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SU(2Nr) symmetry of QCD at high temperature and its implications

L. Ya.

Glozman

Institute for Physics, Unwwersity of Graz, Universitdtsplatz 5, A-8010 Graz, Austria

If above a critical temperature not only the SU(Ng)r X SU(NFg)r chiral symmetry of QCD but
also the U(1)a symmetry is restored, then the actual symmetry of the QCD correlation functions
and observables is SU(2Np). Such a symmetry prohibits existence of deconfined quarks and gluons.
Hence QCD at high temperature is also in the confining regime and elementary objects are SU(2Nr)
symmetric ”"hadrons” with not yet known properties.

PACS numbers:

INTRODUCTION

Nonperturbatively QCD is defined in terms of its fun-
damental degrees of freedom, quarks and gluons in Eu-
clidean space-time. These fundamental degrees of free-
dom are never observed in Minkowski space, a property of
QCD which is called confinement. Only hadrons are ob-
served. It is believed, however, that at high temperature
QCD is in a deconfinement regime and its fundamental
degrees of freedom, quarks and gluons, are liberated. Is
it true? Here we present results of our recent findings [I]
that suggest that this is actually not true.

In Minkowski space-time the QCD Lagrangian in the
chiral limit is invariant under the chiral transformations,

SU(NF)LXSU(NF)RXU(l)AXU(l)V. (1)

The axial U(1) 4 symmetry is broken by anomaly [2]. The
SU(Np)r xSU(Ng)g symmetry is broken spontaneously
by the quark condensate in the vacuum. According to
the Bancs-Casher relation [3] the quark condensate in
Minkowski space can be expressed through a density of
the near-zero modes of the Euclidean Dirac operator,

Jligo < 0|9 (z)¥(x)|0 >= —7p(0) . (2)

Consequently, if we remove by hands the near-zero modes
of the Dirac operator we can expect a restoration of
the chiral SU(Np)r x SU(Np)r symmetry in correla-
tion functions. If hadrons survive this ”surgery”, then
the chiral partners should become degenerate. The chi-
ral partners of the J = 1 mesons are shown in Fig. 1.

It was observed in Ny = 2 dynamical simulations with
the overlap Dirac operator that indeed hadrons survive
this truncation (except for the ground states of J = 0
mesons) and the chiral partners get degenerate [4H7].
Not only the SU(2) 1, x SU(2) g restoration was observed.
Mesons that are connected by the U(1) 4 transformation
get also degenerate. We conclude that the same low-
lying modes of the Dirac operator are responsible for both
SU(2), x SU(2)r and U(1)4 breakings, which is con-
sistent with the instanton-induced mechanism for both
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FIG. 1: SU(2)r x SU(2)r and U(1)a classification of the
J =1 meson operators.
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FIG. 2: J = 1 meson mass evolution as a function of the
number k of truncated lowest-lying Dirac modes. o shows
energy gap in the Dirac spectrum.

breakings [§].

Restoration of the full chiral symmetry SU(2); X
SU(2)r xU(1) 4 of the QCD Lagrangian assumes degen-
eracies marked by arrows in Fig. 1. However, a larger
degeneracy that includes all possible chiral multiplets in
Fig. 1 was detected, see Fig. 2.

This unexpected degeneracy implies a symmetry that
is larger than the chiral symmetry of the QCD La-
grangian. This not yet known symmetry was recon-
structed in refs. [9] [10] and turned out to be



SU(?NF)DSU(NF)LXSU(NF)RXU(].)A (3)

This group includes as a subgroup the SU(2)¢s (chi-
ralspin) invariance. The SU(2)¢g chiralspin generators
are

® = {72,759, =%}, (28, %7 = 2ieF 2k
The Dirac spinor transforms under a global or local
SU(2)¢s transformation as

U — 0 == B2y (4)

The 4 generates a U(1)4 subgroup of SU(2)cs. The
~% and i7°~° mix the left- and right-handed components
of the Dirac spinors. When we combine the SU(2)cs
generators with the SU(Np) generators we arrive at the
SU(2Np) group.

SU(2Nr) AS A HIDDEN CLASSICAL SYMMETRY
OF QCD [11].

The SU(4) symmetry of Ny = 2 Euclidean QCD was
obtained in lattice simulations. This means that this
symmetry must be encoded in the nonperturbative Eu-
clidean formulation of QCD. Obviously the Euclidean
Lagrangian for Np degenerate quarks in a given gauge
background A, (z),

L= \I/T(x)(’VuDu +m)¥(x), (5)

is not SU(2)¢cs and SU(2Np)-symmetric, because the
Dirac operator does not commute with the generators of
SU(2)cs. A fundamental dynamical reason for absence
of these symmetries are zero modes of the Dirac opera-
tor, v,D,Po(x) = 0. The zero modes are chiral, L or
R. With a gauge configuration of a nonzero global topo-
logical charge the number of the left-handed and right-
handed zero modes is according to the Atiyah-Singer the-
orem not equal. Consequently, there is no one-to-one
correspondence of the left- and right-handed zero modes.
The SU(2)c¢s chiralspin rotations mix the left- and right-
handed Dirac spinors. Such a mixing can be defined only
if there is a one-to-one mapping of the left- and right-
handed spinors: The zero modes break the SU(2)¢cg in-
variance.

We can expand independent fields ¥(z) and W (z) over
a complete and orthonormal set ¥, (z) of the eigenvalue
problem

DV (z) = A\ U (), (6)

U(z) = clnlx), Vi)=Y a¥i(z), (7)
n k

where ¢, ¢,, are Grassmann numbers. The fermionic part
of the QCD partition function takes the following form

7 - /Hdékdcnezhn fd4xékcn()\n+im)\I/L(w)‘lln(a;). (8)
kn

In a finite volume the eigenmodes of the Dirac operator
can be separated into two classes. The exact zero modes,
A = 0, and nonzero eigenmodes, A, # 0. It is well un-
derstood that the exact zero modes are irrelevant since
their contributions to the Green functions and observ-
ables vanish in the thermodynamic limit V' — oo as 1/V
[12H14]. Consequently, in the finite-volume calculations
we can ignore the exact zero-modes.

Now we can read off the symmetry properties of the
partition function (8). For any SU(2)cs and SU(2Np)

rotation the ¥, and \IJL Dirac spinors transform as

U, = U, Ul (U, (9)

where U is any transformation from the groups SU(2)cs
and SU(2Ng) , UT = U~1. Tt is then clear that the expo-
nential part of the partition function is invariant under
global and local SU(2)¢g and SU(2Np) transformations,
because

(UW()TUT, () = UL ()W (2). (10)
The exact zero modes contributions
Ul (), (2), UL (2)Wo(2), Ui (z)Wo (),

for which the equation is not defined, are irrele-
vant in the thermodynamic limit and can be ignored.
In other words, QCD classically without the irrelevant
exact zero modes has in a finite volume V local SU(2)cs
and SU(2Np) symmetries. These are hidden classical
symmetries of QCD.

The integration measure in the partition function is not
invariant under a local U(1) 4 transformation [2], which is
a source of the U(1) 4 anomaly. The U(1) 4 is a subgroup
of SU(2)¢s. Hence the axial anomaly breaks SU(2)cs
and SU(2NF) — SU(NF)L X SU(NF)R

In the limit V' — oo the otherwise finite lowest eigen-
values A condense around zero and provide according
to the Banks-Casher relation at m — 0 a nonvanish-
ing quark condensate in Minkowski space. The quark
condensate in Minkowski space-time breaks all U(1)4,
SU(Np)r, x SU(Ng)r, SU(2)cs and SU(2NFp) symme-



tries to SU(Np)y. In other words, the hidden classical
SU(2)cs and SU(2Ng) symmetries are broken both by
the anomaly and spontaneously.

RESTORATION OF SU(2)cs AND SU(2Nr) AT
HIGH TEMPERATURE [i]

Above the chiral restoration phase transition the quark
condensate vanishes. If in addition the U(1) 4 symmetry
is also restored [I5HI7] and a gap opens in the Dirac spec-
trum, then above the critical temperture the SU(2)cs
and SU(2Np) symmetries are manifest. The precise
meaning of this statement is that the correlation func-
tions and observables are SU(2)¢cg and SU(2Np) sym-
metric.

These SU(2)cs and SU(2Np) symmetries of QCD im-
ply that there cannot be deconfined free quarks and glu-
ons at any finite temperature in Minkowski space-time.
Indeed the Green functions and observables calculated
in terms of unconfined quarks and gluons in Minkowski
space (i.e. within the perturbation theory) cannot be
SU(2)¢s and SU(2Ng) symmetric, because the chromo-
magnetic interaction necessarily breaks both symmetries.
Then it follows that above T, QCD is in a confining
regime. In contrast, color-singlet SU(2Np)-symmetric
“hadrons” (with not yet known properties) are not pro-
hibited by the SU(2Nf) symmetry and can freely prop-
agate. "Hadrons” with such a symmetry in Minkowski
space can be constructed [I§].

PREDICTIONS

Restoration of the SU(2)cg and of SU(2Np) symme-
tries at high temperatures can be tested on the lattice.

Transformation properties of hadron operators un-
der SU(2)cs and SU(2Ng) groups are given in refs.
[7, M0]. For example, the isovector J = 1 operators
U7y, (177); U7y, (177); U7y9954" 0, (117) form
an irreducible representation of SU(2)cs. One expects
that below T, all three diagonal correlators will be dif-
ferent and the off-diagonal cross-correlator of (177) op-

erators will not be zero. Above T, a SU(2)cg restora-
tion requires that all diagonal correlators should become
identical and the off-diagonal correlator of (177) cur-
rents should vanish. A restoration of SU(2)¢s and of
SU(Npg)r x SU(NF)g implies a restoration of SU(2N).

A similar prediction can be made with the baryon op-
erators.
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