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The supersymmetric realization of inflation in F -term supergravity is usually

plagued by the well known “η” problem. In this paper, a broad class of small-field

examples is realized by employing general O’ Raifeartaigh superpotentials, where the

moduli is identified as the massless inflaton. For illustration we present the simplest

example in detail, which can be considered as a generalization of hybrid inflation.
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I. INTRODUCTION

Inflation is an extensively studied and widely accepted scenario to solve both the flatness

and horizon problems in the early Universe. For a review, see, e.g. [1]. On the other hand,

Supersymmetry (SUSY) is a scenario to deal with the divergent problem of Standard Model

Higgs mass, which is inferred to probably play an important role in the high energy region

(far above the weak scale) from both the null results at particle colliders (e.g., LHC) as well

as dark matter direct detection experiments (e.g., LUX). Therefore, it is natural to ask the

question whether inflation and SUSY are connected.

When we explore high energy physics near the Planck mass scale mP , gravitational effect

has to be taken into account. This implies that one should discuss the realization of such

kind of inflation in the context of Supergravity. Given the structure of potential Vlocal =

V F
local + V D

local in supergravity, studies on the SUSY realizations of inflation can be divided

into two classes - the F-term and D-term supergravity. In the former one, in unit of Planck

mass

V F
local = eK

[

DiWK−1
ij∗Dj∗W

∗ − 3 | W |2
]

(1)

where K(Φi) andW (Φi) is the Kahler and superpotential, respectively, and covariant deriva-

tive DiW = ∂iW +KiW , with index i referring to a chiral superfield Φi. The expotential

factor eK introduces the well known “η” problem to F -term Supergravity. For reviews, see,

e.g, [2, 3]. Progresses along this line are significantly improved by Kallosh et al [4], where

the authors gave a prescription to construct a general potential of inflation, but with the

price of some specific shift symmetry as required in the Kahler potential.

There is no such “η” problem in D-term supergravity [5]. Along this line, it was firstly

proposed by Halyo [6] that a positive and non-zero D-term naturally realizes inflation. Un-

fortunately, by following the insights in [7], the Fayet-Iliopoulos term itself is not consistent

with the supergravity.

In this paper, we focus on the realization of inflation in F -term supergravity. Unlike in

[4], we turn to the canonical Kahler potential 1 without any specific shift symmetry. In

order to keep our calculations perturbatively valid, we restrict to the small-field inflation2.

1 η problem which may be induced by operators with mass dimension higher than four in the Kahler

potential will not be discussed here.
2 For examples of the large-field inflation such as chaotic inflation, see, e.g., [8, 9].
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Previous studies under these same assumptions in the literature include hybrid inflation [10],

new inflation [11] and single-field inflation [12].

The plan of this paper is organized as follows. In Sec.II we give a prescription to construct

a general superpotential without the η problem for canonical Kahler potential. We find that

it is actually valid for O’ Raifeartaigh (O’ R) superpotential. In Sec.III we present a new

example with the simplest O’ R superpotential for illustration. This model obviously differs

from the hybrid inflation in the sense that there is no need of a critical mass scale σc to end

inflation although it gives rise to a spectral index similar to the hybrid inflation. Finally, we

conclude in Sec.IV.

II. O’ R SUPERPOTENTIAL WITHOUT η PROBLEM

This section is devoted to a prescription, from which there is no η problem for a renor-

malizable superpotential W and canonical Kahler potential K. In order to provide inflation

the potential V in Eq.(1) must be positive and non-zero. Consider that for the small-field

inflation the local potential is well approximated to

V F
local ≈ V F

global +O(1/m2
P ). (2)

This requirement is equivalent to that the global SUSY should be broken | Fi |
2 6= 0. Mean-

while, the inflaton mass should be always small [13, 14] (in compared with the Hubble

parameter H) in order to evade the η problem, and the others scalars’ masses should be

comparable with H if one considers a realization of single-field inflation 3. This requirement

is equivalent to that there exists a flat direction with the modulus identified as the inflaton

superfield X .

In the global version of SUSY the two requirements above can be satisfied simultaneously

by choosing general O’ R superpotential,

W (X,χi) = X(µ2 + f(χi)) + g(χi), (3)

where X and χi are chiral superfields, and functions f(χi) and g(χi) are defined as 4,

f(χi) = aijχiχj,

g(χi) = bijχiχj + bijkχiχjχk. (4)

3 Note that H2 ≈ Vglobal/3 in unit of Planck mass.
4 In principle, linear terms like aiχi and biχi may appear in f(χi) and g(χi), respectively. However,

the former probably introduce dangerous mixing between X and χi, and the later introduce new linear

structure except X in the superpotential. These terms can be forbidden by adjusting their R charges.



4

The coefficients aij, bij , etc, are assumed to be real for simplicity, and µ is the SUSY breaking

scale. The superpotential is only linear function of X , from which with suitable R charge

assignments the minimal value of V is determined by [15],

FX |〈χi〉= µ2, Fχi
|〈χi〉= 0, and X arbitrary (5)

Now, let us examine whether there is indeed no η problem in the local version in Eq.(1) for

superpotential in Eq.(3) with the structure of vacuum in Eq.(5). After a detailed calculation

we find that 5,

V F
local = eK ·

{

A0 + [A1X + h.c] + A2 | X |2 +[A3X | X |2 +h.c] + A4 | X |4
}

, (6)

where

A0 = | FX |2 + | Fχi
|2 + | g |2 (| χi |

2 −3) + [g∗Fχi
χi + h.c]

A1 =
(

F ∗
χi
χ∗
i + g∗ | χi |

2 −2g∗
)

FX

A2 = − | FX |2 + | FX |2| χi |
2 + | g |2

A3 = g∗FX

A4 = | FX |4 . (7)

Eq.(6) is organized in powers of X , the benefit of which is that the terms of mass squared for

X can be easily extracted from individual terms in Eq.(6) after one expands the expotential

factor eK ≈ 1+ | X |2 + | χi |
2.

Under the small-field approximation (| X |<< 1 etc.) we obtain the final expression for

V F
local,

V F
local ≈ Ã0 + [Ã1X + h.c] + Ã2 | X |2 +[Ã3X | X |2 +h.c] + Ã4 | X |4

+ [Ã5X | X |4 +h.c] + Ã6 | X |6 + · · · (8)

where we have ignored higher-dimensional operators suppressed by mP . Here, functions Ãi

are given by,

Ã0 = (1+ | χi |
2)A0, Ã1 = (1+ | χi |

2)A1

Ã2 = A0 + (1+ | χi |
2)A2, Ã3 = A1 + (1+ | χi |

2)A3

Ã4 = A2 + (1+ | χi |
2)A4, Ã5 = A3, Ã6 = A4 (9)

5 Keep in mind that operators with mass dimensions higher than 4 are compensated by the correct powers

of Planck mass.



5

From Eq.(8) the mass squared m2
X is read as,

m2
X =

[

| FX |2 + · · ·
]

+ (1 + · · · )
[

− | FX |2 + · · ·
]

+O(| X | /mP ) (10)

where we have used FX |〈χi〉= µ2 and · · · represent contributions from high-dimensional

operators. Clearly, m2
X = 0 at the leading order, and its smallness in compared with H2

still holds as long as we restrict to the small-field inflation.

One may also verify that all the masses squared for χi are of order H
2 from Ã0 in Eq.(9)

and Eq.(7). It results from the fact that there is only one non-zero F -term in the minimal

of V .

In summary, for small-field approximation our statements about masses for X and χi are

always true as long as the mass scales of coefficients aij , bij , etc, in Eq.(4) are all of the order

µ for O’ R superpotential. In the light of our results it is easy to understand why there is

no η problem in some simple inflation models such as hybrid inflation (g = 0, f = χ̄χ) in

the literature. We refer this broad class of small-field inflation models as O’ R inflation.

III. AN EXAMPLE

By following the results in the previous section, in this section we propose a concrete and

simple example for illustration. As we will see, this new inflation model obviously differs

from the hybrid inflation in the sense that there is no tachyon mass problem, although it

gives rises to a similar spectral index.

A. Inflaton effective potential

We begin with the simplest O’ R model [16] in the class of superpotentials defined in

Eq.(3),

W = X(µ2 +
1

2
hχ2

1) +mχ1χ2. (11)

In this model the SUSY-breaking vacuum is described by χ1,2 = 0 and arbitrary X , and

V F
global =| FX |2= µ4. After substituting 〈f〉 |χ1,2=0= 0 and 〈g〉 |χ1,2=0= 0 into Eq.(8) one

can verify that mX = 0. So, X is the candidate of inflaton. Note that the structure of

superpotential in Eq.(11) allows a Z2 symmetry. In order to avoid possible production of

domain wall [17] due to this Z2 symmetry, we simply assume that it has been explicitly
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broken by higher dimensional operators [18]. It is expected that the domain wall problem

can be resolved in more general O’ R model without the aid of higher dimensional operators.

In order to derive the effective potential for X we firstly calculate the mass spectral for

the chiral superfields χ1,2. By virtue of the standard formulas, the scalar masses squared

M2
B and the fermion masses squared M2

F are given by, respectively,

M2
B = m2 ·















| ǫX |2 +1 ǫX ǫµ 0

ǫ∗X 1 0 0

ǫµ 0 | ǫX |2 +1 ǫ∗X

0 0 ǫX 1















(12)

and

M2
F = m2 ·















| ǫX |2 +1 ǫX 0 0

ǫ∗X 1 0 0

0 0 | ǫX |2 +1 ǫ∗X

0 0 ǫX 1















, (13)

where ǫX = h | X | /m and ǫµ = hµ2/m2.

Here a few comments are in oder regarding the magnitude of ǫX and ǫµ. First, if ǫµ < 1

fields χi would be decoupled from field X , inflation will nerve end. In the following analysis

we will impose ǫµ ≥ 1. Second, for µ is far below the Planck mass the ratio ǫX/ǫ
1/2
µ = h1/2 |

X | /µ is larger than unity, which implies that the magnitude of ǫX is larger than unity as

well. It can be verified that for such ǫX and ǫµ the signs of determinant of M2
B in Eq.(12)

and that of M2
F in Eq.(13) are both positive, and the effective potential for the inflaton

(σ =| X |) can be approximated as,

Veff(σ) = µ4

[

1 +
h2

16π2
log

(

hσ

Λ

)

+ σ6 + · · ·

]

, (14)

where Λ denotes the renormalizable scale in the model, and non-renormalizable terms with

mass dimensions higher than σ6 are neglected.
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B. Fit to inflationary parameters

Now we discuss the implications in the simplest O’ R inflation model. First, we count

the total number of e-folds during inflation,

Ntot =

∫ σi

σend

V

V ′
dσ =

∫ σi

σd

dσ

6σ5
+

∫ σd

σend

16π2

h2
σdσ ≃ π4/3h−4/3

[

(

1

144

)1/3

+

(

16

3

)1/3
]

,

(15)

where σi and σend is the initial and end value of inflaton (in unit of Planck mass), respectively,

and σd ≃ (h2/96π2)1/6 being the critical value above (below) which the non-renormalizable

term (log-term) dominates the inflation. Eq.(15) shows that the period between σin and σd

gives rise to ∼ 10% contribution to Ntot. From Eq.(15) the requirement of the e-fold number

Ntot = 50(60) then leads to h = 0.27(0.24).

Second, consider the period between σd and σend. The slow roll parameters are given by,

ǫ =
1

2

(

V ′

V

)2

≃
h2

64π2N
,

η =
V ′′

V
≃ −

1

2N
, (16)

where N is the e-fold number corresponding to the inflaton value σN =
√

Nh2/8π2 during

inflation. From Eq.(16) one finds that i) the magnitude of | ǫ | is small in comparison

with | η | due to the one-loop factor suppression. ii), Unlike the hybrid inflation where

σend is approximately determined by the critical value σc, for our model where there is no

critical mass scale corresponding to tachyon mass σend is determined to be h/4π by taking

| ηend |= 1. To summarize, σd ≃ 0.21 and σend ≃ 0.02 for Ntot = 50.

In terms of the slow roll parameters in Eq.(16) the main inflationary parameters measured

by experiments are given by,

ns = 1− 6ǫ+ 2η ≃ 1−
1

N
,

dns

dln k
≃ 16ǫη − 24ǫ2 ≃ −

h2

8π2N2
,

r = 16ǫ ≃
h2

4π2N
,

Rs =
1

24π2

V

ǫ
≃

8µ4N

3h2
, (17)

where ns is the spectral index, dns/dln k is the running, r is the tensor-to-scalar ratio, andRs

is the amplitude of primordial fluctuations. In Fig.1 we show the parameter space by fitting
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FIG. 1. Parameter space in the plane of h−N . the curves of r and ns are shown in green and red,

respectively. Only Regions between the right-hand side of the red line ns = 0.98 and left-hand side

of the red line ns = 0.982 are allowed.

ΛCDM+r+nrun

ns 0.9721 ± 0.011 (68% CL)

dns

dlnk −0.0038 ± 0.0068 (68% CL)

r0.01 ≤ 0.075 (95% CL)

ln(1010Rs) 3.117 ± 0.021 (68% CL)

TABLE I. The latest experimental limits at 68% CL on the inflationary parameters in the cosmo-

logical model ΛCDM+r+nrun from P15 +BK14 +BAO15 data combination [19].

to the experimental constraints on the inflationary parameters in Table.I. It shows that only

regions between the right-hand side of the solid red line ns = 0.98 and left-hand side of the

dotted red line ns = 0.982 are allowed. We would like to mention that the spectral index in

this model is mainly sensitive to the total number of e-folds during inflation. Typically, we

have ns ∼ 0.98, r ∼ 10−6 and dns/dln k ∼ 10−7.

Let us examine the constraints on magnitude of h. Substituting the experimental value

R ≃ 2.44× 10−9 in Table I into the last formula in Eq.(17) gives rise to µ ≃ 2.0× 10−3h1/2

for N = 50, which together with ǫX ≥ 0.1 and ǫµ ≥ 1 implies σend ≥ 2.5 × 10−4. At the
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meantime, h is fixed to 0.24 − 0.27 as required by Ntot = 50 − 60, which is consistent with

this bound.

Finally, we would like to mention that there remain a few issues to be addressed for

a complete phenomenological study. First, it is likely to tune the value of ns from the

expectation value of hybrid inflation (∼ 0.98) to the favored value of Planck data (∼ 0.974

[20]) by taking the effect of reheating into account. See, e.g., [21]. Second, the tuning of

initial condition and gravitino overproduction problem usually plague SUSY driven inflation

model. See Refs. [22, 23] for similar discussions in hybrid inflation. These aspects are beyond

the scope of this paper.

IV. CONCLUSION

A prescription to construct a general superpotential without the η problem for canonical

Kahler potential has been addressed in the F -term supergravity. We have verified that it

is valid for O’ R superpotential at least for the small-field inflation. Also, the simplest

O’ R model is studied in detail for illustration, which is found to be similar to the hybrid

inflation. Since there is no need of a critical mass scale σc to end the inflation, it can be

considered as a generalization of hybrid inflation. Although it is not a concrete statement,

the constraint on the spectral index in the simplest O’ R model may be relaxed in some

non-minimal examples.
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