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Abstract

We find a general expression for the one-loop self-energy function of neutral ρ-meson due to
π+π− intermediate state in a background magnetic field, valid for arbitrary magnitudes of the
field. The pion propagator used in this expression is given by Schwinger, which depends on a
proper-time parameter. Restricting to weak fields, we calculate the decay rate Γ(ρ0 → π+ + π−),
which changes negligibly from the vacuum value.

1 Introduction

Though some steller objects (like neutron star) were long known to possess magnetic fields [1, 2, 3], the
realization, that such fields are created in noncentral collisions of heavy ions [4, 6, 7, 5], has initiated
looking for effects of this background magnetic field on various observables [8, 9, 10, 11]. Thus its effect
on dilepton production [12, 13, 14] and on resonances created in the hadron phase [15, 16, 17, 18, 19]
are investigated in detail. A more involved effect of this background field, called the chiral magnetic
effect, demonstrates the topological nature of the QCD vacuum [4, 20, 21]. Apart from these effects in
heavy ion collisions, the magnetic field can enhance the symmetry breaking of a theory, e.g. it increases
the magnitude of the quark condensate, which breaks the flavor symmetry of QCD [22, 23, 24].

Here we investigate the effect of an external magnetic field in the decay of ρ-meson in the dominant
channel ρ0 → π+ + π− [15], which may affect the estimate of pion production in noncentral heavy
ion collisions. This decay rate may be obtained from the imaginary part of the self energy graph of
ρ-meson with two pion intermediate state (Fig 3.4). The effect of the external field can be included
in the decay process by taking the modified pion propagation in this field.

Such a modified (scalar and spinor) propagator in coordinate space has been derived long ago
by Schwinger [25], to all orders in the external electromagnetic field, as an integral over proper time.
Working in quantum electrodynamics, he used it to find corrections to Maxwell Lagrangian. But for the
electron self energy function, he wrote the usual form, namely an integral over intermediate momentum
kµ with the electron propagator that depends on the kinematical momentum Πµ, containing the
electromagnetic potential Aµ. Then the shift of the origin in k space, necessary in carrying out
the k integration, cannot be made, owing to the noncommutativity of the components of Πµ. He
circumvented this difficulty by an ingenius ξ-device1 and evaluated the self energy function analytically
for weak and strong magnetic fields.

∗aritra.bandyopadhyay@saha.ac.in
†mallik@theory.saha.ernet.in
1Ref [26], vol II, p. 224; vol III, p. 145
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In this work we write the pion self energy in coordinate space with pion propagators as given by
Schwinger. There is no difficulty here as it contains no operators. The resulting expression is Fourier
transformed to go over to momentum space. Having obtained the ρ0 self energy for a general external
field, we find its decay rate in a weak magnetic field.

In Section 2 we outline Schwinger’s derivation of scalar propagator in coordinate space. In Section
3 we find the ρ meson self energy, first in a general background field and then specialize it to magnetic
field. In Section 4 we calculate the decay rate to order quadratic in the magnetic field. Finally a
general discussion of our method is given in the last Section 5. An Appendix evaluates the relevant
integrals.

2 Scalar Propagator

The Lagrangian for charged pions of mass m interacting with an external electromagnetic field Aµ(x)
is

L = [(∂µ + ieAµ)φ]
† (∂µ + ieAµ)φ−m2φ†φ. (2.1)

giving the equation of motion for the pion field as
[

(∂µ + ieAµ)(∂
µ + ieAµ) +m2

]

φ(x) = 0. (2.2)

The pion propagator is defined as

G(x, x′) = i〈0|Tφ(x)φ†(x′)|0〉, (2.3)

where T represents the time ordering and |0〉 is the vacuum for the quantum fields. The propagator
satisfies

[

(∂x
µ + ieAµ)(∂

µ
x + ieAµ) +m2

]

G(x, x′) = δ4(x− x′). (2.4)

We now review the steps arising in Schwinger’s derivation of the exact propagator. If we introduce
states labeled by space-time coordinates, G(x, x′) may be written as the matrix element of an operator
G

G(x, x′) = 〈x′|G|x〉, (2.5)

when we can express Eq.(2.4) as an operator equation

(−Π2 +m2)G = 1, (2.6)

where Πµ = pµ − eAµ, pµ = i∂µ and they satisfy the commutation relations,

[xµ,Πν ] = −igµν , [Πµ,Πν ] = −ieFµν . (Fµν = ∂µAν − ∂νAµ) (2.7)

The operator equation (2.6) has the formal solution

G =
1

−Π2 +m2
= i

∞
∫

0

ds U(s), (2.8)

where2

U(s) = e−iHs, H = −Π2 +m2. (2.9)

2Here m2 is understood to be m2
− iǫ, the infinitesimal providing the convergence to s integral and the boundary

conditions for the time ordered propagator.
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This notation emphasizes that U(s) may be regarded as the operator describing the dynamics of a
particle governed by the Hamiltonian ‘H’ in the proper time parameter ‘s’. The spacetme coordinate
xµ = (t, ~x) of the particle depends on this parameter.

In the Heisenberg representation the operator xµ and Πµ have the ‘time’ dependence

xµ(s) = U †(s)xµU(s), Πµ(s) = U †(s)ΠµU(s), (2.10)

and the base ket and bra evolve as

|x′; s〉 = U †(s)|x′〉, 〈x′; s| = 〈x|U(s). (2.11)

Then the construction of G(x′, x) reduces to the evaluation of

〈x′′|U(s)|x′〉 = 〈x′′; s|x′; 0〉, (2.12)

which is the transformation function from a state in which the position operator xµ(s = 0) has value
x′µ, to a state in which xµ(s) has the value x′′µ. The equations of motion for the operators following
from Eq.(2.10) are

dxµ
ds

= −i [xµ,H] ,
dΠµ

ds
= −i [Πµ,H] . (2.13)

The transformation function itself can be found by solving the differential equation satisfied by it,

i
d

ds
〈x′′; s|x′; 0〉 = 〈x′′; s|H(x(s),Π(s))|x′; 0〉, (2.14)

and
(

i∂x′′

µ − eAµ(x
′′)
)

〈x′′; s|x′; 0〉 = 〈x′′; s|Πµ(s)|x′; 0〉, (2.15)

along with a similar one for Πµ(0), with boundary conditions

〈x′′; s|x′; 0〉
∣

∣

∣

s→0
= δ4(x′′ − x′), lim

s→∞
〈x′′; s|x′; 0〉 = 0. (2.16)

We now specialize to constant field strength, for which the eqs.(2.13) can be solved exactly. Then
Eqs.(2.13) become, which in matrix notation reads

dx

ds
= 2Π,

dΠ

ds
= 2eFΠ. (2.17)

The second equation of (2.17) can be immediately solved to give

Π(s) = e2eFsΠ(0). (2.18)

With this solution the first equation of (2.17) yields the solution

x(s)− x(0) =
e2eFs − 1

eF
Π(0). (2.19)

Using (2.18) and (2.19) and the antisymmetry of the field tensor (Fµν = −F νµ) we get

Π2(s) = (x(s)− x(0))K(x(s) − x(0)), K =
e2F 2

4
[sinh(eFs)]−2 . (2.20)
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To evaluate the matrix element on the right of Eq.(2.14), we need to order the operator x(s) to the
left of x(0), which would require the commutator

[xµ(s), xν(0)] = i

(

e2eFs − 1

eF

)

µν

. (2.21)

Then we get

〈x′′; s|H(s)|x′; 0〉 = f(x′′, x′; s)〈x′′; s|x′; 0〉, (2.22)

where

f = −(x′′ − x′)K(x′′ − x′)− i

2
tr [eF coth(eFs)] +m2, (2.23)

with tr indicating the trace over 4× 4 matrices. Eq.(2.14) can now be solved as

〈x′′; s|x′; 0〉 = C(x′′, x′) exp

[

−i
∫

ds′f(x′′, x′; s)

]

= C(x′′, x′)
1

s2
e−L(s) exp

[

− i

4
(x′′ − x′)R(s)(x′′ − x′)− i(m2 − iǫ)s

]

, (2.24)

where3,

L(s) =
1

2
tr ln

[

(eFs)−1 sinh(eFs)
]

, R(s) = eF coth(eFs). (2.25)

The s-independent function C can be found by solving Eq.(2.15)

C(x′′, x′) = C(x′′) exp



−ie
x′′
∫

x′

dξ

[

A(ξ) +
1

2
F (ξ − x′)

]



 . (2.26)

As A(ξ) + 1
2F (ξ − x′) has vanishing curl, it can be written as

C(x′′, x′) = C Φ(x′′, x′) ; Φ(x′′, x′) = exp



−ie
x′′
∫

x′

dξA(ξ)



 , (2.27)

where the integration in the phase factor Φ runs on a straight line between x′ and x′′ and the F term
vanishes. The constant C is given by the first boundary condition of (2.16) as

1 =
C

s2

∫

d4x exp

(

− i

4s
x2

)

. (2.28)

This integral is evaluated in the Appendix, to give C = −i/(4π)2.
We finally get the transformation function as

〈x′′; s|x′; 0〉 = − i

(4π)2s2
Φ(x′′, x′) e−L(s) ×

exp

[

− i

4
(x′′ − x′)R(s)(x′′ − x′)− i(m2 − iǫ)s

]

, (2.29)

3In writing L(s) we follow Schwinger in choosing the integration constant to make C independent of external field
and also in extracting the coordinate independent, singular s behavior.
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Figure 1: Self energy graph of ρ-meson from two-pion intermediate state in presence of magnetic field
of arbitrary strength.

which in turn gives the propagator

G(x′′, x′) = i

∞
∫

0

ds 〈x′′; s|x′; 0〉. (2.30)

In our work below we shall encounter the product of propagators, G(x′, x′′)G(x′′, x′) with derivatives
acting on them. Without the derivatives, the phase factor in G would cancel out mutually. In presence
of derivatives we can still get rid of the phase factors, if we make a gauge choice in the potential,
replacing Aµ with

A′
µ(x) = Aµ(x)− ∂µλ(x), λ(x) =

x
∫

x′

dξµ Aµ(ξ), (2.31)

when Eq.(2.4) is satisfied by G without the phase factor Φ 4. In the following we choose this gauge to
write G(x′′, x′) without this phase.

3 ρ self-energy in external field

We now express the self energy graph of Fig. 3.4 in terms of pion propagators in external field given
by Eqs.(2.29) and (2.30). We first keep the external (constant) field a general one, specializing later
to the interesting case of pure magnetic field.

3.1 General field

We take a phenomenological Lagrangian forρππ interaction,

Lint = igρµ(x)φ†(x)
←→
∂µφ(x), (3.1)

The coupling g can be found from the experimental decay width Γ(ρ0 → π+π−) = 149 MeV in vacuum
to give g = 6.0. We now work out the complete ρ-propagator

D′
λσ(z, z

′) = i〈0|Tρλ(z)ρσ(z′) exp
(

i

∫

dx Lint(x)
)

|0〉,

to order g2 in the interaction representation. We take the ρ field as free5, but the pion field lives in
the background electromagnetic field. Contracting the fields for graph of Fig. 1, we get

D′
λσ(z − z′) = Dλσ(z − z′) +

∫

d4x′d4x′′Dλµ(z − x′)Σµν(x′ − x′′)Dνσ(x
′′ − z), (3.2)

4Ref [26], vol I, p. 271;
5The ρ meson would acquire an external field dependent mass [15]. But we do not include it here, as we are interested

in the imaginary part of the self energy.
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where Σ is the self-energy tensor involving the two pion propagators. The propagators are distinguished
only by their proper times s1 and s2, over which they are integrated. Carrying out the derivatives
contained in Lint on these propagators, we get [27, 28]

Σµν(x) = −i
( g

32π2

)2
∫

ds1ds2
s21s

2
2

exp [−L1 − L2] Λµν(x) (3.3)

with

Λµν(x) =
[

xα(R1 −R2)
αµ(R1 −R2)

νβxβ + 2i(R1 +R2)
µν
]

×

exp

[

− i

4
xα(R1 +R2)

αβxβ − im2(s1 + s2)

]

. (3.4)

Here L1 = L(s1), L2 = L(s2) and similarly for R1, R2.
Having obtained equation (3.2) in configuration space, we go over to momentum space by taking

Fourier transforms. Letting Kµν(x) to denote any of the Dµν(x),D
′
µν(x) and Σµν(x), their Fourier

transforms are defined as

Kµν(x) =

∫

d4q

(2π)4
e−i q·xKµν(q)

and Eq. (3.2) becomes

D′
λσ(q) = Dλσ(q) +Dλµ(q)Σ

µν(q)Dνσ(q). (3.5)

The vacuum and the complete propagator of ρ meson are given by

Dλσ(q) =
(

−gλσ +
qλqσ
m2

)

D(q2), D(q2) =
−1

q2 −m2
ρ + iǫ

, (3.6)

D′
λσ(q) =

(

−gλσ +
qλqσ
m2

)

D′(q2), (3.7)

where D′(q2) is the function we want to find.
A simplification results on noting that the ρ field is coupled to a conserved pion current in the

interaction lagrangian given by Eq. (3.1). As a result, contracting qµ and qν of the ρ propagators with
Σµν in the second term of Eq.(3.5) yield zero. We are then left with the metric tensor in ρ propagator.
Contracting further the indices σ and λ we get

−3D′(q2) = −3D(q2) +D(q2)Σ(q)D(q2). (3.8)

Here Σ(q) is the Fourier transform of Σµν(x) after contracting the indices,

Σ(q) = −i
( g

32π2

)2
∫

ds1ds2
s21s

2
2

exp [−L1 − L2] Λ(q) (3.9)

with

Λ(q) = exp
[

−im2(s1 + s2)
]

∫

d4x
[

xρ(R1 −R2)
2
ρσx

σ + 2igµν(R1 +R2)
µν
]

×

exp

[

iq · x− i

4
xα(R1 +R2)αβx

β − im2(s1 + s2)

]

. (3.10)
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Clearly the expression for Σ is divergent, to which we have to add renormalization counterterms.
Beside cancelling the divergent pieces, we shall choose the finite pieces in the counterterms, such that
the total self energy Σtot satisfies

Σtot(q
2 = m2

ρ) = 0;
dΣtot(q)

dq

∣

∣

∣

∣

∣

q2=m2
ρ

= 0.

Then mρ will remain the physical ρ-meson mass and g, the renormalized ρππ coupling. We shall come
back to this renormalization in Section 4 below.

Including the sum of all reducible graphs in Eq.(3.8) we get the Dyson-Schwinger equation for the
ρ propagator as

D′(q2) = D(q2)− 1

3
D(q2)Σ(q)D′(q2), (3.11)

giving

D′(q2) =
−1

q2 −m2
ρ − 1

3Σ(q)
. (3.12)

In the neighbourhood of physical ρ-meson pole, it gives the decay width Γ(ρ0 → π+π−) with back-
ground electromagnetic field as

Γ = − ImΣ

3mρ
. (3.13)

Below we shall calculate ImΣ.

3.2 Pure magnetic field

We derived above the expressions for the pion propagator and the consequent ρ-meson self energy in
a general background external field Fµν . We now specialize this field to magnetic field B in the z
direction, i.e. F 21 = −F 12 = B and all other components zero. We can diagonalize this 2× 2 matrix,
in which only the coordinates x′1 and x′2 are involved. After diagonalization, the quantities involving
matrices reduce to,

L(s) = ln
[

(eBs)−1 sin(eBs)
]

, R = 2eB cot(eBs) +
2

s
,

(x′′ − x′)R(s)(x′′ − x′) = −(x′′ − x′)2⊥eB cot(eBs) + (x′′ − x′)2
q

1

s
, (3.14)

where (x′⊥)
2 = (x′ 1)2 +(x′ 2)2; (x′

q
)2 = (x′ 0)2− (x′ 3)2. With these values, Eqs.(2.29) and (2.30) give

the pion propagator in the magnetic field as

G(x) =
eB

(4π)2

∞
∫

0

ds

s sin(eBs)
exp

[

ix2⊥
eB

4
cot(eBs)− i

4s
x2
q
− i(m2 − iǫ)s

]

. (3.15)

Then the corresponding ρ self energy in momentum space can be obtained from Eqs. (3.9) amd (3.10).
It will involve two integrals over the proper time s1 and s2 of the propagating pions. We change these
variables to s and u defined by

s1 = su , s2 = s(1− u) , ds1 ds2 = s ds du. (3.16)
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Introducing for short

α = (eB)2 [cot(eBsu)− cot(eBs(1− u))]2 ,

β =
1

s2

(

1

u
− 1

(1− u)

)2

,

γ =
eB

4
[cot(eBsu) + cot(eBs(1− u))] ,

δ =
1

4su(1− u)
. (3.17)

we can now write the self energy as

Σ(q⊥, qq) = −i
( g

32π2

)2
∞
∫

0

ds

s

1
∫

0

du

u(1− u)

(eB)2Λ(s, u)

sin(eBsu) sin(eBs(1− u))
, (3.18)

with

Λ(s, u, qq, q⊥) = e−im2s

∫

d4xeiq·x
[

−αx2⊥ + βx2
q
+ 16i(γ + δ)

]

exp
(

iγx2⊥ − iδx2
q

)

, (3.19)

which is evaluated in the Appendix yielding

Λ(s, u) =
π2

γδ

[

α

γ

(

1− iq2⊥
4γ

)

+
β

δ

(

1 +
iq2

q

4δ

)

− 16(γ + δ)

]

× exp

[

−iq
2
⊥

4γ
− i

{

m2 − q2
q
u(1 − u)− iǫ

}

s

]

. (3.20)

Note that all the parameters α, β, γ and δ are positive.
The iǫ prescription in Eq.(3.19) makes the integration line in the s-plane run infinitesimally below

the real axis, avoiding the singularities of the integrand. Then we can get rid of oscillations in it by
deforming the integration line. As u(1 − u) ≤ 1/4 for 0 < u < 1, the quantity

[

m2 − q2
q
u(1− u)

]

appearing in Eq.(3.19) is positive, if we take q2
q
< 4m2, precluding physical pion pair creation. For

such values of q2
q
we take a closed contour in the fourth quadrant, with vanishing contribution from

the quarter circle6. Changing the integration variable s = −it on the imaginary axis, we get

Σ(q⊥, qq) =
( g

32π

)2
∞
∫

0

dt

t

1
∫

0

du

u(1− u)

(eB)2Λ′(t, u)

sinh(eBtu) sinh(eBt(1− u))
, (3.21)

where Λ′ is related to Λ by the change of variable. To write Λ′, we define a new set of variables from
Eq.(3.17),

α′ = (eB)2 [coth(eBtu)− coth(eBt(1− u))]2 ,

β′ =
1

t2
(1− 2u)2

u2(1− u)2
,

γ′ =
eB

4
[coth(eBtu) + coth(eBt(1− u))] ,

δ′ =
1

4tu(1− u)
. (3.22)

6Ref [29], p. 322;
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In terms of these variables, we have

Λ′ =
1

γ′δ′

[

α′

γ′

(

1− q2⊥
4γ′

)

+
β′

δ′

(

1 +
q2
q

4δ′

)

− 16(γ′ + δ′)

]

× exp

[

− q2⊥
4γ′
−

{

m2 − q2
q
u(1− u)

}

t

]

. (3.23)

Another form of Σ, which will be useful for the discussion below may be obtained by scaling t with
eB, that is, we set t̄ = eBt, when Σ becomes

Σ =

∞
∫

0

dt̄

t̄

1
∫

0

du

u(1− u)

Λ̄

sinh(t̄u) sinh(t̄(1− u))
, (3.24)

where

Λ̄ =
1

γ̄δ̄

[

ᾱ

γ̄

(

eB − q2⊥
4γ̄

)

+
β̄

δ̄

(

eB +
q2
q

4δ̄

)

− 16eB(γ̄ + δ̄)

]

× exp

[

−q2⊥
4γ̄
−

{

m2

eB
− q2

eB
u(1− u)

}

t

]

, (3.25)

with

ᾱ = [cot(t̄u)− cot(t̄(1− u))]2 , β̄ =
1

t̄2

(

1

u
− 1

(1− u)

)2

,

γ̄ =
1

4
[cot(t̄u) + cot(t̄(1− u))] , δ̄ =

1

4t̄u(1− u)
. (3.26)

4 ρ-meson decay

As already stated, the self energy function in Eq.(3.21) is valid for momenta, for which the ρ-meson
cannot decay into a pion pair. To calculate this decay rate we therefore need to continue Eq.(3.21)
beyond such momenta [29]. This process of analytic continuation is immediate, if we can evaluate
the t integral analytically. However the exact expression (3.24) for Σ containing various hyperbolic
functions, makes it difficult to do so. The procedure here is to consider separately weak (eB < m2) and
strong (eB > m2) fields7. As strong fields are considered extensively in the literature [15, 16, 17, 18],
we take up the case of weak fields, which is realized, in particular, in the hadronic phase of noncentral
heavy ion collisions. In this case the exponential in Eq.(3.25) shows that only correspondingly small
values of t can contribute. We can then expand the different functions in powers of t. To get the
leading effect, we need to keep only the first two terms in their expansions. After some algebra, we
get the self energy as

Σ(q2) =
( g

2π

)2 1

2

∞
∫

0

dt

1
∫

−1

dv(D +
(eB)2

6
F ) exp

[

−
{

m2 − q2

4
(1− v2)

}

t

]

, (4.1)

where

D =
v2

t

q2

4
− 2

t2
,

F =
3

2
(1− v2)− v2

4

{

q2 − 2(1 − v2)q2⊥
}

t. (4.2)

7Ref [26], vol III, p. 161-163;
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Here a numerical factor of 44 has been put into the coupling constant factor. Also for convenience,
the variable u is replaced by 1

2(1 + v).
As the terms in D do not depend on the magnetic field and we want to calculate the change in ρ

meson decay width in this magnetic field, it is clear that our calculation will not involve D. However
we want to show the nature of those terms. To this end, consider the first term in D, behaving as t−1.
Integrating partially w.r.t v, it gives

( g

2π

)2 q2

4

1
∫

0

dv v2
∞
∫

0

dt

t
exp

[

−
{

m2 − q2

4
(1− v2)

}

t

]

=
( g

2π

)2 q2

12





∞
∫

0

dt

t
e−m2t +

q2

2

1
∫

0

dv v4
∞
∫

0

dt exp

[

−
{

m2 − q2

4
(1− v2)

}

t

]



 (4.3)

where the divergence at t = 0 is isolated in the first term. The second term in D behaving as t−2 can
also be put in a similar form after integrating twice partially w.r.t v. These are the local divergent
terms, which we expected in Section 3 for the general field case and are analogous to those appearing
in loop integrals over intermediate momenta in conventional field theory. As a consistency check in
our calculation, let us note that though individual terms in Λ′ given by Eq.(3.23) do contain (eB)2

dependent divergent terms, they cancel out in the complete expression for Λ′, showing that divergences
originate only from the vacuum piece of self energy, as expected.

Going back to the eB dependent self energy given by the F terms in Eq.(4.2), we rewrite it as

ΣeB(q
2) =

( g

2π

)2 (eB)2

6
Σ(q2) (4.4)

where

Σ(q2) =

1
∫

0

dv

[

3

2
(1− v2) +

v2

4

{

q2 − 2(1− v2)q2⊥
} ∂

∂m2

]

×
∞
∫

0

dt exp

[

−
{

m2 − q2

4
(1− v2)

}

t

]

. (4.5)

We are now in a position to carry out the analytic continuation mentioned at the beginning of the
section. If we hold the q2 variable in the region q2 < 4m2, the t integration is well defined and can be
integrated trivially to give

Σ(q2) =
3

2

1
∫

0

dv
1− v2

m2 − q2(1− v2)

+
∂

∂m2

1
∫

0

dv

[

v2

4

{

q2 − 2(1− v2)q2⊥
}

]

1

m2 − q2(1− v2)
. (4.6)

It can now be continued for q2 < 4m2 in the q2 plane with a cut along the real axis for 4m2 < q2 <
∞. To display this cut structure explicitly, we write Σ(q2) as a dispersion integral by changing the
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integration variable v to q′2 given by v =
√

1− 4m2/q′2, getting

Σ(q2) =

∞
∫

4m2

dq′2

q′2
1

q′2 − q2

(

1 +
12m2

q′2

)(

1− 4m2

q′2

)−1/2

+
1

2

∂

∂m2

∞
∫

4m2

dq′2

q′2
1

q′2 − q2

(

q2 − 8m2

q′2
q2⊥

)(

1− 4m2

q′2

)1/2

. (4.7)

It’s imaginary part is given by the discontinuity across the cut

ImΣ(q2) =
1

2i

[

Σ(q2 + iǫ)− Σ(q2 − iǫ)
]

, q2 > 4m2

= − π

q2

[

(

1− 12m2

q2
− 8m2

q2
q2⊥
q2

)(

1− 4m2

q2

)−1/2

+
4q2⊥
q2

(

1− 4m2

q2

)1/2
]

. (4.8)

From Eqs.(3.13), (4.4) and (4.8), we get the corresponding change in width as

ΓeB =
g2

4π

(eB)2

18m3
ρ

[

1− 10
m2

m2
ρ

+ 4
q2⊥
m2

ρ

(

1− 4m2

m2
ρ

)

+O
(

m2

m2
ρ

)2
]

. (4.9)

Taking m2/m2
ρ = 1/30, it becomes

ΓeB =
g2

4π

(eB)2

27m3
ρ

(

1 +
26

5

q2⊥
m2

ρ

)

. (4.10)

For eB < m2 and q2⊥ < m2
ρ, it gives ΓeB < 0.6 MeV. The smallness of ΓeB may be explained by the

fact that while the (small) pion mass is the scale entering in the self energy loop, it is evaluated at a
(large) external momentum of ρ meson mass. Also note that there is no pion mass in the denominator
of Eq.(4.8). It is protected by chiral symmetry (m→ 0), according to which physical quantities must
be finite in this limit.

In passing, we note that the effect of temperature on the decay width of ρ-meson has been discussed
extensively in the literature [30]. Here we have investigated the effect of weak magnetic fields on the
same quantity and found it to be negligible with respect to the thermal effects.

5 Discussion

In earlier calculations of hadron properties in a magnetic field [15, 16, 17, 18], the majority of works
consider strong fields, taking the contribution of the leading Landau level for the system. A result
to note at this point is that for strong enough fields the main decay channel, such as ρ0 → π+ + π−

that we are considering, may become closed. It is due to the generation of an effective pion mass
m̄2 = m2 + eB, causing the phase space for the process to shrink as the magnetic field becomes
stronger [15].

In the present work we investigate the decay by setting up a general framework, valid for both
weak and strong magnetic fields. It is obtained by writing the ππ loop in the correction to the ρ
propagator in configuration space, with pion propagator as given by Schwinger [25]. When Fourier
transformed, it gives the ρ meson self energy (3.21) as an integral over proper times, which is defined
for momenta below the two-pion threshold.

If we now restrict the general representation Eq.(3.21) to weak fields (eB < m), the exponential
factor in it (or quivalently Eq.(3.25)) shows the leading contribution to arise from the neighbourhood
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of proper time t = 0, when we can expand the hyperbolic functions in powers of t. Still remaining
below the two-pion threshold, we can integrate the resulting terms to get a series in powers of (eB)2.
These terms can be simply continued beyond the threshold and the imaginary part of the self energy
giving the decay width can be determined. In this work we retain only the (eB)2 terms, though
calculation of higher order terms is also straightforward. As we show at the end of Section 4, the
change in the decay width from the vacuum value turns out to be negligibly small.

So far we only discussed the effect of weak magnetic fields. But as already emphasized, strong field
effects can also be obtained from the same general formula Eq.(3.21). For eB > m2, the exponential
in this formula shows that large values of t would also contribute. It is thus simple to keep the leading
term in different hyperbolic functions. Collecting the exponentials in Eq.(3.21), we get

exp

[

− q2⊥
2eB

− {m2 + eB − q2
q
u(1− u)}t

]

giving the effective pion mass, as mentioned above.
There are at least two other methods of calculating the decay rate. One is Schwinger’s ξ-device

mentioned in Section 1 and the other is the Ritus method of eigenfunction expansion [31]. It will be
interesting to get comparable values from these methods.
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A Integrals

Here we evaluate the integrals in Eq. (2.28) and (3.19), paying attention to the phases appearing in
the manipulations. First consider

I =

∫

d4x e−ix2/4s ≡ J3K, s > 0, (A.1)

where

J = 2

∞
∫

0

dx1 eix
2

1
/4s, K = 2

∞
∫

0

dx0 e−ix2

0
/4s. (A.2)

For J we put x21/4s = u to get

J = 2
√
s

∞
∫

0

du u−1/2 eiu.

To avoid oscillations in the integrand, we take the contour of Fig.2a in the first quadrant of the complex
u plane, so that the contribution from the quarter circle vanishes. As there is no singularity within
and on the contour, the Cauchy formula gives

J = −2
√
s

0
∫

i∞

du u−1/2 eiu.

If we now put u = exp (iπ/2) t on the integration line along the imaginary axis, we get

J = 2
√
s eiπ/4

∞
∫

0

dt t−1/2 e−t = eiπ/4
√
4πs, (A.3)
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(a) (b)

Figure 2: Closed contour in u plane in both first and fourth quadrants.

the integral being the familiar Gamma function Γ(1/2) =
√
π. The integral K can be evaluated in the

same way, taking the contour of Fig.2b in the fourth quadrant, making the contribution of the quarter
circle to vanish. We then get

K = e−iπ/4
√
4πs. (A.4)

Putting the results (A.3) and (A.4) in (A.1) we get

I = i(4πs)2. (A.5)

Next we consider the Fourier transform Eq.(3.19)

Λ(s, u, qq, q⊥) = e−im2s

∫

d4x eiq·x
[

−αx2⊥ + βx2
q
+ 16i(γ + δ)

]

exp
(

iγx2⊥ − iδx2
q

)

.

Here the basic integrals are

L1 =

+∞
∫

−∞

dx2⊥ e−iq⊥·x⊥+iγx2

⊥ ,

L2 =

+∞
∫

−∞

dx0 eiq0x0−iδx2

0 ,

L3 =

+∞
∫

−∞

dx3 e−iq3x3+iδx2

3 ,

in terms of which the Fourier transform may be written as

Λ = iα
dL1

dγ
L2L3 + iβ

(

L1
dL2

dδ
L3 + L1L2

dL3

dδ

)

+ 16 i (γ + δ) L1L2L3. (A.6)

The basic integrals are generally of the same form as J and K, if we complete the squares in the
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exponents. Thus

L1 = e−iq2
⊥
/4γ

+∞
∫

−∞

dx2⊥ exp

[

iγ

(

x⊥ −
q⊥
2γ

)2
]

,

= e−iq2
⊥
/4γπ

∞
∫

0

dt eiγt,

on substituting x⊥ → x⊥+q⊥/2γ and using polar coordinates. Taking a contour in the first quadrant,
we get

L1 = eiπ/2
π

γ
e−iq2

⊥
/4γ . (A.7)

In the same way we can evaluate the integrals L2 and L3 by taking contours respectively in the fourth
and first quadrants,

L2 = e−iπ/4

√
π√
δ
eiq

2

0
/4δ , (A.8)

L3 = eiπ/4
√
π√
δ
e−iq2

3
/4δ . (A.9)

Putting these values of integrals Li, i = 1, 2, 3, in (A.6) we get Λ as given by Eq.(3.20) in the text.
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