both for spacelike, lightlike,

and timelike kµAF , a nonzero photon mass allows for a quantitative definition of concordant

frames, in the sense that in frames where Eq. (28) is satisfied, energy positivity is guaranteed

(some additional issues related to energy positivity are discussed in Section V).

It is interesting, therefore, to compare the current experimental bounds on kµAF and

mγ. For the photon mass, the particle data group (PDG) quotes as the best possible bound

[26]

mγ < 1× 10−27 GeV. (32)

This limit is inferred from the absence of a perturbed structure of large-scale magnetic

fields that would result from a significant nonzero photon mass (see Refs. [27, 28]). The
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verification of certain properties of galactic magnetic fields might allow for an improvement

of Eq. (32) by nine orders of magnitude [28, 29]. Nevertheless, this result is still many

orders of magnitude from the best bounds on kµAF , which follow from cosmological searches

for birefringence [10]:

k0
AF < 10−43 GeV, (33)

where k0
AF is defined in Sun-centered inertial reference frame [10]. It follows that the as-

sumption of a nonzero photon mass, that permits the construction of a phenomenologically

viable model for photons with CPT-violation (with k2
AF < (k0

AF )2 < m2
γ), is entirely consis-

tent with experimental observations. Moreover, the Stückelberg mechanism can be used to

introduce the mass in a gauge-invarant manner, at least at the level of pure QED.

This does not mean, however, that we can always ignore the negative energies in the

theory, even for practical purposes. This is illustrated for example by assuming that the

sizes of the photon mass and kµAF are comparable with the best achievable bounds, such that

mγ ∼ 10−36 GeV, as mentioned below Eq. (32). Frames moving with respect to Earth with

a relativistic γ-factor up to γ ∼ mγ/k
0
AF ∼ 107 can then be considered to be concordant

frames (i.e. there are no negative energies in these frames). Inversely, this means that the

rest frame of ultra-high-energy cosmic-ray protons could easily be a non-concordant frame,

since these protons have energies up to 108 TeV, corresponding to γ = 1011. Note that the

bound mγ < 10−36 GeV is quite speculative [28], since it depends on several assumptions

about galactic magnetic fields. Taking the PDG value in Eq. (32) for the photon mass avoids

any potential problems with non-concordant frames. These values are discussed further in

the context of Cherenkov radiation in Ref. [16].

V. ENERGY POSITIVITY AND STABILITY

In the previous section we found that there exist (strongly boosted, but possibly phys-

ically relevant) observer frames in which the λ = + polarization mode of the LV photon

has negative energies for a certain range of three momenta (see Eq. (A4) in Appendix A).

Nevertheless, the energy remains bounded from below.

It lies outside the scope of this paper to rigorously address if such a theory can be fully

consistent, however, the point of view one often takes in this respect is to regard the theory

as an effective theory. The effective theory is only valid up to a certain energy scale, or,
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equivalently, describes particles restricted to have concordant rest frames. Above this energy

scale, unknown higher-dimensional nonrenormalizable operators become relevant. These are

conjectured to prevent negative energies in all observer frames. This is discussed in detail

in Ref. [13].

It was also noticed in Ref. [13] that negative-energy issues are closely related to the

stability of the theory. Photons with the λ = + polarization mode can have spacelike

momenta and can thus be emitted by an electron or positron traveling fast enough in vacuum.

Since an appropriate Lorentz boost of a spacelike momentum can change the sign of its zeroth

component, this corresponds to the existence of negative energies in some frame. Although

already discussed in Ref. [13], we emphasize once again that allowing for vacuum-Cherenkov

radiation in an observer Lorentz invariant theory is thus equivalent to accepting that the

theory has negative energies in some frame. The alternative of assuming the existence

of nonrenormalizable, higher-order operators that prevent negative energies in all observer

frames, also prevents vacuum-Cherenkov radiation in nature.

A common problem in generic theories with negative energies seems to be that there is

no simple separation between the positive- and negative-energy branches of the dispersion

relation. This impedes the canonical quantization of the theory. In a Lorentz-symmetric

theory, one can easily select one of the branches by using the sign of the roots, which is

invariant under Lorentz transformations if all on-shell momenta are timelike. Since the

model with kµAF that we consider here, allows for spacelike momenta and negative energies,

the sign of the root can no longer be used to select a particular branch of the dispersion

relation. It turns out, however, that a function still exists whose sign, when evaluated at a

root of Λλ(p), is the same in any observer frame. It is given by

Λ′λ(p) =
∂Λλ(p)

∂p0
. (34)

This function can therefore be used to separate the branches in an observer-covariant way

even when a single branch dips into the negative energy region. The key fact that makes this

work is that the ordering of the roots of the dispersion relation is observer Lorentz invariant.

To prove that this function indeed has the correct properties, we first label the roots

of ΛT (p) = Λ+(p)Λ−(p) as before, such that ω5 and ω7 are the roots on the right-hand side

in Figs. 1 and 2 (these are positive in concordant frames), while ω6 and ω8 are the roots on

the left-hand side in the same figures (these are negative in concordant frames). We observe

17



that we can write

Λ′T (ωj, ~p) =

[
∂

∂p0

8∏
i=5

(p0 − ωi)

]
p0=ωj

=
∏
i 6=j

(ωj − ωi) . (35)

By inspection of Figs. 1 and 2, together with the considerations in Appendix A, it is not

hard to establish that

Λ′T (ω6, ~p),Λ
′
T (ω7, ~p) > 0 , (36a)

Λ′T (ω5, ~p),Λ
′
T (ω8, ~p) < 0 . (36b)

For example,

Λ′T (ω5, ~p) = (ω5 − ω6)(ω5 − ω7)(ω5 − ω8) . (37)

From Figs. 1 and 2 it is easy to see that |ω7| > |ω5|, |ω8| > |ω5|, ω7 > 0, and ω8 < 0, except

at pµ = ςKµ for timelike kµAF (see Eq. (12)), where ω5 = ω7 = −ω8. If the roots are not

degenerate, the product of the last two factors in Eq. (37) is smaller than zero. Moreover,

ω5 − ω6 is also always larger than zero, because the ordering of these roots is the same in

any observer frame. This follows directly from considerations in Appendix A. We conclude

that Λ′T (ω5, ~p) < 0. The sign of Λ′T (ωj, ~p) evaluated at the other three roots is determined

similarly and the result corresponds to Eq. (36).

Subsequently, we note that

Λ′T (ω5,6, ~p) = Λ−(ω5,6, ~p)Λ
′
+(ω5,6, ~p) , (38a)

Λ′T (ω7,8, ~p) = Λ+(ω7,8, ~p)Λ
′
−(ω7,8, ~p) . (38b)

Examination of Figs. 1 and 2 reveals that Λ−(ω5,6, ~p) < 0 and Λ+(ω7,8, ~p) > 0. Combining

this with Eq. (36), we conclude that

Λ′+(ω5, ~p),Λ
′
−(ω7, ~p) > 0 , (39a)

Λ′+(ω6, ~p),Λ
′
−(ω8, ~p) < 0 . (39b)

At pµ = ςKµ, the expression in Eq. (37) vanishes and the derivation of Eqs. (39) fails.

As discussed before, the LV term disappears from the equation of motion in that case and

at ~p = ς ~K we have

Λ′±(p0, ς ~K) = 2p0 ± 2ε(p0 − ςK0)|~kAF | , (40)
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with ε(x) = x/
√
x2. At p0 = ςK0, ε(p0 − ςK0) is undefined. However, it can be defined

using the same limiting procedure that was used for the polarization vectors in Eq. (13)

with ε(p0 − ςK0) = 1 and thus sgn(Λ′±(p0, ς ~K))
∣∣∣
p0→ςK0

= sgn (ςK0), because |K0| > |~kAF |

for timelike kµAF . Therefore, also in the degenerate case, the sign of Λ′±(p) is an observer

Lorentz invariant quantity. In fact, it corresponds to the sign of p0.

From this and from Eqs. (39) we thus conclude that the sign of Λ′±(p), evaluated at

one of its roots, corresponds to the sign of that root in a concordant frame and is an observer

Lorentz invariant quantity. This obviously holds for all functions Λλ(p), since for the other

polarization modes Λ′0,3(p) ∝ p0. The fact that it also holds for the polarization modes λ = ±

is directly related to the fact that the ordering of the roots stays the same in any observer

frame (provided k2
AF < m2

γ), as becomes clear from the considerations below Eq. (37).

More insight as to why the sign of Λ′λ(p) is an observer Lorentz invariant quantity can

be gained from considering the group velocity, defined by

~v(λ)
g =

∂Eλ(~p)

∂~p
. (41)

The size of ~v
(±)
g is related to the sign of Λ′±(p). To show this, we perform an observer-

Lorentz-transformation on Λ′λ(p) and obtain

∂Λλ(p)

∂p0

∣∣∣∣
p0=Eλ(~p)

−→ γ

[
∂Λλ(p)

∂p0
− ~β · ∂Λλ(p)

∂~p

]
p0=Eλ(~p)

= γ
(

1 + ~β · ~v(λ)
g

)[∂Λλ(p)

∂p0

]
p0=Eλ(~p)

,

(42)

where γ = 1/

√
1− ~β2 is the relativistic boost factor. We used the fact, clarified in Ap-

pendix B, that ~v
(λ)
g = −

[
∂Λλ(p)
∂~p

/∂Λλ(p)
∂p0

]
p0=Eλ(~p)

. It is clear that if |~v(λ)
g | < 1, then Λ′λ(p) has

the same sign in any observer frame. In Appendix B we show explicitly that |~v(λ)
g | < 1 for

the present LV model.

The considerations above allow us to use the sign of the function Λ′±(p) as an observer-

Lorentz-invariant way of selecting a particular branch of the dispersion relation. For exam-

ple: ∫
d3p

∫
dp0h(p0)sgn

(
Λ′+(p)

)
θ
(
Λ′+(p)

)
δ(Λ+(p)) =

∫
d3p

Λ′+(ω5)
h(ω5) , (43)

where h(p0) is an arbitrary function of p0. Incidentally, this shows that d3p
Λ′λ(p)

is an observer

Lorentz invariant phase-space factor, that can be used to replace the usual d3p
2p0

, which is

used in the Lorentz-symmetric case.
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VI. PROPAGATOR AND POLARIZATION VECTORS

In this section we derive a relation between a sum over bilinears of polarization vec-

tors and the propagator in momentum space. Since a propagator in coordinate space is

a Green’s function of the equation-of-motion operator, the momentum-space propagator

P µν(p) satisfies

Sµν(p)P
νρ(p) = −iδ ρµ , (44)

with Sµν(p) defined in Eq. (3). Therefore,

P µν(p) = −i(S−1)µν = −i
(

Adj(S)

det(S)

)µν
. (45)

The determinant of S is given on the left-hand side of Eq. (21), while the adjugate matrix

can be determined explicitly in terms of traces of powers of S [20]. The result is

iP µν(p) =
1

ΛT (p)

[
(p2 −m2

γ)η
µν +

4 (pµpνk2
AF + kµAFk

ν
AFp

2 − (pµkνAF + pνkµAF )(p · kAF ))

p2 −m2
γ

+2iεµναβ(kAF )αpβ

]
− (1− ξ) pµpν

(p2 − ξm2
γ)(p

2 −m2
γ)
, (46)

with ΛT (p) given in Eq. (23).

If there are four orthogonal polarization vectors, we can derive a relation between the

expression in Eq. (46) and the polarization vectors as defined in Eq. (9). To show this, we

define a matrix U that has the polarization vectors as its columns, i.e. its entries are defined

by

Uab = e(b)a a, b ∈ 0, 1, 2, 3 , (47)

where we identify e(b) with e(0), e(3), e(+), e(−) for b = 0, 1, 2, 3 respectively. It is clear that

(SU)ab = Λb(p)e
(b)a (the matrix S here corresponds to Sµν , with its first index up and its

second index down). Assuming that the polarization vectors are normalized according to

Eq. (11), we conclude that

(U †ηSU)ab = Λb(p)g
ab , (48)

with η the Minkowski metric and g given in Eq. (16). If all the polarization vectors are

orthogonal then U has an inverse:

(g−1U †ηU)ab = δab , (49)

and we can write

(S−1)ab = (UD−1U †η)ab , (50)
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where Dab = Λb(p)g
ab. Writing with Lorentz indices and once again labeling polarizations

by λ = 0, 3,+,−, this becomes

iP µ
ν(p) = (S−1)µν =

∑
λλ′

gλλ
′ e(λ)µe

(λ′)∗
ν

Λλ(p)
. (51)

This sum, containing bilinears of the polarization vectors, is thus equal to the expression in

Eq. (46).

Off shell, the form of two of the four terms in Eq. (51) depends on the sign of (p ·

kAF )2 − p2k2
AF . This follows from the dependence of gλλ

′
on this same sign (see Eq. (16)).

We write the relevant terms as

P µν
T (p) =

 g++ e(+)µe(+)ν∗

Λ+(p)
+ g−− e

(−)µe(−)ν∗

Λ−(p)
for (p · kAF )2 − p2k2

AF > 0

g+− e(+)µe(−)ν∗

Λ+(p)
+ g−+ e(−)µe(+)ν∗

Λ−(p)
for (p · kAF )2 − p2k2

AF < 0
. (52)

Notice that each of the terms in Eq. (52) has a branch cut in the complex p0 plane, due

to the square root in the expression for Λ±(p). This seems to hamper the definition of

an appropriate contour integral to implement the boundary conditions of for example the

Feynman propagator. However, the expression in Eq. (46), and therefore the entire sum

in Eq. (51), has no such branch cuts. In fact, if we put in the explicit expressions for the

polarization vectors, Λ±(p), and components of g, we find that

P µν
T (p) =

1

ΛT (p)

[
(p2 −m2

γ)η
µν + 2iεµναβ(kAF )αpβ

]
+

(p2 −m2
γ)(p

µpνk2
AF + kµAFk

ν
AFp

2 − (pµkνAF + pνkµAF )(p · kAF ))

((p · kAF )2 − p2k2
AF )ΛT (p)

, (53)

for both positive and negative (p · kAF )2− p2k2
AF . This expression has no branch cuts in the

complex p0 plane. Note that the dependence on nµ introduced to define the polarization

vectors has dropped out of the above expression.

VII. QUANTIZATION

Using the polarization vectors that follow from the equation of motion, given in Eq. (9),

we can give the explicit mode expansion of the photon field:

Aµ(x) =

∫
d3~p

(2π)3

∑
λ

1

Λ′λ(p)

[
aλ~p e

(λ)
µ (~p)e−ip·x + aλ†~p e(λ)∗

µ (~p)eip·x
]
p0=Eλ(~p)

, (54)
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where Λ′λ(p) is the derivative with respect to p0 of Λλ(p), defined in Eq. (10). This normal-

ization differs from the conventional one and corresponds to the one chosen in Eq. (18). As

mentioned below Eq. (43), in this way the phase space factor in this expression for Aµ(x)

is observer Lorentz invariant. The complex weights aλ~p and aλ†~p become annihilation and

creation operators on a Fock space, when we quantize the theory.

To perform the quantization, we compute the canonical conjugate of Aµ(x) in the

usual way by taking derivatives of the Lagrangian with respect to the time derivative of the

photon field. This results in a canonical momentum, given by

πµ(x) = F µ0(x) + ε0µαβ(kAF )αAβ(x)− ηµ0 1

ξ
∂νA

ν(x) . (55)

We then impose the following equal-time commutation relations on the fields:

[Aµ(t, ~x), πν(t, ~y)] = iδνµδ
3(~x− ~y) , (56a)

[Aµ(t, ~x), Aν(t, ~y)] = 0. (56b)

This implements the standard canonical quantization in a covariant manner, as is done in

the conventional Gupta-Bleuler method. From the imposed commutation relations and the

expression for the canonical momentum, we find the following commutation relations [16]:

[Ȧµ(t, ~x), Aν(t, ~y)] = −[Aµ(t, ~x), Ȧν(t, ~y)] = i (ηµν − δµ0 δν0 (1− ξ)) δ3(~x− ~y) , (57a)

[Ȧµ(t, ~x), Ȧν(t, ~y)] = i
[
2ε0µνλ(kAF )λ + (1− ξ)

(
δµ0 δ

ν
j + δµj δ

ν
0

)
∂jx
]
δ3(~x− ~y) . (57b)

In order to see what the commutation relations in Eqs. (57) imply for the oscillators

aλ~p and aλ†~p in the mode expansion in Eq. (54), note that the latter can be inverted using the

orthogonality relations (18) and (20) as [16]

gλλ
′
aλ
′

~q = i

∫
d3xeiq·x

[↔
∂0

(
ηµν − (1− ξ−1)δµ0 δ

ν
0

)
− (1− ξ−1)qj(δµj δ

ν
0 + δµ0 δ

ν
j ) + 2kAF κε

κ0µν
]
e∗ (λ)
ν (~q)Aµ(x) , (58a)

gλλ
′
aλ
′†
~q = −i

∫
d3xe−iq·x

[↔
∂0

(
ηµν − (1− ξ−1)δµ0 δ

ν
0

)
− (1− ξ−1)qj(δµj δ

ν
0 + δµ0 δ

ν
j ) + 2kAF κε

κ0µν
]
e(λ)
ν (~q)Aµ(x) , (58b)

where q0 = Eλ(~q) in both expressions. Using Eq. (58), together with the commutation

relations in Eqs. (57), it can be shown that the oscillators satisfy the commutation relations
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[aλ~p , a
λ′†
~q ] = −(2π)3gλλ

′
Λ′λ(p)δ

3(~p− ~q)
∣∣
p0=Eλ(~p)

, (59a)

[aλ~p , a
λ′

~q ] = [aλ†~p , a
λ′†
~q ] = 0 . (59b)

The normalization of the polarization vectors in Eqs. (11), together with the normalization

factor 1/Λ′λ(p) in the definition of the photon field, makes sure that the right-hand side of

Eq. (59a) is always positive if λ = λ′ = 3,+,−, while it is negative if λ = λ′ = 0. This holds

in all observer frames, and follows from the fact, discussed in Section V, that Λ′λ(p)|p0=Eλ(~p)

is always positive.

We define the one-particle state by

|~p, λ〉 = aλ†~p |0〉 , (60)

where |0〉 is the vacuum state that is annihilated by aλ~p . As in the usual case, the one-particle

states with λ = 0 have negative norm, while the other polarizations have a positive norm.

This holds in any observer frame, due to the normalization in Eq. (59) and the on-shell

form of gλλ
′
, given in Eq. (16). The consistency of the quantization in arbitrary observer

frames thus crucially depends on the fact that the sign of Λ′λ(p) is an observer Lorentz

invariant quantity. One might think that a different choice for the normalization of the

polarization vectors or the photon field could invalidate this statement. However, to keep

covariant transformation properties for the photon field these changes have to be related

and a different choice leads to the same conclusion.

As in the conventional Gupta-Bleuler method one can now go on and implement a

gauge-fixing condition on the Hilbert space of physical states, such that no negative-norm

states appear in physical observables. In Section X we show, in the context of BRST

quantization, that this can be done consistently.

Finally we note that, although the theory contains negative-energy states in some

observer frames, the vacuum is stable in the sense that it is not possible to create physical

particles from nothing. This follows from the fact that frames exist in which the theory

does not contain any negative-energy states (concordant frames). In such frames energy

conservation prohibits the mentioned process. Observer Lorentz invariance then implies

that it must be forbidden in any observer frame. A similar argument shows that a charged

particle emitting Cherenkov radiation will stop doing so after a while. In concordant frames
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this happens when it has lost energy to the point that no more photons (with spacelike

momenta) can be emitted [13]. This depends on the fact that the energy is bounded from

below in all observer frames.

VIII. CAUSALITY

The notion of causality is closely related to relativity and Lorentz symmetry. In quan-

tum field theory one usually considers microcausality, i.e. the local (anti)commutativity of

observables for spacelike separations. In the present case the theory is microcausal if

Dµν(x− y) = [Aµ(x), Aν(y)] = 0 for (x− y)2 < 0 . (61)

In this section we will confirm by explicit calculation that Eq. (61) holds.

Using the commutation relation of the creation and annihilation operators in Eqs. (59),

we find that we can write

Dµν(z) = −
∫

d3p

(2π)3

∑
λ

gλλ

Λ′λ(p)

[
e(λ)µ(~p)e(λ)ν∗(~p) e−ip·z − e(λ)µ∗(~p)e(λ)ν(~p) eip·z

]∣∣∣∣
p0=Eλ(~p)

,

(62)

where z = x − y. Using Eq. (43), the fact that e(λ)µ∗(−p)e(λ)ν(−p) = e(λ)µ(p)e(λ)ν∗(p), and

Λ′(p)
p→−p−→ −Λ′(p), we can write this as

Dµν(z) = −
∫

d4p

(2π)3

∑
λλ

gλλe(λ)µ(p)e(λ)ν∗(p) sgn(Λ′(p))δ(Λλ(p))e
−ip·z , (63)

It is straightforward to check, by explicit calculation or by using the relation in Eq. (51),

that this is equal to

Dµν(z) = −
∫

d3p

(2π)3

∫
C

dp0

(2π)
P µνe−ip·z = i

∫
d3p

(2π)3

∫
C

dp0

(2π)

Adj(S)µν

det(S)
e−ip·z, (64)

where the contour in the complex p0 plane encircles all poles in the clockwise direction,

P µν is given in Eq. (46), and Adj(S)µν = det(S)(S−1)µν is the adjugate matrix of S, whose

relation to P µν is given in Eq. (45). Note that P µν contains double and triple poles at

pµ = ςKµ, with Kµ defined in Eq. (12) and ς = ±1. The result of calculating the residues

at these higher-order poles corresponds to the definitions of the polarization vectors at the

mentioned momenta, given in Eq. (13).

The expression in Eq. (64) is manifestly observer Lorentz covariant. Therefore, we

can calculate its components in a particular frame. If z2 = (x − y)2 < 0, we can go to an
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observer frame, where z0 = 0. In this frame we perform the contour integration. Realizing

that det(S) = 1
ξ

∏8
i=0(p0 − ωi), we get that

Dµν(z)|z0=0 = −ξ
∫

d3p

(2π)3

8∑
i=1

[
Adj(S)µν∏
j 6=i(p

0 − ωj)
e−i~p·~z

]
p0=ωi

. (65)

This result is not valid at the two points in momentum space pµ = ςKµ (see Eq. (12)) when

k2
AF > 0. At these two momenta, the functions Λλ(p) with λ = 3,+,− have degenerate

roots. Therefore, the expression in Eq. (64) has a triple pole. However, performing the p0

contour integration at the fixed three-momentum value ~p = ς ~K in the appropriate way gives

identically zero.

Away from pµ = ςKµ, we use that every component of the numerator in Eq. (65) is a

polynomial in p0. Furthermore, it is easy to show that

8∑
i=1

(ωi)
n∏

j 6=i(ωi − ωj)
=


0 if n = 0, . . . , 6

1 if n = 7∑8
i=1 ωi if n = 8

. (66)

Using the explicit expression for Adj(S), that follows from Eq. (45) and Eq. (46), it becomes

clear that

Dµν(z)|z0=0 = 0 , (67)

i.e. every compenent of Dµν(z) vanishes in an observer frame where z0 = 0. Therefore,

since Dµν(z) is observer Lorentz covariant, we conclude that it vanishes in any frame with

(x − y)2 < 0, i.e. the fields commute for spacelike separation, confirming microcausality.

Notice that we also confirmed Eq. (56b). The other commutation relations in Eq. (57) can

be derived in a completely analogous way.

IX. FEYNMAN PROPAGATOR

We take the Feynman propagator in coordinate space to be equal to the vacuum

expectation value of the time-ordered product of fields at x and y, i.e.

Dµν
F (x− y) = θ(x0 − y0)Dµν

+ (x− y) + θ(y0 − x0)Dµν
− (x− y) , (68)

with

Dµν
+ (x− y) = 〈0|Aµ(x)Aν(y)|0〉 , (69a)

Dµν
− (x− y) = 〈0|Aν(y)Aµ(x)|0〉 . (69b)
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Notice that the ± signs in these definitions have nothing to do with the λ = ± polarizations,

rather they correspond (in concordant frames) to the positive and negative energy modes.

This is further clarified when we look at the explicit expressions for Dµν
± (x− y) that follow

from inserting Eq. (54). They are given by

Dµν
± (z) = −

∫
d4p

(2π)4

∑
λλ′

gλλ
′
θ(±Λ′λ(p))sgn(±Λ′λ(p))(2π)δ(Λλ(p))ε

(λ)µε(λ
′)ν∗e−ip·z , (70)

with z = x − y. Due to the Heaviside stepfunction θ(±Λ′λ(p)), discussed at the end of

Section IV, Dµν
± (z) is only non vanishing if ±Λ′λ(p) > 0, which in concordant frames is

equivalent to ±p0 > 0.

Using the Fourier transform of the Heaviside stepfunction, θ(z0) = i
2π

∫
e−iτz

0
dτ

τ+iε
, we

can write the Feynman propagator as

Dµν
F (z) =

∫
C

d4p

(2π)4
P µνe−ip·z

= −i
∫

d4p

(2π)4

[
(p2 −m2

γ)η
µν

ΛT (p)− iε
+

4 (pµpνk2
AF + kµAFk

ν
AFp

2 − (pµkνAF + pνkµAF )(p · kAF ))

(p2 −m2
γ + iε)(ΛT (p)− iε)

+
2iεµναβ(kAF )αpβ

ΛT (p)− iε
− (1− ξ) pµpν

(p2 − ξm2
γ + iε)(p2 −m2

γ + iε)

]
e−ip·z , (71)

where, on the first line, the integration contour in the complex p0 plane goes above (below)

the poles (ω) for which Λ′λ(p)|p0=ω is positive (negative). After the second equality sign, this

is represented by a Feynman ε prescription.

X. BRST AND THE SPACE OF STATES

The structure of the space of states is most clearly established in the BRST formalism

[31] by completing the photon Lagrangian (2) with the contributions for the Stückelberg

scalar field φ as well as the (anticommuting) ghost and antighost fields c and c̄ (with ghost-

numbers 1 and −1, respectively):

LStück = LA + Lφ + Lgh (72)

where LA is given by (2), while

Lφ = 1
2
(∂µφ)2 − 1

2
ξm2

γφ
2 (73)
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and

Lgh = −c̄(∂2 + ξm2
γ)c . (74)

Note that the antighost field c̄ is defined to be anti-hermitian (c̄† = −c̄), while all other

fields are hermitian. Lagrangian (72) can now be obtained from the Lagrangian

L′Stück = −1

4
FµνF

µν +
1

2
kκAF εκλµνA

λF µν +
1

2
m2
γ(Aµ −

1

mγ

∂µφ)2

+
ξ

2
B2 +B(∂µA

µ + ξmγφ)− c̄(∂2 + ξm2
γ)c (75)

upon integrating out the (auxiliary) Nakanishi-Lautrup field B [32].

Lagrangian (75) changes by a total derivative under the BRST transformation s defined

by

sAµ = ε∂µc (76)

sφ = εmγc (77)

sc̄ = εB (78)

sB = sc = 0 (79)

where ε is some constant infinitesimal Grassmann-valued parameter. The BRST transforma-

tions (76)–(79) are generated by the action of the nilpotent BRST charge QB =
∫
d3~xjB0 =∫

d3x(B ∂0c − ∂0B c), where jBµ is the conserved Noether current. The space of physical

states is defined by the space of closed states (those that are annihilated by QB) of ghost

number zero modulo the exact states (those that are in the image of QB). Restricting our-

selves to ghost number zero (no ghost excitations), it follows from (77) that one-particle

states created by the field φ are unphysical. Moreover, we see from (76) and (77) that the

linear combination

χµ = Aµ −
1

mγ

∂µφ (80)

(the Proca field) is BRST invariant, and thus any one-particle states created by χµ are

closed. Finally, we see from (78) that any one-particle excitations of the Nakanishi-Lautrup

field B are exact. Using the equations of motion for B and φ, it follows that on-shell we can

replace B → ∂µχ
µ. From this we see that the physical one-particle states can be taken to

correspond to the three transverse polarizations of χµ (which coincide with the transverse

polarizations e
(i)
µ (~p), i = +,−, 3, of Aµ). The exact one-particle states correspond to the

remaining longitudinal mode of χµ.
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It is worthwhile to point out that the quantization is unaffected by the Lorentz-

violating kAF term.

XI. DISCUSSION

In this paper, we performed the covariant quantization of Lorentz- and CPT-violating

Maxwell-Chern-Simons theory for spacelike, lightlike, as well as timelike kµAF . To avoid

imaginary energies and for regularization purposes, a non-zero photon mass was introduced

through the Stückelberg mechanism. This can be done well below any observational con-

straints.

We found explicit expressions for a set of four orthogonal and normalized polarization

vectors, whose definition is valid in almost all of four-momentum space. These polarization

vectors are eigenvectors of the equation-of-motion operator and have the functions Λλ(p),

defined in Eq. (10), as their eigenvalues. The relations Λλ(p) = 0 determine the dispersion

relations for the different polarization modes and their solutions fix the on-shell polarization

vectors. The hypersurface in momentum space where the definitions of the polarization

vectors are invalid only intersects the relevant mass shells at two singular points and only

for timelike kµAF . This corresponds to the vanishing of the LV term in the original Lagrangian.

We highlighted the treatment of these singular points throughout the paper.

We discussed several properties of the dispersion relation. In particular, we showed

that it has eight nondegenerate roots, except at the two singular points, where it has two sets

of three degenerate roots (and two nondegenerate ones). We confirmed that the observer-

Lorentz-invariant condition k2
AF < m2

γ guarantees the reality of all the roots. Moreover, we

derived an observer Lorentz non-invariant condition, (k0
AF )2 < m2

γ, that makes sure that all

energies are positive. Since the latter condition cannot be maintained in arbitrary observer

frames, the sign of the roots cannot be used to select a branch of the dispersion relation, as

is done in the usual, Lorentz-symmetric, case. However, we found that the sign of Λ′(p) can

be used instead. This fact is closely related to the observer invariance of the root ordering

and the group velocity being smaller than unity.

Being able to unambiguously identify the different branches of the dispersion relation

in all observer frames, allowed us to construct an observer Lorentz covariant mode expansion

of the photon field in terms of the polarization vectors for the different modes. Using the
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resulting explicit expression for the photon field, we performed the quantization of the theory.

We also derived the Feynman propagator and showed that the theory is microcausal. Finally

we showed, in the context of BRST quantization, that the three transverse modes are the

physical ones.

One obvious direction into which one can extend the present work is investigating the

massless limit. We expect that taking the limit mγ → 0 at the end of a calculation of a

physical observable gives a consistent result for lightlike and spacelike kµAF (for timelike kµAF ,

the imaginary energies will reappear). All the more because the λ = 3 polarization mode

seems to decouple in a gauge-invariant theory, because e(3)µ ∝ pµ in that case, resulting in

two physical states. As in the Lorentz-symmetric case, in the massless limit it is not possible

to find a basis of four orthogonal covariant polarization vectors in the general class of gauges

we consider in this paper. However, we expect that it is possible, using BRST quantization,

to show that the non-covariant components of the field are unphysical and decouple.

A second option for follow-up work is to include interactions and quantum effects. The

latter might introduce other, possibly higher-dimensional, LV coefficients through radiative

corrections. To go beyond tree-level one has to consider the effect of such effective LV

coefficients.

Finally, one could try to apply the methods of the present work to the CPT-even kF

term of the minimal SME or even include higher-dimensional kinetic terms for the photon,

which have been categorized in Ref. [33]. Note that, in the latter case, one would have

to find a way to consistently deal with spurious Ostrogradski modes [34] that arise due to

higher-order time derivatives in the Lagrangian.

Presently, the fact that the covariant quantization of the present Lorentz- and CPT-

violating theory is possible, at least with a non zero photon mass (well below observational

constraints), despite the presence of negative-energy states in some observer frames, is an

important result of this paper. It is of relevance, in particular, to considerations of vacuum

Cherenkov radiation, for which such negative-energy states are unavoidable. Moreover, the

explicit expressions for the polarization vectors, their bilinears, and the Feynman propagator,

in arbitrary observer frames, pave the way for calculations of LV observables involving kµAF .
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Appendix A: Reality and sign of the roots of Λ±(p)

In this Appendix we give the details of some statements made in the main text, con-

cerning the sign and the possible complex-valuedness of the roots of Λ±(p). We do this by

considering the functions defined in Eq. (26) and plotted in Figs. 1 and 2 for the case of

timelike and spacelike/lightlike kµAF , respectively.

First of all, we discuss the condition

|xα| <
√
~p2 +m2

γ (A1)

for spacelike and lightlike kµAF , which is used below Eq. (31). The points p0 = xα are the

points where the branches of ±fδ(p0) start (see Fig. 2) and their expressions are given in

Eq. (31). Eq. (A1) reflects the condition that these points stay inside the curve of f0(p0). A

little algebra shows that Eq. (A1) holds if

~p2 >
−~k2

AFm
2
γ

(k0
AF

√
sin2 θ + α

√
−k2

AF cos θ)2
, (A2)

where θ is the angle between ~p and ~kAF . Since the expression on the right is always negative,

we see that Eqs. (A1) and (A2) are always satisfied and thus that Λ±(p) always have two

real roots each for spacelike and lightlike kµAF .

Next, we consider the inequality

− fδ(0) > f0(0) , (A3)

which, for k2
AF > 0, is sufficient to make sure that the signs of ω5 and ω6 are different. For

k2
AF < 0 it can happen that fδ(0) is not real. However, in that case it is obvious from Fig. 2

and the argument following Eq. (A1) that the signs of ω5 and ω6 will differ. It is easy to see

that −fδ(0) = f0(0) if

|~p| =
√

(k0
AF )2 − ~k2

AF sin2 θ ±
√

(k0
AF )2 − ~k2

AF sin2 θ −m2
γ . (A4)
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If kµAF is spacelike, the first square root can become imaginary. This corresponds to fδ(0)

being imaginary, for which case ω5 and ω6 differ in sign. If both square roots in Eq. (A4)

are real, Eq. (A4) defines an interval for |~p|, outside of which Eq. (A3) is satisfied and Λ+(p)

has two roots of opposite sign. Inside of the interval, however, the signs of ω5 and ω6 are the

same and after the redefinition of one of the roots, the theory can contain states of negative

energy. It is clear from Eq. (A4) that there will be no negative energies if (k0
AF )2 < m2

γ,

because the second square root is imaginary in that case. This confirms that the condition

in Eq. (28) implies energy positivity. Furthermore, the second square root is real if

cos2 θ >
m2
γ − k2

AF

~k2
AF

. (A5)

For angles satisfying this inequality and |~p| in the interval in Eq. (A4), the two roots of

the dispersion relation Λ+(p) = 0 have the same sign. Since we redefine the energies as

in Eq. (24), the theory will contain negative-energy photons if ω5(~p) < 0. This happens if

the extremum of fδ(p
0) lies to the left of p0 = 0, i.e. if k0(~p · ~kAF ) < 0. The momentum

of the photons with negative energy thus lies in a cone around the direction defined by

−sgn(k0)~kAF (and not in the opposite direction).

Finally, we show that all roots of Λ+(p) are real if Eq. (29) holds, i.e. if

k2
AF < m2

γ . (A6)

For lightlike and spacelike kµAF , this was already evident from the considerations following

Eq. (A1). In the following, we show it for timelike kµAF . To achieve this, we ascertain that

if k2
AF < m2

γ, we can always find a value of p0 for which

− fδ(p0) > f0(p0) , (A7)

meaning that −fδ(p0) must intersect f0(p0) at two different values of p0, corresponding to

the two real roots of Λ+(p). To proof this, we start with an ansatz for p0:

p0 = a|~p| , (A8)

with a a dimensionless factor. At this value of p0, we find

f0(a|~p|) = ~p2(a2 − 1)−m2
γ , (A9a)

−fδ(a|~p|) = −2|~p|
√
X ≡ −2|~p|

√
a2~k2

AF − 2ak0
AF |~kAF | cos θ + ~k2

AF cos2 θ + k2
AF . (A9b)
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We do not gain much insight by solving −fδ(a|~p|) > f0(a|~p|) for a directly. However, we

easily find that −fδ(a|~p|) = f0(a|~p|) for

|~p| =

√
X ±

√
X + (a2 − 1)m2

γ

1− a2
. (A10)

Furthermore, −fδ(a|~p|) − f0(a|~p|), as a function of |~p|, is a parabola that opens upward if

a2 < 1. So, if a2 < 1 and |~p| is in the interval defined by Eq. (A10), then −fδ(a|~p|) < f0(a|~p|).

It follows that if we can find an |a| < 1 such that the second square root in Eq. (A10) becomes

imaginary, then the mentioned interval of |~p| does not exist and therefore−fδ(a|~p|) > f0(a|~p|)

for any |~p|.

We find that the argument of the second square root in Eq. (A10) vanishes if

a =
(k0
AF )2

m2
γ + ~k2

AF

 |~kAF |
k0
AF

cos θ ± 1

k0
AF

√√√√(m2
γ − k2

AF )

(
m2
γ + ~k2

AF

(k0
AF )2

− cos2 θ
~k2
AF

(k0
AF )2

) . (A11)

It is straightforward to check that the square root is real if k2
AF < m2

γ and that the absolute

value of first term is smaller than one in that case. Eq. (A11) thus defines an a-interval for

which the second square root in Eq. (A10) is imaginary. Therefore, near the center of this

interval, there are values of |a| < 1 for which −fδ(a|~p|) > f0(a|~p|). This means that −fδ(p0)

intersects f0(p0) at two different values of p0. We conclude that Λ+(p) always has two real

roots if k2
AF < m2

γ.

Appendix B: Group velocity

In this appendix, we consider the group velocity of the different modes of the photon.

It is defined in Eq. (41) as

~v(λ)
g =

∂Eλ(~p)

∂~p
. (B1)

We will show that

~v(λ)
g = −

[
∂Λλ(p)

∂~p

/
∂Λλ(p)

∂p0

]
p0=Eλ(~p)

(B2)

and that |~v(λ)
g | < 1. For the modes with λ = 0, 3 this is trivial and we will only consider the

λ = ± modes in the remainder of this appendix.

The fact that Eq. (B2) holds, follows easily by realizing that ΛT (p) = Λ+(p)Λ−(p) is a

polynomial in p0, which allows us to write it as

ΛT (p) = (p0 − E+(~p))(p0 + E+(−~p))(p0 − E−(~p))(p0 + E−(−~p)) , (B3)
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where we used the energy redefinitions, given in Eq. (24). From Eq. (B2), it follows that,

for λ = +,−,

∂E±(~p)

∂~p
= −

[
∂ΛT (p)

∂~p

/
∂ΛT (p)

∂p0

]
p0=E±(~p)

= −
[
∂Λ±(p)

∂~p

/
∂Λ±(p)

∂p0

]
p0=E±(~p)

, (B4)

confirming Eq. (B2). This equality does not hold if pµ = ςKµ. In that degenerate case, the

group velocity, as given in Eq. (B1), becomes ill-defined, as can be seen from explicit calcu-

lations for purely timelike kµAF , or from the analysis at the end of this section. However, we

can assign a value to the right-hand side of Eq. (B2) by employing some limiting procedure,

as described below Eqs. (13). This is in fact the quantity we need in Eq. (42).

It remains to be shown that |~v(λ)
g | < 1. To this affect we define

wµ± ≡
∂Λ±(p)

∂pµ
= 2

(
pµ ± (p · kAF )kµAF − k2

AFp
µ√

(p · kAF )2 − p2k2
AF

)
, (B5)

such that ~v
(λ)
g = − [~wλ/w

0
λ]p0=Eλ(~p). It follows that |~v(λ)

g | < 1 holds, if wµλ, evaluated on shell,

is timelike. We determine that on shell w2
λ is given by

w2
λ

∣∣
p0=Eλ(~p)

= 4(m2
γ − k2

AF ) . (B6)

Therefore, w2
λ > 0 if k2

AF < m2
γ. The latter is a necessary condition for the theory to be

consistent, as already mentioned in Section IV. We thus conclude that the absolute value of

photon group velocity is smaller than unity for the cases we consider. For the degenerate case

of pµ = ςKµ, this statement is invalid, because Eq. (B2) does not hold (the group velocity

becomes ill-defined). However, Eq. (B6) shows that the quantity relevant for Eq. (42), which

is the right-hand side of Eq. (B2), is smaller than unity, even if pµ = ςKµ. We note that a

method to desingularize the classical group velocity at the singular points exists [35].

Appendix C: Energy lower bound

Using the expression for the group velocity implied by Eqs. (B2) and (B5), we will

determine the lowest value the photon energy can reach in a particular observer frame. For

the polarization modes with λ = 0, 3 this is trivial, so we will focus on the λ = ± modes. To

find the stationary points of the energy as a function of ~p, we will determine the ~p values for
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which ~w± in Eq. (B5), vanishes. These points correspond to the lower bound for the energy,

unless the energy at the singular point (given by mγ|k0
AF |/

√
k2
AF ) is smaller.

It is straightforward to establish that ~w± vanishes if ~kAF = ~0, if k0
AF = 0, or if ~p ∝ ~kAF ,

i.e. when (~p · k̂AF ) is either |~p| or −|~p|. In all of these cases, the dispersion relation can be

solved exactly. For purely timelike and purely spacelike kµAF , the concordant-frame-positive

energy solutions are given by

E±(~p)|~kAF=~0 =
√
~p2 +m2

γ ∓ 2|k0
AF ||~p| , (C1a)

E±(~p)|k0AF=0 =

√
~p2 +m2

γ + 2~k2
AF ∓ 2

√
~k4
AF +m2

γ
~k2
AF + (~p · ~kAF )2 , (C1b)

such that

~v(±)
g

∣∣
~kAF=~0

=
~p∓ |k0

AF |p̂
E±(~p)

, (C2a)

~v(±)
g

∣∣
k0AF=0

=
~p
√
~k4
AF +m2

γ
~k2
AF + (~p · ~kAF )2 ∓ (~p · ~kAF )~kAF

E±(~p)
√
~k4
AF +m2

γ
~k2
AF + (~p · ~kAF )2

. (C2b)

The group velocity for the purely timelike case in Eq. (C2a) can only vanish for the λ = +

mode, in which case |~p| = |k0
AF |, giving a energy lower bound of

√
m2
γ − (k0

AF )2. For the

λ = − mode, the energy lower bound for the purely timelike case is the energy at the

singular point (~p = ~0), at which the group velocity becomes ill-defined. If k0
AF = 0, the

group velocity vanishes if ~p = 0 (we will deal with ~p ∝ ~kAF seperately). It follows that the

minimal energy is then given by
√
m2
γ + ~k2

AF ∓ |~kAF |.

Having dealt with the special cases of purely timelike and purely spacelike kµAF , we

proceed to the general case where the LV four vector has both nonzero time and space

components. As mentioned earlier, the group velocity then only vanishes if ~p is (anti)parallel

to ~kAF . The corresponding expressions for E±(~p) are given by:

E±(~p)|~p∝~kAF =


√
~p2 +m2

γ + ~k2
AF ± 2k0

AF (~p · k̂AF )∓ |~kAF | if
k0AF (~p·k̂AF )

|~kAF |
≤
√
~p2 +m2

γ√
~p2 +m2

γ + ~k2
AF ∓ 2k0

AF (~p · k̂AF )± |~kAF | if
k0AF (~p·k̂AF )

|~kAF |
≥
√
~p2 +m2

γ

.

(C3)

The lower expression only applies for timelike kµAF , because k0
AF (~p · k̂AF ) > |~kAF |

√
~p2 +m2

γ

requires k2
AF > 0. For k0

AF (~p · k̂AF ) = |~kAF |
√
~p2 +m2

γ, which also requires timelike kµAF and

corresponds to the singular point of Eq. (12), Eq. (C3) gives E±(~p) =
√
~p2 +m2

γ, showing
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that the energy is continuous through the singular point. However, the group velocity that

follows from Eq. (C3) is given by

~v(±)
g

∣∣
~p∝~kAF

=


~p± sgn(p̂ · k̂AF )k0

AF p̂

E±(~p)± |~kAF |
if

k0AF (~p·k̂AF )

|~kAF |
≤
√
~p2 +m2

γ

~p∓ sgn(p̂ · k̂AF )k0
AF p̂

E±(~p)∓ |~kAF |
if

k0AF (~p·k̂AF )

|~kAF |
≥
√
~p2 +m2

γ

,

(C4)

which is clearly not continuous through the singular point, because approaching from below

gives ~v
(±)
g =

(
|~kAF |
|k0AF |

±
√
k2AF
mγ

)
p̂, while approaching from above gives ~v

(±)
g =

(
|~kAF |
|k0AF |

∓
√
k2AF
mγ

)
p̂.

Using methods described in Ref. [35], one can nevertheless rigorously define the group ve-

locity at the singular points. Here we instead choose to check explicitly if the energy at the

singular point is the smallest energy value.

We can thus use Eq. (C4) to determine the lower bound for the energies, unless the

minimal energy is reached exactly at the singular point, which we check explicitly. Investi-

gating when the expression for the group velocity vanishes, while simultaneously satisfying

the condition on the right, and comparing to the energy at the singular point, we come to

the conclusion that the lower bound for the photon energies in the λ = ± modes is given by

E−(~p)|min =


mγ |k0AF |√

k2AF
if |~kAF | ≤ (k0AF )2√

(k0AF )2+m2
γ√

m2
γ − k2

AF + |~kAF | if |~kAF | ≥ (k0AF )2√
(k0AF )2+m2

γ

, (C5a)

E+(~p)|min =
√
m2
γ − k2

AF − |~kAF | , (C5b)

for timelike, lightlike, as well as spacelike kµAF . Eqs. (C5) also capture the results for the

purely timelike and purely spacelike case.

These results show, first of all, that the energy has a finite, albeit observer dependent,

lower bound. Furthermore, we confirm the results of appendix A, that the energy of the

λ = − mode is always positive, while E+(~p) can become negative if (k0
AF )2 > m2

γ.
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FIG. 1. (a) Typical plot of f0(p0) and ±fδ(p0) for timelike kAF . The plots are exaggerated in

the sense that for physically viable values of kµAF in concordant frames and for experimentally

attainable values of ~p, both fδ(p
0) and −fδ(p0) are nearly horizontal and very close to the p0-

axis. Black arrows indicate p0 values, colored arrows indicate values of the corresponding function.

(b) Corresponding plot for (f0(p0))2 and (fδ(p
0))2. The latter stays above the p0 axis, which

corresponds to the square root being always real.

FIG. 2. (a) Typical plot of f0(p0) and ±fδ(p0) for spacelike or lightlike kµAF . The plots are

exaggerated in the sense that for physically viable values of kµAF in concordant frames and for

experimentally attainable values of ~p, the two branches of both fδ(p
0) and −fδ(p0) are nearly

horizontal and very close to the p0 axis, while their starting points are also very close together.

Black arrows indicate p0 values, colored arrows indicate values of the corresponding function. (b)

Corresponding plot for (f0(p0))2 and (fδ(p
0))2. The latter goes below the p0 axis, which corresponds

to the square root becoming imaginary.
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