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Abstract

Experimental data on proton-proton interactions in high energy
collisions show quite a special and unexpected behaviour of the pro-
portion of elastic scattering compared to inelastic processes with in-
creasing energy. It decreases at the beginning (at comparatively low
energies) but then starts increasing. From Intersecting Storage Rings
(ISR) energies of 23.5 - 62.5 GeV up to higher energies 7 - 13 TeV
at the Large Hadron Collider (LHC) it increases by a factor more
than 1.5! According to intuitive classical ideas we would expect a sta-
ble tendency with increasing proportion of the break-down of protons
compared to their survival probability. One can assume that either
the asymptotic freedom or the extremely short time of flight of high
energy protons through each other are in charge of such a surprising



effect. The unquestionable principle of unitarity combined with the
available experimental data on elastic scattering is used to get new
conclusions about the shape of the interaction region of colliding pro-
tons. Its evolution at present energies is considered. Some predictions
about its behaviour at even higher energies are described with dif-
ferent assumptions on relative roles of elastic scattering and inelastic
processes. The shape can transform rather drastically if the propor-
tion of elastic processes keeps rising. This unexpected property leads
to an unexpected corollary. The possible origin of the effect and its
interrelation to the strong interaction dynamics are speculated.

1 Foreword

If a cup falls to the floor, it breaks up to pieces but sometimes stays intact.
The harder it hits the floor, the less chance to be unbroken.

If two high energy protons collide, many new particles (mostly pions) are
produced, but sometimes they scatter elastically and retain their entity. It is
surprising enough that at very high collision energies the proportion of elastic
processes increases with increasing energy from the ISR to the LHC.

This unexpected and paradoxical phenomenon and ilts consequences at
present and higher energies are discussed in the review.

2 Introduction

One gets often accustomed to unexpected facts and they become just either
the everyday reality or the trivial observation. However sometimes they stay
unexplained for a long time.

In the 50-th, the strong interactions of hadrons impressed the physics
community by production of resonances in the pion-proton collisions. Af-
terwards, the resonances filled in all the tables of elementary particles and
became the well known phenomenon. This process lasts up to now with the
discovery of the famous Higgs-boson or by the ”closure” of the massive two-
photon resonance. The phemnomenon is described in terms of the dynamical
levels of the system.

However not all the discoveries have the required interpretation. In the
beginning of the 70-th, it was unexpectedly found that the total cross section
of the interaction of positively charged kaons with protons became increasing



with the energy increase already at energies of the Protvino accelerator up
to 70 GeV in the rest (laboratory) system of one of the protons or about 12
GeV in the center-of-mass system. Let us remind that up to that time it
was commonly believed that hadronic cross sections must either decrease or
tend to constant values with energy increase. This belief was first strongly
shuttered by the so-called ”Serpukhov effect”. Nowadays it is well known that
the total cross section of interaction of high energy protons steadily increases
with the increase of energy of colliding partners. The elastic scattering cross
section as well as the cross section of inelastic processes increase with energy
also. Both the larger intensity of the interaction due to the larger number
of the actively participating partons (mostly, gluons) and its larger spatial
extention can be in charge of that behaviour. Moreover, it happens that
all hadronic cross sections increase with energy. Almost half a century has
passed since then but no fundamental explanation of such behaviour in the
quantum field theory has been proposed. Phenomenologically, it is usually
described nowadays by the power-law energy dependence due to exchange by
the so-called supercritical Pomeron. Its dynamical origin is yet unclear.

It is less known that experimental data hide another quite surprising and
completely unexpected phenomenon of increase of the ratio of elastic to in-
elastic (or total) cross sections with energy increase in the interval from ISR
(20-60 GeV in the center-of-mass system) [, 2] to the highest explored ac-
celerator energies at LHC (7-13 TeV) [3] [4, [5]. The share of elastic collisions
in the total outcome of all processes used to decrease at lower energies that
coincided with our expectations. However, it reversed the tendency at ISR
(the corresponding data were analyzed by me and the table with them was
demonstrated earlier in Physics-Uspekhi journal [0l [7]). Their relative roles
evolve drastically. The inelastic cross section is about 5 times larger than the
elastic one at ISR while their ratio decreases to 3 at LHC energies. Accord-
ing to the intuitive classical ideas we would expect the opposite behaviour
with increasing probability of the break-down of both colliding protons into
more and more ”pionic pieces” compared to their survival probability, when
protons are scattered purely elastically. Moreover, this increasing proportion
of elastic scattering approaches such critical value at LHC energies [8, 9, [10]
which, probably, indicates the transition to some principally new regime of
interactions. Somehow the protons tend to keep their entity while colliding
with higher and higher energies. No reliable explanation to this fact exists
as well! Some simplest proposals are considered only.

Here, we show the consequences of such an increase at present energies



in the picturesque presentation of the spatial interaction regions of colliding
protons. We describe their possible non-trivial evolution at higher energies
if this tendency persists. The adopted approach relies only on the unitarity
condition and experimental data about elastic scattering of protons. No phe-
nomenological input has been used. That assures the validity of conclusions.
The results of some phenomenological models are discussed just to provide
additional support to our statements.

The general indubitable principle of conservation of total probability
known in particle physics as the unitarity condition relates elastic and in-
elastic processes. Sum of their ratios to total outcome should be equal 1.
Therefrom, some knowledge about inelastic processes can also be gained us-
ing the elastic scattering data. The latter ones depend on smaller number
of variables. Thus they can be analyzed more easily. Surely, from another
side, that leads to the somewhat restricted sample of conclusions about in-
elastic processes which one gets from the unitarity condition. Nevertheless,
one gains some knowledge about the spatial interaction region of protons at
present energies and its possible evolution at higher energies.

From the heuristic point of view, the increase of the share of elastic scat-
tering to the critical value attained at LHC can for the first time reveal the
transition from the traditionally considered branch of the unitarity condi-
tion dominated by inelastic processes (where elastic scattering is treated as
the shadow of inelastic collisions) to another branch with the dominance of
elastic scattering. That would require the completely new physical interpre-
tation of the mechanism of proton (hadron) interactions and, probably, the
formulation and further studies of new dynamical equations.

The increase of the proportion of the elastic scattering processes reveals
itself, first of all, in the spatial evolution of the elastic and inelastic interaction
regions of colliding protons from ISR to LHC energies. It happened to be
instructive to learn that the inelastic interaction region becomes more Black
(absorptive) at the center, has steeper Edges (sharper decrease) and enLarges
in size due to its periphery (the so-called BEL-scenario [I1]) with energy
increase in this energy interval. Even though the form of these regions can
not be measured directly in experiment, this knowledge has been used, for
example, for interpretation of some peculiar features of experimental data
on jet production at 7 TeV. Also, it inspires theoretical ideas about possible
experimental implications of their further evolution at higher energies. If
the noticed tendency persists at higher energies, the profiles of both elastic
and inelastic interactions can change drastically and show quite unexpected
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features, especially in the case of head-on collisions. Thus the BEL-scenario
can be replaced by the absolutely new toroid-like regime with the enlarged
role of elastic scattering for central collisions. It could be named as TEH-
regime (Toroidal Elastic Hollow).

No explanation of this phenomenon at present energies has yet been pro-
posed. What concerns our attempts to extrapolate it to higher energies, we
hope that experimental studies of elastic scattering of polarised protons or
charge asymmetries of pions produced in inelastic collisions (or other yet
unexploited observations) could help in the proper choice of different possi-
bilities. From the theoretical side, one can try to use more traditional QCD
approach with enlarged fluctiations of gluon fields at collisions or revolu-
tionary speculate on peculiar properties of solitons and instantons using the
corresponding equations in attempts to find a reasonable explanation.

Let us stress once again that he approximations adopted in the consid-
ered approach are completely justified so that one can claim that all results
are obtained directly from combination of the two well-grounded sources -
the unitarity condition and experimental data about elastic scattering and
do not require any phenomenological input and modelling. Therefore the de-
rived conclusions are very reliable. Their extrapolation to ever higher energy
regions relies on the only assumption that the tendency of the increase of
the share of elastic scattering experimentally observed in the energy interval
from ISR to LHC will persist there as well.

The structure of this review is as follows. In section 3 we start with the
description of general features of experimental results on elastic scattering of
protons. Then the effective theoretical tool of the unitarity condition is in-
troduced in section 4. There we discuss the accuracy of main approximations
for elastic scattering amplitude which will be necessary for reliable estimates
in the framework of the unitarity condition. It is applied further in section
5 to the special case of central head-on collisions of protons which allows to
demonstrate typical features of unitarity constraints. Then in section 6 the
transverse spatial shapes of the inelastic and elastic interaction regions at
current energies are demonstrated and their energy evolution is discussed.
Possible extrapolations of the profiles of interactions beyond modern (LHC)
energies to asymptotics are presented in section 7 for different assumptions
on the energy behaviour of the proportion of elastic scattering. Finally, some
conclusions are given at the very end of the paper. Some assumptions about
possible dynamical origin of the observed effect are discussed as well.



3 Elastic scattering

The information about elastic scattering of protons comes from the measure-
ment of the differential cross section do/dt at some energy s as a function
of the transferred momentum ¢ at its experimentally accessible values. It is
related to the scattering amplitude f(s,t) in the following way

O 7.0 = (Ref(s.0)* + (1 f(s,))" )
The variables s and —t are the squared total energy 2F and the squared trans-
ferred momentum of the two colliding protons in the center-of-mass system
s = 4E* = 4(p*+m?) (p is the proton’ momentum) and —t = 2p*(1—cos ) at
the scattering angle #. From this measurement one gets the knowledge only
about the modulus of the amplitude, i.e. about the sum of the squared values
of its real and imaginary parts but not about their signs. The Coulomb scat-
tering contribution to it can be neglected everywhere except small angles.
However, namely there the Coulomb scattering of the electrically charged
protons appears to be comparable to their nuclear interaction. The inter-
ference between the nuclear and Coulomb contributions to the amplitude f
becomes quite large and allows to find out from the shape of the experimen-
tal differential cross section the ratio of the real and imaginary parts of the
elastic scattering amplitude p(s,t) = Ref(s,t)/Imf(s,¢). This can be done
just in forward direction ¢ = 0 p(s,0) = po (to be more precise, extremely
close to it) but not at any other values of ¢.

The typical shape of the experimentally measured differential cross sec-
tion at high energies shown in Figures contains some characteristic features.
Those are the above mentioned interference region at extremely small values
of |t], almost invisible in Fig. 1, the exponentially decreasing (with increase
of |t|) diffraction cone with energy dependent slope B(s) (Fig. 1), the dip
(Fig. 2) and more slowly decreasing tail at larger transferred momenta with
much smaller values of the cross section compared to the diffraction cone
(Fig. 2).

3.1 The diffraction cone

The diffraction cone is shown in Fig. 1. Protons scatter mainly at processes
with small transferred momenta. The differential cross section is much larger
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Fig. 1. The differential cross section of elastic proton-proton scattering at
V/$=7 TeV measured by the TOTEM collaboration (Fig. 4 in [3]).
The region of the diffraction cone with the |t|-exponential decrease is shown.

there than at larger transferred momenta. Its exponential parameterization
is demonstrated by the straight line at the logarithmic scale.

There are several tiny features of this plot. In the very narrow region
of extremely small transferred momenta the amplitude is represented by the
sum of the nuclear and Coulomb amplitudes. Their interference produces
some increase of the differential cross section in there. It has been used
for estimates of the real part of the amplitude. Moreover small deviations
of the order of 1 per cent from the exponential shape (invisible in Fig. 1)
were noticed at the extremely precise measurements at 8 TeV [4]. Also one
can see the somewhat steepened shape at the very end of the diffraction cone
approximated there by another exponent (the dashed line) which differs from
the leading one albeit not very strongly and the whole effect is noticeable only
in a very small interval of transferred momenta. Let us note that at lower
energies the shape was slightly flattened but not steepend. The impact of all
these specific features on our further calculations is easily estimated. It will
be shown very small bcause we will use the averaged integrated parameters.
Threfore in what follows we adopt the simple exponential parameterization of
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Fig. 2. The differential cross section of elastic proton-proton scattering at
v/s=7 TeV measured by the TOTEM collaboration (Fig. 4 in [4]).

The region beyond the diffraction peak is shown. The predictions of five
phenomenological models are demonstrated.



the diffraction cone which is precise enough for the corresponding transferred
momenta and has been used by experimentalists:

5.0~ 2 expl (o2 @)
where 0;,(s) is the total cross section and B(s) is the energy dependent slope
of the diffraction cone.

3.2 The real part of the elastic scattering amplitude

Some theoretical information about the energy behaviour of the real part
of the forward scattering amplitude can be obtained from the dispersion
relations which follow from the analyticity property of the amplitude. They
relate it to the integral of the imaginary part at zero angle, i.e. to the total
cross section according to the optical theorem (see Eq. below). Using
reasonable extrapolations of the total cross section to higher energies it was
predicted long ago [12, [13| [I4] that at high energies the real part is small
compared to the imaginary part and their ratio is about 0.12 - 0.15 with
slow decrease at asymptotic energies. Both real and imaginary parts are
positive at t = 0 due to positivity of the latter. These predictions were
confirmed by experiment. At LHC energies the measured ratios range is 0.12
- 0.145 [3, B, [15]. Thus the real part only contributes about 1 - 2% to the
differential cross section at t = 0.

What concerns the behaviour of the real part as a function of the trans-
ferred momentum, some general theoretical guesses [16], 7] indicated that
it can become zero somewhere within the diffraction cone. Therefore its de-
crease inside the diffraction cone should be steeper than for the imaginary
part, and, consequently, its integral contribution from this region to the elas-
tic cross section must be even smmaller. No definite position was ascribed in
the papers [106] [I7] to the point where it crosses the abscissa axis. Recently,
some possibilities to use the analytical properties of the elastic scattering
amplitude for getting some knowledge about its real part were considered in
Ref. [18].

Nevertheless, one can easily estimate from the data presented in Fig. 1
and Fig. 2 the upper limit of the real part of the amplitude at the dip. Its
ratio to the imaginary part at ¢t = 0 is calculated as the square root of the
ratio of the differential cross sections at those points and, surely, is very small
< 0.006. This estimate supports our intention to neglect the contribution
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of the real part of the amplitude in further calculations where its integrally
averaged characteristics are only used.

Further guides about its behaviour can only be obtained from particular
models of proton interactions. Those of them which pretend to make pre-
cise fits of a wide variety of present experimen tal data are surely preferred.
Even then they should not be absolutely trusted because we have some ex-
perience that several details got wrong even at present energies and could
become worse at extrapolations to new energy fields. Nevertheless, as such
an example, we show in Fig. 3 borrowed from Ref. [I9] the behaviour of the
real and imaginary parts of the elastic scattering amplitude at energy 7 TeV
within the large interval of the transferred momenta. Its shape is derived
with the help of a particular phenomenological model [19] which happened
to be very successful in fits of many experimental characteristics in a wide
range of energies up to LHC.

In particular, one can see that the real part at 7 TeV is much smaller
than the imaginary part everywhere within the diffraction cone and crosses
the abscissa axis in accordance with theoretical expectations [16] [17]. Its
relative contribution to the differential cross section is given by the term
p%(s,t) where p(s,t) = Ref(s,t)/Imf(s,t). It can be neglected in the model
considered. The accuracy of experimental data is not yet high enough for
such small contributions to be taken into account. That corresponds well
with our prejudice that the diffraction cone is somehow a shadow of inelastic
processes because the elastic amplitude is substantially imaginary there. It
is interesting to note that according to the model [19] the imaginary part
dominates everywhere besides the dip interval which is very short. However,
the differential cross section is already very small there compared to the
diffraction cone. Thus in our analytical estimates we will neglect the real
part of the amplitude but sometimes come back to it to show once again how
irrelevant for our conclusions is its contribution.

The steep exponential decrease of differential cross sections in the diffrac-
tion cone implies that namely this region contributes mostly to Eq. . The
integral contribution of the real part of the amplitude f in there must even
be noticeably smaller than its overestimated value polmf. That is why it is
possible to neglect it further in analytical calculations.
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Fig. 3. Real Ref and imaginary Imf parts of the proton-proton amplitude
at 7 TeV according to a particular phenomenological model [19]. Note that
the contribution of the real part to do/dt becomes noticeable only near the
dip where do/dt is small. It can be completely neglected inside the
diffraction cone. Moreover, it becomes equal zero inside it as was predicted
[16, [I7]. Tt is quite interesting that the imaginary part dominates in the
Orear region of intermediate transferred momenta as well.
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3.3 The differential cross section outside the diffrac-
tion cone

In what follows we will need to estimate the contribution of the region outside
the diffraction peak to some analyzed variables. Comparison of Fig. 2 with
Fig. 1 shows that the differential cross section is much lower (by more than
4 orders of magnitude!) at the dip and at the tail compared to its values at
the beginning of the diffraction cone. Moreover, it decreases approximately
as exp(—c(s)y/[t]) in this region. It is usually called as the Orear region
by the name of its first observer and can be explained (see [20]) by subse-
quent iterations (rescattering) in the solution of the unitarity equation in the
(s,t)-representation. Surely, the t-exponential parameterization ([2|) used for
the diffraction cone underestimates the contribution of the tail with —\/E—
exponent at high transferred momenta. However, the integral contribution
to our variables of the excess in the tail region over our approximation ([2|is
easily estimated. We show below that it is negligibly small. The interplay
of the real and imaginary parts of the amplitude f can be more complicated
there as seen, e.g., from Fig. 3. However, the smallness of the modulus, i.e.,
of y/do/dt, implies the smallness of both of them in this region even though
their ratio p becomes infinitely large if the imaginary part becomes equal to
Zero.

4 The unitarity condition

Our main goal here is to get some knowledge about the spatial region of
interactions of high energy protons at current energies, to draw a pictorial
view of its evolution with increasing energy and to discuss possible theoretical
and experimental implications of these findings.

The most stringent and reliable information (albeit rather limited!) about
the interrelation of elastic and inelastic processes comes from the unitarity
of the S-matrix

S8+ =1 (3)
or for the scattering matrix 7' (S = 1+ 7))

2ImT,, = 3, / T T dD,,, (4)

where a,b,n denote the number of particles. The whole n-particle phase
space ®,, is integrated over. For the elastic scattering amplitude a = b = 2,
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the unitarity condition relates the amplitude of elastic scattering f o< Ths to
the amplitudes of n-particle inelastic processes 75, declaring that the total
probability of all outcomes of the interaction (elastic and inelastic ones) must
be equal to 1]

In the s-channel this uinquestionable condition is usually expressed in the
form of the well known integral relation (for more details see, e.g., [21], 20,
6]). This relation is quite complicated for arbitrary values of the transferred
momentum, t. However, for forward scattering at t = 0 it leads to the widely
used optical theorem showing the normalization of the imaginary part of the
amplitude Im f(s) by its direct connection with the total cross section oyy:

Imf(s,0) = ope(s)/4v/7 (5)

and to the general statement that the total cross section is the sum of cross
sections of elastic and inelastic processes

Otot = Oecl + Tinel, (6)

i.e., that the total probability of all processes equals 1.

One can use the Fourier — Bessel transform of the amplitude f to reduce
the integral relation to the more simple algebraic one. This transformation
retranslates the momentum data to the shortest transverse distance between
the trajectories of the centers of colliding protons called the impact param-
eter, b, and is written as

. 1 >
iT0) = 5= [ A 000 g
Then the unitarity condition in the b-representation reads
G(s,b) = 2Rel'(s,b) — |T'(s, b)|*. (8)

(for reviews see, e.g., Refs [0l [7]). This relation establishes the connection
between the distributions of the intensity of all processes in the transverse
configuration space:
d20inel o d20tot d20_el 9
v db? db? )
'The non-linear contribution from the elastic amplitude appears in the right-hand side
for n = 2.
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The left-hand side in Eqs , @ describes the transverse impact-parameter
profile of inelastic collisions of protons. It satisfies the inequalities 0 <
G(s,b) < 1 and determines how absorptive is the interaction region at the
given impact parameter (with G = 1 for the full absorption and G = 0 for
the complete dominance of elastic scattering). The profile of elastic processes
is determined by the subtrahend in Eqs , @D Thus we get a spatial view
of the whole process if the elastic scattering amplitude f is integrated in Eq.
@

Let us note from the very beginning that these profiles can not be mea-
sured directly in experiments because the impact parameters are not the
measurable quantities. Nevertheless, their energy behaviour has important
heuristic value because it can reveal the evolution of the process dynamics.
It will be described below how the knowledge of the spatial extension of the
inelastic interaction region has been used for the description of the processes
of jet production at the LHC energy 7 TeV. One can use various models of
the interactions and confront different assumptions. Also, one can try to
relate the impact parameters, for example, with the multiplicities of inelastic
collisions as it is done for the interactions of the relativistic nuclei. However,
we do not speculate on it in this review.

If G(s,b) is integrated over the impact parameter, it leads to the cross
section of inelastic processes. The terms on the right-hand side of Eqs , @D
would correspondingly produce the total cross section and the elastic cross
section in accordance with Eq. @

It follows from the above relations that, strictly speaking, one should
know both real and imaginary parts of the elastic scattering amplitude to
get results about the impact-parameter profiles of inelastic and elastic pro-
cesses from the unitarity condition. However, its modulus can only be found
from experimental data as follows from Eq. and some very limited knowl-
edge about its real part for forward scattering. Nevertheless, one can easily
estimate the accuracy of any assumption in calculations according to Egs.
. ©.

In particular, we will use the fact that the modulus of the amplitude
decreases approximately exponentially (see Eq. ) in the diffraction cone
and becomes much smaller at the tail compared to its values at the top
of the diffraction peak. The slight decline from a simple exponent inside
the cone of the order of 1% noticed recently by TOTEM Collaboration [22]
at small transferred momenta as well as somewhat steepened behaviour at
the very end of the diffraction cone near the dip seen in Fig. 2 do not
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influence its integral contribution to @ within the accuracy of determination
of the slopes. In what follows, we use the exponential parametrization of the
imaginary part of the amplitude f to proceed with analytical calculations
and argue that it is very precise:

Otot(s
Tmf(s,t) = it—\/(%) exp[B(s)t/2]. (10)
Formally, this approximation is not valid for differential cross sections at
large transferred momenta. However, for our purposes the integral contri-
bution of f at large [¢| to Eq. (7)) is only important. It is negligibly small
there compared to the peak of the diffraction cone. The approximation ([10)
is justified as will be shown below. In fact, that was clear earlier when it was
demonstrated [23] that such approximation and direct integration of exper-
imental data lead to the practically indistinguishable results. The accuracy
of calculations is very high. Thus one can claim that the resuts obtained an-
alytically rely only on the unitarity condition and experimentally measured
exponential decrease of the differential cross section in the diffraction cone.

5 Central collisions

Before using the detailed formulae for the spatial extension of the interaction
region as a function of the impact parameter b, let us study at the beginning
the simpler case of the energy dependence of the intensity of interaction for
central (head-on) collisions of impinging protons at b = 0. We introduce the
variable (:

((s) = Rel'(s,0). (11)
For the dominant contribution of the diffraction cone (Eq. (10)) one gets

that ¢ is directly related to the share of elastic processes:

((s) = 0 (12)

Otot

One can also write

00 2
T?=¢*+ i </0 d|t|Ref) : (13)
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The last term here can be neglected compared to the first one. That is easily
seen from

(s,t) da/dt

dtRefg/ d|t||Ref / d|t
| arer < [ dumeri= [ a4
The factor p*(s,t)/(1 + p*(s,t)) is very small in the diffraction cone. It can
become of the order 1 at large values of p?(s,t) (say, at the dip) but the
cross section is small there already (compare Fig. 2 and Fig. 3). Then the
unitarity condition () is written as

G(s,0=0) =¢(s)(2=¢(s)). (15)

Thus, according to the unitarity condition the darkness of the inelastic
interaction region for central collisions (absorption) is defined by the only
experimentally measured parameter ((s) depending on energy. It has the
maximum G(s,0) = 1 for ( = 1. Any decline of ¢ from 1 ({ = 1 % ¢) results
in the parabolic decrease of the absorption (G(s,0) = 1 —¢?), i.e. to an even
much smaller decline from 1 for small e. The elastic profile, equal to (? in
central collisions, also reaches the value 1 for ¢ = 1.

The unitarity condition imposes the limit ( < 2 on the increase of the
share of elastic scattering. It is required by the positivity of the inelastic
profile. Then there no inelastic processes for central collisions (G(s,0) = 0
according to Eq. ) This limit corresponds to the widely discussed ”black
disk” picture which asks for the relation

Oel = Oinel = O'tot/2' (16>

0) elastic collisions ¢* completely

The value of the profile of central (b =
= 2. Below, we shall discuss physics

saturates the total profile 2¢ for ¢
implications of these findings.
With high enough precision one can describe ¢ by the following formulae:

tot do/d
g(s>~;B( ~ (47) 05/ dlt| 1+Z/(;t) (17)

One should specially note that all formulae contain only experimentally mea-
surable quantities 00:($), 0ei($), B(s). The most convenient for our further
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discussion is its interpretation as a share of elastic processes because, in par-
ticular, it is proportional to the experimentally measurable dimensionless
ratio of the elastic cross section o to the total cross section oy .

From the first formula one gets the conclusion that the increase of ((s)
with increasing energy demonstrates that the height of the diffraction cone
(the numerator) increases faster than its width shrinks (the denominator).

From the second relation in one can get very definite conclusions
about the role of different regions of the differential cross section for the vari-
able ¢ and, consequently, for the unitarity condition. In practice, one should
just integrate the squared root of the differential cross section over the corre-
sponding interval of transferred momenta. It is clearly seen that its value is
mainly determined by such transferred momenta where the differential cross
section is large and the real part of the amplitude is small compared to the
imaginary part. This is valid in the diffraction cone. The simplest estimates
with constant value py(s) ~ 0.02 in place of p(s,t) in Eq. show that
this contribution is at the level of 1%. It is greatly reduced if its values from
Fig. 3 are used since the values of Ref are smaller there and, moreover,
their contribution is exponentially weighted within the diffraction cone in
. Surely, one can neglect by small declines from the simple exponential
shape both inside and at the end of the diffraction cone because their con-
tribution becomes very small after integration in Eq. . In fact, one can
definitely state that the exponential parameterization of the imaginary part
of the amplitude can be used for description of experimental data in our
formulae. The conclusions of the phenomenological model [19] just support
our estimates as shown in [24].

What concerns the tail of the differential cross section, the convenient
approximation of do/dt by a pure exponential (in Eq. ([L0))) is most easily
verified by taking directly the published distribution and carrying out the
integration directly using the measured data. Numerically we find that the
data, when the region above the dip are included, yield values of { which are
less than 3.9% higher than obtained with the exponential approximation.

This results in a less than 2-1072 correction to the calculation of G(7 TeV,0)
in Eq. . These 2 approximations (p2 & 0.02 and exponential form) allow
us to greatly simplify the discussion of the profile function, and are, in any
case, not contradicted by known data and experimental uncertainties. The
discussion of the accuracy of estimates can be found in [25].

The more detailed estimates of different contributions according to the
phenomenological model [19] are given in Ref. [24]. The imaginary part of
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Table. The energy behaviour of ¢, G(s,0) and oy, /0.

Vs, GeV | 4.11 | 4.74 | 7.62 | 13.8 | 62.5 | 546 1800 7000

¢ 0981092 075|069 |0.67]|0.83 |0.93 1.00-1.04
G(s,0) 1.00 [ 0.993 | 0.94 | 0.904 | 0.89 | 0.97 | 0.995 | 1.00

ISR | SppS | FNAL | LHC
Tin/0el 5 3

the amplitude becomes negative after the dip in this model. The contribution
to the definition of ( is also negative. Its numerical value becomes lowered
but again within several percents only.

The experimentally measured proportion of elastic processes o¢ /oy =
0.25¢ demonstrates the non-trivial dependence on energy shown in the Table.
The values of the absorption at central collisions G(s,0) and the ratios of
inelastic to elastic cross sections oy, /0 are also shown. All values are derived
directly from experimental data at corresponding energies s. The change of

the tendency in the behaviour of elastic processes with energy increase looks
especially surprising. One would naively expect that their proportion would
decrease being replaced by inelastic processes with higher multiplicities at
higher energies. That happens only at low energies up to ISR where the
parameter ¢ decreases from about 1 down to values about 2/3. At higher
energies protons reveal unexpected stability. The share of elastic scattering
increases with energy. The parameter ( reaches the critical value 1 for 7 TeV
data at LHC where the elastic cross section is about 4 times less than the
total cross section.

That looks even more impressive in terms of the ratio of the inelastic
cross section to the elastic one

Oinel 4

a7 18

The ratio decreases from 5 at ISR to 3 at LHC as shown in the Table.

It is intriguing whether this increase of the proportion of elastic scattering
will really show up in experiments at higher energies or it will be saturated
asymptotically with ( tending to 1 from below. The asymptotic saturation
would lead to the conservative stable situation on the same branch of the
unitarity condition while further increase above 1 will require the transition
to another branch of the unitarity equation and new physics interpretation.
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To explain the last statement let us rewrite Eq. as
((s) =1£+/1—-G(s,0). (19)

The critical value ¢ = 1 reveals itself in the usage of different signs in front
of the square root term (different branches of the unitarity condition) for
( < 1land ¢ > 1. One used to treat elastic scattering as a shadow of
inelastic processes. This statement is valid when the branch with negative
sign in Eq. is considered because it leads to proportionality of elastic
and inelastic contributions (( o« G(s,0)/2) for small G(s,0) < 1. That is
typical for electrodynamical forces in particle interactions (e,g., for processes
like ee — eey) and for optics (photon interactions) where the inelastic cross
sections are small and their values are governed by the fine structure constant
a. The large value of the inelastic cross sections in hadronic collisions with
subsequent increase of the elastic proportion at diminishing role of inelastic
production destroys the analogy. That is why the observation of this effect
comes as a surprise. For strong interactions, the shares of inelastic and
elastic processes are compatible (see the Table). The approach of  to 1 at 7
TeV corresponds to complete absorption in central collisions. This value is
considered as a critical one because from one gets significant conclusion
that the excess of ( over 1 implies that the unitary branch with positive sign
in front of inelastic processes is at work. This branch was first considered
in [26] with application to high energy particle scattering. That changes the
interpretation of the role of elastic processes as being a simple ”shadow” of
inelastic ones.

Present experimental data at LHC can not distinguish definitely between
the two possibilities of asymptotic saturation and increase of the elastic share.
Some slight trend of ¢ to increase and become larger than 1 can be noticed
from comparison of TOTEM data at 7 TeV [3] where it can be estimated? in
the limits 1.00 and 1.04 and at 8 TeV [4] where according to the data of the
same collaboration it is approximately 1.05 though within the accuracy of
experimental data about +0.024. The data of ATLAS collaboration at 8 TeV
do not reveal any increase of the proportion of elastic scattering albeit with
approximately the same accuracy. The more precise data at these energies

and at 13 TeV are needed.

2The experimental values of the ratios of elastic to total cross section and py have been
used.
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The further increase of the share of elastic scattering with energy is fa-
vored by extensive fits of available experimental information for the wide
energy range and their extrapolations to ever higher energies done in the
phenomenological models of Refs [19, 27] as well as by some theoretical spec-
ulations (e.g., see Ref. [28]). The asymptotical values of ¢ are about 1.5 in
Refs [19, 27] and 1.8 [28]. They correspond to incomplete but rather notice-
able decrease of the absorption at the center of the interaction region. The
corresponding values of the attenuation at the center G(oo,0) are 0.75 and
0.36. It is discussed in more detail in the next Section.

6 The shape of the inelastic interaction re-
gion at current energies

The detailed shape of the inelastic interaction region at arbitrary values of the
impact parameters can be obtained with the help of relations , if the
behaviour of the amplitude f(s,t) is known. Its modulus and the py values
are obtained from experiment. The most prominent feature of experimental
results at present energies from ISR to LHC is the rapid exponential decrease
of do/dt with increasing transferred momentum [t|, especially in the near
forward diffraction cone. It is just this region of transferred momenta which
contributes mostly to Egs (17), (7). Inserting the exponential shape of the
cone in there one can write

i0(s.0) = P [l exp(- B /20 + ol IOV (20)

0

Let us stress that the diffraction cone dominates the contribution to Rel’
in Eqs (12)), so strongly that the tail of the differential cross section at
larger |t| can be completely neglected at the level of some per cents by itself
even for central collisions as was estimated in the previous chapter. Besides,
it is suppressed additionally by the Bessel function J; at larger impact pa-
rameters. Therefore the accuracy of the approximation increases. It was
estimated using fits of the experimental differential cross section outside the
diffraction cone by simplest analytical expressions. Moreover, it was shown
[23, 29] by computing how well the versions with direct fits of experimental
data and with their exponential approximation coincide if used in the uni-
tarity condition. Therefore the expression (10 can be treated as following
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directly from experiment and being very precise. Herefrom, one calculates

2

Rel'(s,b) = Cexp(—;—B). (21)

Correspondingly, the shape of the inelastic profile for small pg is given by

G(s,b) = Cexp(—o=)[2 — Cexp(—o= ). (22)

It scales as a function of b/v/2B. Its energy dependence is determined by
the two measured quantities - the diffraction cone width B(s) and its ratio
to the total cross section, i.e. by the variable ((s). It has the maximum at

b2, =2BIn( (23)

It is positioned in the unphysical region of impact parameters b2, < 0 for
¢ < 1,1i.e. at all energies below LHC. Therefore the absorption is incomplete
G(s,b) < 1 at any physical impact parameter b > 0. Its largest value is
reached at the very center b = 0. The inelastic interaction region has the
shape of a disk with absorption strongly diminishing to its edges. The disk is
semi-transparent at ISR energies. This is demonstrated by the corresponding
line (¢ = 0.7) in Fig. 4 [9] shown below.

At ¢ = 1, which is only reached at LHC energy 7 TeV, the maximum is
positioned exactly at the center b = 0 and the maximum absorption occurs
just for central collisions, i.e. G(s,0) = 1. The disk center becomes black.
The strongly absorptive core of the inelastic interaction region grows in size
compared to ISR energies (see [23]) because of increase of the slope B(s).
The enlarged size of the inelastic interaction region can be clearly seen from
the Taylor expansion of Eq. at small impact parameters:

b? b

G(s,0) = (2= ¢ = 51 =) = 7520 - 1)]. (24)
The negative term proportional to b? vanishes at ¢ = 1, and G(b) develops
a wide strongly absorbing plateau which extends to the comparatively large
values of impact parameters b (up to about 0.5 fm). The plateau is very flat
because the last negative term in Eq. which diminishes the absorption
starts to play a role at 7 TeV (where B ~ 20 GeV~2) only for larger values of
b. Therefore the absorption decrease becomes steeper at the periphery. The
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earlier proposed scenarium BEL is therefore realized at present energies in
such a way. The two lines in Fig. 4 demonstrate the evolution of the shape of
the inelastic interaction region from ISR (¢ = 0.7) to LHC (¢ = 1.0) energies.
The larger darkness for central collisions at LHC compared to ISR can be
ascribed to the enlarged role of soft gluons in the proton structure function.
It is claimed in several papers [31) 32, [33] that already at the LHC energies
the hollowness of the plateau can be seen at b = 0. Actually, the accuracy
of experiments there is still not enough for the definite conclusions. Only at
higher energies (or if higher accuracy at LHC would be achieved) it can be
definitely observed as displayed in Fig. 4. We discuss these predictions in
the next section.

Before discussing the predictions at higher energies, we would like to point
out that the cross sections of inelastic processes are determined not only by
the strength of the interaction inside the interaction region but also by the
purely geometrical factor. Even though the proton interaction region is very
dark at central collisions (G(s,b) ~ 1 inside the plateau), the cross sections
of processes with small impact parameters b < r are very small because the
corresponding areas proportional to r? are small for integrals over b < 0.5 fm.
Integrating the total and elastic terms in Eq. up to impact parameters
b < r one estimates their roles for different radii r.

oa(s,b < 1) =0y(s)[l —exp(—r?/B(s))], (25)

Otot(5:b < 1) = 01or(5)[1 — exp(—r*/2B(s))]. (26)

One gets that the contribution of processes at small impact parameters b? <
2B diminishes quadratically at small » — 0. In particular, inelastic processes
contribute at r — 0 as

Oinet($,0<1) — 7r?G(s,0) + 0(7“4); (7’2 < B). (27)

The maximum intensity of central inelastic collisions equal 1 is at ( = 1.
The high intensity must result in high multiplicities of inelastic events. The
integral contribution of the near central region of collisions is small. The
cross sections of very high multiplicity events are also small. The estimates
show that they are quite comparable to one another.

This property has been used in Ref. [29] for the explanation of jets excess
observed for very high multiplicity events at 7 TeV compared to predictions
of the well known Monte-Carlo models PYTHIA and HERWIG. This excess
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0.0 0.5 1.0 1.5 2.0 V750

Fig. 4. The energy evolution of the shape of the inelastic interaction region
for different values of the survival probability (/4. The values ¢ = 0.7 and
1.0 correspond to ISR and LHC energies and agree well with the result of
detailed fitting to the elastic scattering data [I, 23 BI]. A further increase
of ¢ leads to the toroid-like shape with a dip at b = 0. The values ( = 1.5

are proposed in [19, 27] and ¢ = 1.8 in [28] as corresponding to
asymptotical regimes. The value ( = 2 corresponds to the ”black disk”
regime (0 = 04, = 0.5044). For more discussion of the black disk and the
geometrical scaling see Refs [34] [35], 36].
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was interpreted as an indication on the active role of the high density gluonic
component of the internal structure of protons at that energy. Therefrom it
was concluded that such a component should be more properly accounted
in the new versions of the Monte-Carlo models. That demonstrates how the
knowledge about the spatial view of the inelastic interaction region helps
in getting some conclusions about possible omissions in the models used
nowadays for description of experimental data on jet production at LHC
energise.

The spatial region of elastic scattering as derived from the subtrahend
in Eq. is strongly peaked at low impact parameters decreasing fast at
larger values of b according to the Gaussian exponent law. The contribution
to the elastic cross section is, nevertheless, suppressed at small b and comes
mainly from impact parameters b?> ~ 2B. The average value of the squared
impact parameter for elastic scattering can be estimated as

< b2 >=0y(s)/mC*(s). (28)

Inelastic processes are much more peripheral. The ratio of the corresponding
values of squared impact parameters is

<b2, > 8—¢
1Me; — . 2

This ratio exceeds 2 already at LHC energies and would become equal to 6
for (would be!) ( = 2. The peripherality of inelastic processes compared
to elastic ones increases with increase of the proportion of elastic collisions.
Elastic collisions are more effective at the most central interactions.

7 Some predictions at higher energies

What can we expect at higher energies?

The only guesses can be obtained from the extrapolation of experimental
results at present energies to new regimes even though our previous expe-
rience teaches us how indefinite and even erroneous they can be as it often
happened. Nevertheless, let us try to use some assumptions relying on the
fact that we have used only such most reliable methods of getting the neces-
sary information as the unitarity condition and the quite precise experimental
data on the elastic scattering.
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First, one may assume that the share of elastic scattering ¢ will increase
but approach 1 asymptotically without crossing it. In principle, such an
assumption can be valid because the present accuracy of experimental data
at 7 and 8 TeV is not high enough and allows it. That would imply that its
precise value at these energies is still slightly lower than 1 within the present
experimental errors. This is the only possibility to keep the present status
of the shape of the interaction region (BEL) when the inelastic profile stays
quite stable with slow approach to the complete blackness at central collisions
and steady increase of its range with asymptotical saturation. That is a kind
of "the black tube” if one implies rather long longitudinal distances as it is
commonly believed for the picture with soft wee partons.

Surely, it is not excluded that the share of elastic scattering will suddenly
decrease again. Then we would come to the picture which we dealt with,
say, at ISR energies and nothing interesting happens. This possibility looks
however quite improbable. In both cases one deals with the same branch of
the unitarity condition.

Another, more interesting and intriguing possibility is further increase of
the share of elastic processes with increasing energy. One has to consider
the values ¢ > 1. The transition to another branch of the unitarity condi-
tion takes place. The BEL-scenarium described above becomes drastically
changed. The maximum absorption appears at non-zero impact parameters.
It shifts to positive values of impact parameters for ( > 1. Then the in-
elastic interaction region inevitably acquires the toroid-like shape TEH with
a dip at the very center b = 0. Most probably, if the accuracy of experimental
data is high enough, one will observe at 13 TeV the increase of  above 1
at approximately the same rate as it happened in the range of ISR to LHC
where it changed from 0.67 to 1.0 (with intermediate values of 0.8 at SppS
at 546 GeV and 0.9 at Tevatron at 1.8 TeV if the proton-antiproton data
are included). Then the darkness at the very central collisions G(s,b = 0)
diminishes with increase of (. The center becomes more transparent. The
dip at the center of the interaction region with a minimum at b = 0 should
appear instead of the flat plateau. ”"The black plateau” described at 7 TeV
transforms to the toroid-like structure with somewhat lower darkness at the
center and maximum blackness equal 1 at more peripheral impact parameter
by, (see [8,[7, I8, 37]). As it follows from the above formulae, this dependence
is very slow near ( = 1 so that the darkness at the center would only become
smaller je.g., by 6% if ¢ increases to 1.2. Therefore one can hardly expect the
immediate drastic changes with increase of LHC energies to 13 TeV. Nev-
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ertheless, the forthcoming TOTEM+CMS results on elastic scattering at 13
TeV can be very conclusive about the general trend if the precise values of the
diffraction cone slope B and the total cross section oy, (or equivalently, of
the proportion of elastic processes) become available and the corresponding
value of ¢ happens to be above 1.

The central dip becomes even deeper at larger (. The limiting value { = 2
leads to complete dominance of elastic scattering at the center b = 0 with
¢? = 4. Tt coincides with the total profile 2 = 4 there. No inelastic absorpion
can be observed at the center G(s,0) = 0. The maximum absorption is
shifted to b,, = V2B 1n2. Such situation can be only reached if the positive
sign branch of the unitarity condition is applicable.

All these features are demonstrated in Fig. 4 borrowed from Ref. [9].
Beside the demonstration of the present energy results at ( = 0.7 and 1.0 and
of the limiting plot of the attenuation at ( = 2 some intermediate values 1.5
and 1.8 are shown. These values illustrate the regimes with further increase
and asymptotical saturation of the share of elastic scattering.

Such regimes are predicted by some phenomenological models [19, 27]
which favor the situation of the increasing proportion of elastic scattering,
i.e. of ( becoming steadily larger than 1 at higher energies. They are based
on good fits of a large set of experimental data at present energies and provide
some extrapolations to ever higher energies. The realistic estimates of their
predictions at the energies 13 TeV and 100 TeV [38] show that extremely
high accuracy of elastic scattering experiments will be necessary to observe
some effects. Both models predict that ¢ will be only 3-4% higher at 13
TeV than that at 7 TeV. In accordance with the above formulae, the dark-
ness decrease at the center of the inelastic interaction region is quadratically
small compared to the change of ( itself and becomes noticeable at the third
digit only. That asks for very high precision of forthcoming TOTEM+CMS
results at 13 TeV. At the newly planned 100 TeV collider the value of ( can
increase by 13-20% from 1. It would imply 3-4% lower value of G(b = 0).
The maximum blackness 1 will be reached at the impact parameters about
0.5 fm. The formation of the toroid-like structure proceeds very slowly with
energy. No model predicts the fast rise of { to values close to 2. The asymp-
totical values of { preferred by both models are about 1.5. The corresponding
asymptotical profiles of inelastic processes are shown in Fig. 4. The some-
what different asymptopia for ¢ equal 1.8 is favored in the theoretical paper
[28]. Tts prediction of the deeper dip is also demonstrated in Fig. 4. The
whole impact-parameter structure in all these models reminds the toroid
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(tube) with absorbing black edges which looks as if being more and more
transparent for the elastic component at the very center. The inelastic cross
section will be only about 1.5 times larger than the elastic cross section at
asymptotics for these models. It is most fascinating in the presented scenar-
ium that the density of central inelastic interactions tends to 0 for ( — 2
which would lead to the ”black disk” limit with equal elastic and inelastic
cross sections. However, no models predict such a high increase of the share
of elastic scattering even at asymptotically high energies.

What concerns the inelastic processes, these models do not predict any
drastic evolution of the interaction region with increasing energy over the
LHC range. The (almost) black plateau with small dip at the central part
near b = 0 will become somewhat enlarged in size. Therefore the jet cross
sections due to central collisions will slightly increase as well at the beginning.
Step by step the inelastic profile will become even more peripheral and the
role of peripheral collisions will increase.

As was discussed, central collisions are responsible for the rare events with
highest multiplicities. The decrease of their intensity at ever higher energies
would result in lower tail of the multiplicity distributions and in their more
steepened shape. In particular, one would also predict the diminished role of
jet production from central collisions with further increase of (. Once again,
these effects will develop very slowly, unfortunately.

8 Discussion and conclusions

The intriguing purely experimental phenomenon of the increase of the share
of elastic processes to the total outcome observed in proton interactions at
energies from ISR to LHC attracts much attention nowadays. It has not
been explained yet. One of the possibilities can be related to the fact that
the larger number of the high energy constituents (quarks, gluons) exchange
by high momenta. Due to the QCD property of the asymptotic freedom the
role of such processes would decrease, and, correspondingly, the relative role
of elastic scattering increases. Let us note that the mutual influence of the
smaller number of these processes and larger transferred momenta must lead
to some increase of the transverse momenta of created particles as observed
in experiment. Another possibility is connected to the fluctuations of the
partonic picture of colliding protons. The time of flight of protons through
one another becomes shorter with increasing energy. The pointlike partons
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have almost no chance to interact during such a short timd®} Therefore, the
role of elastic processes can increase.

Inspite of absence of the explanation of the observed effect, the increase
of the proportion of elastic processes has been used in this review paper for
getting its consequences. In particular, the important information about the
spatial regions of proton interactions has been obtained. The share approach
to 1/4 at LHC (or, equivalently, of ¢ to 1) can become a critical sign of the
changing character of processes of hadron interactions if the above tendency
of increase persists. The concave central part of the inelastic interaction
region would be formed. The inelastic interaction region would then look like
a toroid (tube) hollowed inside and strongly absorbing in its main body at the
edges. The role of elastic scattering in central collision becomes increasing.
That is surprising and contradicts somewhat to our everyday experience and
theoretical prejudices. Intuitively, we would expect the steady increase of
the proportion of inelastic processes with increasing energy as it happened
up to ISR. Instead of it, we are posed to the problem that from the formal
theoretical point of view the new tendency requires now to consider another
branch of the unitarity condition that asks for its physics interpretation.

It is hard to believe that protons become more penetrable at higher en-
ergies after being so dark in central collisions with G(s,0) = 1 at 7 TeV
unless some special coherence within the internal region develops. Moreover,
it seems somewhat mystifying why the coherence is more significant just for
central collisions but not at other impact parameters where inelastic collisions
become dominant.

Several very speculative ideas come to the mind and have been proposed
but not a single one looks satisfactory. Let us try to describe some of them
independently of how fantastic they look like.

For example, the role of the string junction in three-quark hadrons can be-
come crucial. Then this effect would not be observed, say, in the pion-proton
interactions. However we have no chances to get any experimental infor-
mation about these processes. Moreover, the success of the quark-diquark
models adds some sceptical attitude to this approach. Probably, the relative
strengths of the longitudinal and transverse components of gluon (string)
fields can help to explain the new physics of TEH-scenarium of the ”hol-
lowed interactions” of protons.

3The classical analogy of this effect to the bullet passing through a glass was pointed
out to me by B.L. Altshuler.
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In classical terms, the transparency at central collisions could reveal it-
self at collisions of the two toruses with so different radii that one of them
penetrates through the hole in another one at b = 0. In the more general sit-
uation, those can be some stratified objects in which the empty spaces of one
of them coincide at the collision with the dense regions in the another one.
They overlap at peripheral collisions and therefore lead to inelastic processes.
These fluctuations of the size and the structure of high energy protons seem
very improbable.

One could also imagine that ”black” protons start scattering backward [9]
like the billiard balls for head-on collisions. Snell’s law admits such situation
for equal reflective indices of colliding bodies. However the forward and
backward scattering can not be distinguished for two equivalent colliding
objects. That can only be checked if forward and backward scattered protons
can be somehow identified in experiment. Then they should wear different
labels. One can use the proton spin as such a label. In principle, experiments
with oppositely polarised protons can resolve the problem. Unfortunately,
no polarized protons are available now even at LHC. Thus it is improbable
that the TEH-structure will be observed directly. Moreover, the backward
scattering would ask all partons to get coherently large transferred momenta.
The asymptotic freedom of QGD claims that the probability of such processes
must be extremely low.

Beside the case of the two billiard balls colliding head-on, one could con-
sider the hypothesis that centrally colliding protons at ( = 2 remind solitons
which ”pass through one another without losing their identity. Here we have
a nonlinear physical process in which interacting localized pulses do not scat-
ter irreversibly” [39]. Again, in the case of two identical colliding objects it
is impossible to decide whether they scatter forward or backward. In the
case of solitons it is known that the non-linearity and dispersive properties
(the chromopermittivity [40]) of a medium compete to produce such effect.
Then one should understand the dynamics of the whole process. For its de-
scription one uses the equations of Korteweg-de-Vries and sine-Gordon, the
nonlinear Schrodinger equation [41], the Skyrme model [42], instantons [43].
It is not at all clear yet how the QCD-nonlinearity and the properties of the
quark-gluon medium could be responsible at the quantum-field level for these
new features of proton interactions. Again, the asymptotic freedom of QCD
seems to forbid such processes.

Coherence of the parton structures inside the interaction region of col-
liding hadrons can probably lead to the observed effects. It can reveal itself
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in ”squeezing” (or complete absorption) of the intermediate created inelastic
channels. That would lead to the antishadowing effect with increasing role
of the elastic channel which reminds the self-focusing of the laser beams. At
the model level of reggeon interactions, these possibilities were considered in
Refs [44] [45] with the discussion of different variants of the absorbing disk.

Another more exotic hypothesis [46] which could be used to treat the
hollowed internal TEH-region is the formation of cooler disoriented chiral
condensate inside it ("baked-alaska” DCC). The signature of this squeezed
coherent state would be some disbalance between the production of charged
and neutral pions [47], probably, noticed in some high energy cosmic ray
experiments. However the cross sections for central collisions seem to be ex-
tremely small as discussed above. The failure to find such events at Fermilab
is probably connected with too low energies available. It leaves some hope
for higher energies in view of discussions above. Total internal reflection of
coherent states from dark edges of the toroid can be blamed for enlarged
elastic scattering (like transmission of laser beams in optical fibers).

The transition to the deconfined state of quarks and gluons in the central
collisions could also be claimed responsible for new effects (see Ref. [48]).
The optical analogy with the scattering of light on metallic surface as induced
by the presence of free electrons is used. Again, it is hard to explain why that
happens for central collisions while peripheral ones with impact parameters
near b, are strongly inelastic.

To conclude, the problem of the increasing prportion of the elastic scatter-
ing of high energy protons, asking for its own solution, can be further studied
only with the advent of experimental facilities of higher energy accelerators.
Cosmic ray studies do not look very promising because of the relatively low
accuracy of measurements. However the detailed analyses of the extensive
air showers, probably, can say something about ”escaping” high energy pro-
tons. Only very precise experimental results can lead to definite conclusions
since the theoretically predicted energy dependence of the darkness of the
interaction region discussed above is very mild. However the heuristic value
of the foreseen results should not be underestimated. If the tendency of the
increasing prportion of elastic scattering processes persists, it would pose a
problem of a new view on mechanisms of proton (hadron) high energy in-
teractions. Then one should invent new ways of explaining the transition to
quite uncommon regime of proton interactions with peculiar shapes of the
interaction region.
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