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Abstract

We propose a description of the Higgs boson as top-antitop quark bound state within a nonlocal relativistic

quark model of Nambu – Jona-Lasinio type. In contrast to models with local four-fermion interaction, in the

nonlocal generalization the mass of the scalar bound state can be lighter than the sum of its constituents. A

simultaneous description of the experimentally determined values for both, the top quark mass and the scalar

Higgs boson mass, is achieved by adjusting the interaction range and the value of the coupling constant.
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I. INTRODUCTION

The Higgs boson is a key ingredient of the Standard Model (SM), because it provides a de-

scription of spontaneous electro-weak SU(2)L × U(1)Y symmetry breaking [1–3], for a review

see [4]. Almost half a century of experimental quest for this last undiscovered piece of the SM

ended in 2012 when ATLAS and CMS experiments at CERN announced the discovery of new

particle, which matches requirements for the Higgs boson [5, 6]. The measured decay rates, and

in particular two photon branching ratio, suggest that it is a short lived state of spin 0 and mass

125 GeV. Despite this obvious success, the theoretical interpretation of this scalar field as a fun-

damental object leads to a number of conceptual problems: naturalness problem [7], problem of

triviality [8] and the hierarchy problem.

An alternative to the elementary Higgs was proposed independently by Weinberg [9] and

Susskind [10]. They proposed new fermions which were coupled by a new strong force into a

scalar particle. The interaction and the fermions were named technicolor and techniquarks, re-

spectively. The theory predicts masses of the ”ordinary” quarks and leptons, which match phe-

nomenological data after complicated manipulations [11, 12]. Even after introducing these exten-

sions technicolor had problems with flavour changing neutral currents (FCNC) which have been

solved only for the first two families by introducing the walking coupling constant [13–15]. With

technicolour there occurred also a problem with precision electroweak measurements [16–19].

For a recent description of the 125 GeV Higgs boson as a light technicolor scalar within a walking

technicolor approach see, e.g., [20].

A different approach is the minimal supersymmetric standard model (MSSM) [21]. Supersym-

metry could be a solution of the naturalness problem, because radiative corrections of fermions are

divergent only logarithmically. Through supersymmetry transformations scalar loop corrections

follow the same pattern. However, a general problem with supersymmetric models is that they

predict superpartner particles for all known bosons and fermions with the same mass spectrum,

distinguished from each other only by their spin. This has not been experimentally observed yet.

This problem can be avoided by a very high (� 1 TeV) supersymmetry violation scale. There are

various supersymmetric models which predict measurable phenomena (see, e.g., [22, 23]).

There are also many exotic approaches to Higgs boson ranging from interpretations as a topo-

logical object to models which avoid the naturalness problem by introducing extra dimensions (for

a review see, e.g., [24]).
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The first attempts to relate the symmetry breakdown of the standard model with a dynamical

mechanism that generates the quark masses and describes the Higgs as a scalar composite particle

have been made by Terazawa et al. [25] in the attempt to unify particles and forces on the subquark

level [26] by employing a model of the Nambu–Jona-Lasinio type [27, 28]. Focussing on the dy-

namical chiral symmetry breaking in the top quark sector Nambu [29], Miransky et al. [30, 31] and

Bardeen, Hill and Lindner [32] developed further the idea to use the local Nambu – Jona-Lasinio

(NJL) model for a description of the mechanism for generating the bare mass mt of the top quark

and the Higgs boson as a scalar t̄t bound state with a mass of 2mt before renormalization-group

corrections (see, e.g., Ref. [33] for a review on this model for dynamical chiral symmetry break-

ing and mesonic bound state generation in the light quark sector of low-energy QCD). They also

described the quark loop corrections to the W± and Z0 boson masses within the renormalization-

group setting of the standard model and gave predictions for both, the Higgs boson and the top

quark masses. At the time when Ref. [32] was written, the mass of Higgs boson and the mass of

the top quark were unknown. Nowadays it is plain that the application of the local NJL model is

not consistent with the data, basically because of the scalar meson bare mass formula which yields

2mt for the composite Higgs mass.

In this paper we propose to revisit the idea of a composite Higgs boson within a nonlocal

generalization of the Nambu model, which describes a scalar quark-antiquark bound state with

a mass that is below the sum of the constituent quark masses. This has been demonstrated for

the light quark sector in ref. [34]. In this paper we shall apply the nonlocal NJL model for the

first time to the problem of spontaneous top quark mass generation and composite Higgs boson

as a scalar t̄t bound state. We shall demonstrate within a single-flavor model that the physical

top and Higgs masses as they are known now from experiment can be described simultaneously.

The generalization of such a model to the flavor doublet structure of the standard model is the

straightforward along the lines of [32]. This next step is deferred to future work.

II. NONLOCAL NAMBU QUARK MODEL FOR SCALAR BOUND STATE

In order to introduce the nonlocal effective theory we consider the ansatz of a local current-

current vertex, but with nonlocal particle currents. Early versions of the nonlocal generalization of

the NJL model have been given, e.g., in [34–36], see also [37]. We will follow here the introduction

of the covariant separable model in [38], but specialize it to the instantaneous case as in [34]. The
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effective action for non-local Nambu model has the form

S =

∫
d4x

[
q̄(x)(−i∂/)q(x)− G

2
J(x)J(x)

]
, (1)

where as the main difference between to the local NJL models for the current J(x) a nonlocal

generalization is introduced in the form [38]

J(x) =

∫
d4z g(z) q̄(x+

z

2
)q(x− z

2
), (2)

with g(z) being a formfactor which is responsible for the spatial nonlocality of the current. Local

models are a limiting cases of this form for g(z) = δ(4)(z). We will choose specific ansätze for

this form factor when performing the numerical solutions in Sect. III.

The quark mass is described by a gap equation and the mass of mesonic bound states is obtained

from the Bethe-Salpeter equation in the corresponding interaction channel. For the derivation of

these equations we use standard procedures [33] (for the nonlocal generalization see, e.g., [34]).

Using Hubbard–Stratonovich bosonisation [39, 40], we obtain the action in the form

S/V (4) = −tr {ln [(γµkµ) + g(k)σ]}+
σ2

4G
. (3)

where tr{. . . } = Nc

∫
d4k

(2π)4
trD{. . . } strands for the trace in color, Dirac and 4-momentum spaces,

respectively. Next we expand the effective action in powers of the fluctuation δσ of the scalar

meson field σ around its vacuum expectation value v,

σ = v + δσ, (4)

and obtain up to quadratic order

S/V (4) =
v2

4G
+
vδσ

2G
+

(δσ)2

4G
− tr

[
lnG−1

MF (k, k0)
]
− tr [GMF (k, k0)g(k)] δσ

− 1

2
tr [g(k)GMF (k, k0)δσ g(k)GMF (k, k0)δσ] , (5)

where the inverse mean field propagator is

G−1
MF (k, k0) = γµkµ −m(k), (6)

with the dynamical quark mass

m(k) = g(k)v . (7)
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In order to assure stationarity of the action (5) with respect to small fluctuations about v, the

contribution linear in δσ has to vanish. This condition defines the meanfield gap equation which

after performing Dirac trace, color summation and k0 integration [33] takes the form

v = 2GNc

∫
d3k

(2π)3
g2(k)

v

E(k)
, (8)

where Nc is the number of colors, g(k) is the form factor, which depends of a regularization

method, and E(k) is the relativistic dispersion relation

E(k) =
√
k2 +m2(k). (9)

The scalar quark-antiquark bound state which we shall denote as Higgs boson is described

by the Bethe-Salpeter equation for the nonlocal theory. The inverse propagator G−1
H (q, q0) of

the Higgs boson is defined by the terms in the action (5) which are quadratic in the sigma field

fluctuations

G−1
H (q, q0) =

1

2G
− ΠH(q, q0) , (10)

where the polarisation function is defined as

ΠH(q, q0) = tr [g(k) GMF (k, k0) g(k + q) GMF (k + q, k0 + q0)] . (11)

The scalar meson mass is obtained by the mass pole condition defined with the polarization func-

tion for a meson at rest (q = 0) as

1− 2GΠH(0,mH) = 0. (12)

After evaluating the traces implied in the definition (11) and introducing the notation for averages

of a momentum-dependent quantity A(p) (for details, see [34]),

〈〈A〉〉 =

[∫
dpp2 g

2(p)

E(p)

A(p)

E2(p)−m2
H/4

] [∫
dpp2 g

2(p)

E(p)

1

E2(p)−m2
H/4

]−1

, (13)

we obtain the Higgs boson mass formula

m2
H = 4m2(0)− 4〈〈m2(0)−m2(p)〉〉. (14)

This Higgs boson mass formula (14) is the key result of this paper. It explains how for a nonlocal

quark model the mass of the scalar bound state can be lighter than the sum of the masses of its

quark constituents due to their momentum dependence.
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When the quark mass function drops with increasing momentum as in the cases of the example

form factors of our nonlocal quark model, the second term in Eq. (14) leads to a reduction of the

scalar meson mass and makes it a true bound state with a finite binding energy. This fact allows

the simultaneous description of the Higgs boson as a scalar bound state of a top-antitop quark pair

with their physical masses, for which holds mH = 0.718 mt. This means that the Higgs boson

as a composite of two top quarks is a strongly bound state! In the following section we perform

the corresponding numerical solutions for this model for three examples of formfactor functions

defining the nonlocal model and demonstrate that indeed the wanted solutions can be found.

III. RESULTS

In the chiral limit, quarks remain massless until a critical value for the dimensionless cou-

pling GΛ2 is reached. This critical value GcΛ
2 depends on the choice of the form factor. In our

model calculations we will employ two types of form factors, namely the Gaussian and generalized

Lorentzian type,

gG(k) = exp
(
− k

ΛG

)2

(15)

gL(k) =
1

1 +
(
k

ΛL

)2α , (16)

where Λ is the effective range of the interaction in momentum space and α is a parameter regulat-

ing the shape of the generalized Lorentzian formfactor. The latter facilitates the regularization of

the otherwise divergent loop integrals for the original Lorentzian formfactor (α = 1).

The solutions of the quark mass gap equation (8) are shown in Fig. 1 for the top quark mass

mt = m(k = 0) = g(0)v = v in units of the interaction range Λ. The values of the critical

coupling are indicated by the fancy cross in Fig. 1 and their values are given in the first column of

Tab. I.

Only massive quarks can form a bound state. The maximal mass of a true bound state is given

by the sum of the masses of its constituents which for a quark-antiquark bound state is twice the

constituent mass.

The ratio of the Higgs boson mass to the top quark mass ismH/mt = 0.718. In Fig. 2 this value

is marked by a thin red dash-double dotted line. We show in this figure the possible values of the

ratio mH/mt for different formfactors. For all formfactors one finds a value for GΛ2 matching the

experimental constraint. Using in addition the dependence of the dimensionless top quark mass
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GcΛ
2 GΛ2 Λ G

[GeV] [10−3 GeV−2]

Lorentzian, α = 1.01 1.70 3.35 42.21 1.88

Lorentzian, α = 2.00 2.10 7.74 42.85 4.16

Gaussian 3.28 6.01 58.10 1.79

TABLE I: Dimensionless critical coupling constant GcΛ2 for the onset of spontaneous chiral symmetry

breaking (first column), the value of the dimensionless coupling for which the physical ratio of Higgs to top

quark mass is obtained (second column, see Fig. 2), the cut-off parameter Λ which follows for this value

and the physical top quark mass (third column) and corresponding coupling constant G (last column). All

values are given for three different form factors g(x).

FIG. 1: Dimensionless mass of the top quark vs. dimensionless coupling constant GΛ2. The square boxes

indicate the values of the dimensionless coupling for which the ratio of Higgs mass to top quark mass

assumes the physical value, see Fig. 2.

mt/Λ on GΛ2 as shown in Fig. 1, one can fix the cut-off parameter Λ and the coupling constant

G. The resulting values are presented in table I.
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FIG. 2: Ratio of the Higgs boson and top quark masses in dependence of the dimensionless coupling GΛ2

for three form factor models. The square boxes denote the values of the dimensionless coupling for which

the mass ratio assumes the physical value, shown by the thin, red dash-double-dotted line.

The values of coupling constant G are about two orders of magnitude larger than the Fermi

constant of the weak interaction GF = 1.664 × 10−5GeV−2. This fact may be attributed to the

nonlocality of the model as opposed to the local Fermi model. It would be interesting in an

extension of this study to investigate other formfactors of the nonlocal NJL model approach.

IV. CONCLUSIONS

We have revisited the dynamical top quark mass generation mechanism that was studied by

Bardeen, Hill and Lindner within the local NJL model now within a nonlocal generalization and

obtained a composite Higgs boson as a scalar top-antitop quark bound state with a mass well

below that of the local NJL mass formula for which mH = 2mt before renormalization-group

correction. We isolated the effect of nonlocality in a generalized Higgs boson mass formula that

allowed us to describe simultaneously the now experimentally known masses of the Higgs boson

and the top quark, with a ratio mH = 0.718 mt, by properly choosing the two free parameters of
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the single-flavor nonlocal NJL model. In this way we could overcome an obstacle for the previous

local NJL model setup and can proceed with a nonlocal generalization of [32] in subsequent work.

There are other recent revivals of the top quark condensation approach to quark mass generation

which deserve attention (see [41] predicting mH = mt/
√

2) but which go beyond the scope of the

present letter.
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