
SU(2NF ) symmetry of QCD at high temperature and its implications

L. Ya. Glozman
Institute for Physics, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria

If above a critical temperature not only the SU(NF )L × SU(NF )R chiral symmetry of QCD but
also the U(1)A symmetry is restored, then the actual symmetry of the QCD correlation functions
and observables is SU(2NF ). Such a symmetry prohibits existence of deconfined quarks and gluons.
Hence QCD at high temperature is also in the confining regime and elementary objects are SU(2NF )
symmetric ”hadrons” with not yet known properties.

PACS numbers:

INTRODUCTION

Nonperturbatively QCD is defined in terms of its fun-
damental degrees of freedom, quarks and gluons in Eu-
clidean space-time. These fundamental degrees of free-
dom are never observed in Minkowski space, a property of
QCD which is called confinement. Only hadrons are ob-
served. It is believed, however, that at high temperature
QCD is in a deconfinement regime and its fundamental
degrees of freedom, quarks and gluons, are liberated. Is
it true? Here we present results of our recent findings [1]
that suggest that this is actually not true.

In Minkowski space-time the QCD Lagrangian in the
chiral limit is invariant under the chiral transformations,

SU(NF )L × SU(NF )R × U(1)A × U(1)V . (1)

The axial U(1)A symmetry is broken by anomaly [2]. The
SU(NF )L×SU(NF )R symmetry is broken spontaneously
by the quark condensate in the vacuum. According to
the Bancs-Casher relation [3] the quark condensate in
Minkowski space can be expressed through a density of
the near-zero modes of the Euclidean Dirac operator,

lim
m→0

< 0|Ψ̄(x)Ψ(x)|0 >= −πρ(0) . (2)

Consequently, if we remove by hands the near-zero modes
of the Dirac operator we can expect a restoration of
the chiral SU(NF )L × SU(NF )R symmetry in correla-
tion functions. If hadrons survive this ”surgery”, then
the chiral partners should become degenerate. The chi-
ral partners of the J = 1 mesons are shown in Fig. 1.

It was observed in NF = 2 dynamical simulations with
the overlap Dirac operator that indeed hadrons survive
this truncation (except for the ground states of J = 0
mesons) and the chiral partners get degenerate [4–7].
Not only the SU(2)L×SU(2)R restoration was observed.
Mesons that are connected by the U(1)A transformation
get also degenerate. We conclude that the same low-
lying modes of the Dirac operator are responsible for both
SU(2)L × SU(2)R and U(1)A breakings, which is con-
sistent with the instanton-induced mechanism for both
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FIG. 1: SU(2)L × SU(2)R and U(1)A classification of the
J = 1 meson operators.
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FIG. 2: J = 1 meson mass evolution as a function of the
number k of truncated lowest-lying Dirac modes. σ shows
energy gap in the Dirac spectrum.

breakings [8].

Restoration of the full chiral symmetry SU(2)L ×
SU(2)R×U(1)A of the QCD Lagrangian assumes degen-
eracies marked by arrows in Fig. 1. However, a larger
degeneracy that includes all possible chiral multiplets in
Fig. 1 was detected, see Fig. 2.

This unexpected degeneracy implies a symmetry that
is larger than the chiral symmetry of the QCD La-
grangian. This not yet known symmetry was recon-
structed in refs. [9, 10] and turned out to be
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SU(2NF ) ⊃ SU(NF )L × SU(NF )R × U(1)A. (3)

This group includes as a subgroup the SU(2)CS (chi-
ralspin) invariance. The SU(2)CS chiralspin generators
are

Σ = {γ0, iγ5γ0,−γ5} , [Σi,Σj ] = 2iεijk Σk .

The Dirac spinor transforms under a global or local
SU(2)CS transformation as

Ψ→ Ψ′ = eiε·Σ/2Ψ . (4)

The γ5 generates a U(1)A subgroup of SU(2)CS . The
γ0 and iγ5γ0 mix the left- and right-handed components
of the Dirac spinors. When we combine the SU(2)CS
generators with the SU(NF ) generators we arrive at the
SU(2NF ) group.

SU(2NF ) AS A HIDDEN CLASSICAL SYMMETRY
OF QCD [11].

The SU(4) symmetry of NF = 2 Euclidean QCD was
obtained in lattice simulations. This means that this
symmetry must be encoded in the nonperturbative Eu-
clidean formulation of QCD. Obviously the Euclidean
Lagrangian for NF degenerate quarks in a given gauge
background Aµ(x),

L = Ψ†(x)(γµDµ +m)Ψ(x), (5)

is not SU(2)CS and SU(2NF )-symmetric, because the
Dirac operator does not commute with the generators of
SU(2)CS . A fundamental dynamical reason for absence
of these symmetries are zero modes of the Dirac opera-
tor, γµDµΨ0(x) = 0. The zero modes are chiral, L or
R. With a gauge configuration of a nonzero global topo-
logical charge the number of the left-handed and right-
handed zero modes is according to the Atiyah-Singer the-
orem not equal. Consequently, there is no one-to-one
correspondence of the left- and right-handed zero modes.
The SU(2)CS chiralspin rotations mix the left- and right-
handed Dirac spinors. Such a mixing can be defined only
if there is a one-to-one mapping of the left- and right-
handed spinors: The zero modes break the SU(2)CS in-
variance.

We can expand independent fields Ψ(x) and Ψ†(x) over
a complete and orthonormal set Ψn(x) of the eigenvalue
problem

iγµDµΨn(x) = λnΨn(x), (6)

Ψ(x) =
∑
n

cnΨn(x), Ψ†(x) =
∑
k

c̄kΨ†k(x), (7)

where c̄k, cn are Grassmann numbers. The fermionic part
of the QCD partition function takes the following form

Z =

∫ ∏
k,n

dc̄kdcne
∑

k,n

∫
d4xc̄kcn(λn+im)Ψ†

k(x)Ψn(x). (8)

In a finite volume the eigenmodes of the Dirac operator
can be separated into two classes. The exact zero modes,
λ = 0, and nonzero eigenmodes, λn 6= 0. It is well un-
derstood that the exact zero modes are irrelevant since
their contributions to the Green functions and observ-
ables vanish in the thermodynamic limit V →∞ as 1/V
[12–14]. Consequently, in the finite-volume calculations
we can ignore the exact zero-modes.

Now we can read off the symmetry properties of the
partition function (8). For any SU(2)CS and SU(2NF )

rotation the Ψn and Ψ†k Dirac spinors transform as

Ψn → UΨn, Ψ†k → (UΨk)†, (9)

where U is any transformation from the groups SU(2)CS
and SU(2NF ) , U† = U−1. It is then clear that the expo-
nential part of the partition function is invariant under
global and local SU(2)CS and SU(2NF ) transformations,
because

(UΨk(x))†UΨn(x) = Ψ†k(x)Ψn(x). (10)

The exact zero modes contributions

Ψ†0(x)Ψn(x),Ψ†k(x)Ψ0(x),Ψ†0(x)Ψ0(x),

for which the equation (10) is not defined, are irrele-
vant in the thermodynamic limit and can be ignored.
In other words, QCD classically without the irrelevant
exact zero modes has in a finite volume V local SU(2)CS
and SU(2NF ) symmetries. These are hidden classical
symmetries of QCD.

The integration measure in the partition function is not
invariant under a local U(1)A transformation [2], which is
a source of the U(1)A anomaly. The U(1)A is a subgroup
of SU(2)CS . Hence the axial anomaly breaks SU(2)CS
and SU(2NF )→ SU(NF )L × SU(NF )R.

In the limit V → ∞ the otherwise finite lowest eigen-
values λ condense around zero and provide according
to the Banks-Casher relation at m → 0 a nonvanish-
ing quark condensate in Minkowski space. The quark
condensate in Minkowski space-time breaks all U(1)A,
SU(NF )L × SU(NF )R, SU(2)CS and SU(2NF ) symme-
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tries to SU(NF )V . In other words, the hidden classical
SU(2)CS and SU(2NF ) symmetries are broken both by
the anomaly and spontaneously.

RESTORATION OF SU(2)CS AND SU(2NF ) AT
HIGH TEMPERATURE [1]

Above the chiral restoration phase transition the quark
condensate vanishes. If in addition the U(1)A symmetry
is also restored [15–17] and a gap opens in the Dirac spec-
trum, then above the critical temperture the SU(2)CS
and SU(2NF ) symmetries are manifest. The precise
meaning of this statement is that the correlation func-
tions and observables are SU(2)CS and SU(2NF ) sym-
metric.

These SU(2)CS and SU(2NF ) symmetries of QCD im-
ply that there cannot be deconfined free quarks and glu-
ons at any finite temperature in Minkowski space-time.
Indeed the Green functions and observables calculated
in terms of unconfined quarks and gluons in Minkowski
space (i.e. within the perturbation theory) cannot be
SU(2)CS and SU(2NF ) symmetric, because the chromo-
magnetic interaction necessarily breaks both symmetries.
Then it follows that above Tc QCD is in a confining
regime. In contrast, color-singlet SU(2NF )-symmetric
”hadrons” (with not yet known properties) are not pro-
hibited by the SU(2NF ) symmetry and can freely prop-
agate. ”Hadrons” with such a symmetry in Minkowski
space can be constructed [18].

PREDICTIONS

Restoration of the SU(2)CS and of SU(2NF ) symme-
tries at high temperatures can be tested on the lattice.

Transformation properties of hadron operators un-
der SU(2)CS and SU(2NF ) groups are given in refs.
[7, 10]. For example, the isovector J = 1 operators
Ψ̄~τγiΨ, (1−−); Ψ̄~τγ0γiΨ, (1−−); Ψ̄~τγ0γ5γiΨ, (1+−) form
an irreducible representation of SU(2)CS . One expects
that below Tc all three diagonal correlators will be dif-
ferent and the off-diagonal cross-correlator of (1−−) op-

erators will not be zero. Above Tc a SU(2)CS restora-
tion requires that all diagonal correlators should become
identical and the off-diagonal correlator of (1−−) cur-
rents should vanish. A restoration of SU(2)CS and of
SU(NF )L×SU(NF )R implies a restoration of SU(2NF ).

A similar prediction can be made with the baryon op-
erators.
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