
Real singlet scalar dark matter extension of the Georgi-Machacek model

Robyn Campbell,∗ Stephen Godfrey,† Heather E. Logan,‡ and Alexandre Poulin§

Ottawa-Carleton Institute for Physics, Carleton University,
1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada

(Dated: October 26, 2016)

The Georgi-Machacek model extends the Standard Model Higgs sector with the addition of isospin-
triplet scalar fields in such a way as to preserve the custodial symmetry. The presence of higher-
isospin scalars contributing to electroweak symmetry breaking offers the interesting possibility that
the couplings of the 125 GeV Higgs boson to both gluons and vector boson pairs could be larger
than those of the Standard Model Higgs boson. Constraining this possibility using measurements
of Higgs production and decay at the CERN Large Hadron Collider is notoriously problematic if
a new, non-Standard Model decay mode of the 125 GeV Higgs boson is present. We study an
implementation of this scenario in which the Georgi-Machacek model is extended by a real singlet
scalar dark matter candidate, and require that the singlet scalar account for all the dark matter
in the universe. The combination of the observed dark matter relic density and direct detection
constraints exclude singlet scalar masses below about 57 GeV. Higgs measurements are not yet
precise enough to be very sensitive to h → SS in the remaining allowed kinematic region, so that
constraints from Higgs measurements are so far the same as in the GM model without a singlet
scalar. We also find that, above the Higgs pole, a substantial region of parameter space yielding
the correct dark matter relic density can escape the near-future direct detection experiments DEAP
and XENON 1T for dark matter masses as low as 120 GeV and even have a direct detection cross
section below the neutrino floor for mS & 150 GeV. This is in contrast to the singlet scalar dark
matter extension of the Standard Model, for which these future experiments are expected to exclude
dark matter masses above the Higgs pole up to the multi-TeV range.

I. INTRODUCTION

Since the discovery of a Standard Model (SM)-like
125 GeV Higgs boson at the CERN Large Hadron Col-
lider (LHC) [1], the determination of the Higgs boson’s
couplings to other particles has become a top priority. At
the LHC, these couplings are extracted from signal rates
in various resonant Higgs production and decay channels,
which can be written in the narrow width approximation
as

Rateij = σi
Γj

Γtot
= κ2

iσ
SM
i

κ2
jΓ

SM
j∑

k κ
2
kΓSM

k + Γnew
. (1)

Here σi is the Higgs production cross section in produc-
tion mode i, Γj is the Higgs decay partial width into final
state j, Γtot is the total width of the Higgs boson, the
corresponding quantities in the SM are denoted with a
superscript, and Γnew represents the partial width of the
Higgs boson into any new, non-SM final states. The cou-
pling modification factors κi parameterize the deviations
of the Higgs couplings from their SM values [2].

The extraction of the Higgs couplings κi from these
LHC rate measurements is plagued by a well-known “flat
direction” [3] that appears when new decay modes are
present. For example, one can imagine a scenario in

∗ rcampbel@physics.carleton.ca
† godfrey@physics.carleton.ca
‡ logan@physics.carleton.ca
§ apoulin@physics.carleton.ca

which all the coupling modification factors have a com-
mon value κ2

i ≡ κ2 > 1 and there is a new, unobserved
contribution to the Higgs total width, Γnew > 0. In this
case the Higgs production and decay rates measurable at
the LHC are given by

Rateij =
κ4σSM

i ΓSM
j

κ2ΓSM
tot + Γnew

. (2)

All measured Higgs production and decay rates will be
equal to their SM values if

Γnew = κ2(κ2 − 1)ΓSM
tot ≥ 0. (3)

In particular, a simultaneous enhancement κ2 > 1 of all
the Higgs couplings to SM particles can mask, and be
masked by, the presence of new decay modes of the Higgs
that are not (yet) directly detected at the LHC.1

Our goal in this paper is to study an explicit bench-
mark model in which this scenario could be realized. We
focus on models with extended Higgs sectors. Our first
requirement is a model in which the Higgs couplings to
W and Z bosons and to fermions can be enhanced rel-
ative to those in the SM. To achieve κW , κZ > 1 in an
extended Higgs model, we need scalars in isospin repre-
sentations larger than doublets that carry non-negligible

1 Measuring such an enhancement in the Higgs couplings would
be straightforward at a lepton-collider Higgs factory such as the
International Linear Collider (ILC), where a direct measurement
of the total Higgs production cross section in e+e− → Zh can
be made with no reference to the Higgs decay branching ratios
by using the recoil mass method (see, e.g., Ref. [4]).
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vacuum expectation values (vevs). Only a few such mod-
els exist that preserve the ρ parameter at tree level: the
Georgi-Machacek (GM) model with isospin triplets [5, 6],
generalizations of the GM model to higher isospin [7–11],
and an extension of the Higgs sector by an isospin septet
with appropriately-chosen hypercharge [12–14]. In this
paper we choose the GM model as the simplest extension
suitable for our purposes. Its phenomenology has been
extensively studied [10, 13, 15–36]. It has also been incor-
porated into the scalar sectors of little Higgs [37, 38] and
supersymmetric [39, 40] models, and an extension with
an additional isospin doublet [41] has been considered.

Our second requirement is a new decay mode for the
125 GeV Higgs boson. A particularly attractive prospect
is to link Higgs physics to the mystery of dark matter in
the universe (for a recent pedagogical review see Ref. [42])
by allowing the Higgs to decay into pairs of dark matter
particles. To this end we extend the GM model through
the addition of a real isospin-singlet scalar field S, upon
which we impose a Z2 symmetry S → −S. We will
require that S accounts for the observed dark matter
relic abundance in the universe via the standard ther-
mal freeze-out mechanism. Real singlet scalar extensions
of the SM [43–63] and of two-Higgs-doublet models [63–
74] have been extensively studied in the literature. These
models tend to be tightly constrained by the combination
of relic density, dark matter direct-detection limits, and
limits on the indirect detection of dark matter annihila-
tion byproducts from nearby dwarf galaxies.

We will find that the situation is rather similar in the
singlet scalar dark matter extension of the GM model.
The two strongest constraints are the requirement of the
correct dark matter relic abundance from thermal freeze-
out [75] and the direct detection cross section limit from
the LUX experiment [76]. These constraints restrict the
allowed range of singlet scalar masses to lie just below
the 125 GeV Higgs pole for resonant annihilation (57–
62 GeV) or above the Z boson mass. The constraint from
125 GeV Higgs boson invisible decays is currently weaker
than that from direct detection. Constraints coming from
Higgs properties and signals also significantly constrain
this model. They do however allow for some interesting
deviations from the Standard Model that the GM model
without the singlet does not allow.

One important difference compared to the singlet
scalar extension of the SM is the prospect for future dark
matter direct detection experiments to probe the model
at heavier singlet masses. While an absence of signal
at the planned XENON 1T experiment would exclude
singlet scalar masses up to 4.5 TeV in the singlet scalar
extension of the SM [60], in the singlet scalar extension
of the GM model a large swath of parameter space with
singlet scalar masses as light as 125 GeV remains beyond
the reach of XENON 1T. In fact, there is some allowed
parameter space with singlet scalar masses near the 125
GeV Higgs pole for resonant annihilation (60–62 GeV)
and some with singlet scalar masses above about 150 GeV
which have a direct detection cross section that lies below

the neutrino floor. This is mainly due to the contribution
of the additional scalars in the GM model to the produc-
tion of the correct relic density, while not contributing
strongly to the direct detection cross section.

This paper is organized as follows. In Sec. II we be-
gin with a description of the singlet scalar extension of
the GM model. In Sec. III we extend the theoretical con-
straints on the GM model to include the singlet scalar ex-
tension. In Sec. IV we describe the details of the thermal
freezeout and imposing the relic abundance constraints
on the model parameters while in Sec. V we describe the
numerical scan procedure used to map out the allowed
parameter space. In Sec. VI we briefly summarize the
direct and indirect search constraints on the additional
scalars in the GM model. In Sec. VII we compute the
dark matter relic abundance and direct and indirect de-
tection cross sections and display the impact of the obser-
vational constraints on the allowed parameter space. In
Sec. VIII we consider the constraints from the 125 GeV
Higgs boson invisible decays and signal strengths in visi-
ble channels. Finally in Sec. IX we summarize our conclu-
sions. Feynman rules for couplings involving the singlet
scalar are collected in an appendix.

II. THE GEORGI-MACHACEK MODEL
EXTENDED BY A REAL SINGLET SCALAR

The scalar sector of the GM model [5, 6] consists of
the usual complex doublet (φ+, φ0) with hypercharge2

Y = 1, a real triplet (ξ+, ξ0, ξ−) with Y = 0, and a com-
plex triplet (χ++, χ+, χ0) with Y = 2. The doublet is
responsible for the fermion masses as in the SM. In order
to preserve the custodial SU(2) symmetry and avoid large
tree-level contributions to the electroweak ρ parameter,
the scalar potential is constructed to preserve a global
SU(2)L×SU(2)R symmetry, which breaks down to the
diagonal subgroup (known as the custodial SU(2) sym-
metry) upon electroweak symmetry breaking. To make
the global SU(2)L×SU(2)R symmetry explicit, we write
the doublet in the form of a bidoublet Φ and combine the
triplets to form a bitriplet X:

Φ =

(
φ0∗ φ+

−φ+∗ φ0

)
, X =

 χ0∗ ξ+ χ++

−χ+∗ ξ0 χ+

χ++∗ −ξ+∗ χ0

 .

(4)
The vacuum expectation values (vevs) are defined by
〈Φ〉 =

vφ√
2
I2×2 and 〈X〉 = vχI3×3, where I is the unit

matrix and the Fermi constant GF constrains

v2
φ + 8v2

χ ≡ v2 =
1√

2GF
≈ (246 GeV)2. (5)

The most general gauge-invariant scalar potential in-
volving these fields and the real singlet S, while con-

2 We use Q = T 3 + Y/2.
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serving the global SU(2)L×SU(2)R and the Z2 symmetry S → −S, is given by

V (Φ, X) =
µ2

2

2
Tr(Φ†Φ) +

µ2
3

2
Tr(X†X) + λ1[Tr(Φ†Φ)]2 + λ2Tr(Φ†Φ)Tr(X†X)

+λ3Tr(X†XX†X) + λ4[Tr(X†X)]2 − λ5Tr(Φ†τaΦτ b)Tr(X†taXtb)

−M1Tr(Φ†τaΦτ b)(UXU†)ab −M2Tr(X†taXtb)(UXU†)ab

+
µ2
S

2
S2 + λaS

2Tr(Φ†Φ) + λbS
2Tr(X†X) + λSS

4. (6)

The first three lines of this potential are identical to that
given, e.g., in Ref. [30].3 The last line contains the new
terms involving the singlet scalar S. Here the SU(2)L
generators for the doublet representation are τa = σa/2
with σa being the Pauli matrices, the generators for the
triplet representation are

t1 =
1√
2

 0 1 0
1 0 1
0 1 0

 , t2 =
1√
2

 0 −i 0
i 0 −i
0 i 0

 ,

t3 =

 1 0 0
0 0 0
0 0 −1

 , (7)

and the matrix U , which rotates X into the Cartesian
basis, is given by [19]

U =

 − 1√
2

0 1√
2

− i√
2

0 − i√
2

0 1 0

 . (8)

We will work in the vacuum in which S does not get
a vev, so that the Z2 symmetry remains unbroken and
S is stable. The presence of S then has no effect on the
mass spectrum or potential-minimization conditions of
the GM sector of the model, which can be taken from
Ref. [30]. We summarize the physical spectrum here.

The physical fields can be organized by their transfor-
mation properties under the custodial SU(2) symmetry
into a custodial fiveplet, a custodial triplet, and three cus-
todial singlets, one of which is S. The custodial-fiveplet
and -triplet states are given by

H++
5 = χ++, H+

5 =
(χ+ − ξ+)√

2
,

H0
5 =

√
2

3
ξ0 −

√
1

3
χ0,r,

H+
3 = −sHφ+ + cH

(χ+ + ξ+)√
2

,

H0
3 = −sHφ0,i + cHχ

0,i, (9)

3 A translation table to other parameterizations of the GM model
scalar potential has been given in the appendix of Ref. [30].

and their complex conjugates, where the vevs are param-
eterized by

cH ≡ cos θH =
vφ
v
, sH ≡ sin θH =

2
√

2 vχ
v

, (10)

and we have decomposed the neutral fields into real and
imaginary parts according to

φ0 → vφ√
2

+
φ0,r + iφ0,i

√
2

, χ0 → vχ +
χ0,r + iχ0,i

√
2

,

ξ0 → vχ + ξ0. (11)

The masses within each custodial multiplet are degener-
ate at tree level and can be written (after eliminating µ2

2

and µ2
3 in favor of the vevs) as4

m2
5 =

M1

4vχ
v2
φ + 12M2vχ +

3

2
λ5v

2
φ + 8λ3v

2
χ, (13)

m2
3 =

M1

4vχ
(v2
φ + 8v2

χ) +
λ5

2
(v2
φ + 8v2

χ) =

(
M1

4vχ
+
λ5

2

)
v2.

The gauge singlet S remains a mass eigenstate, with
physical mass-squared given by

m2
S = µ2

S + 2λav
2
φ + 6λbv

2
χ, (14)

which we require to be positive to avoid breaking the Z2

symmetry.
The other two custodial SU(2)–singlet mass eigenstates

are given by

h = cosαφ0,r − sinαH0′
1 ,

H = sinαφ0,r + cosαH0′
1 , (15)

where

H0′
1 =

√
1

3
ξ0 +

√
2

3
χ0,r. (16)

4 Note that the ratio M1/vχ is finite in the limit vχ → 0,

M1

vχ
=

4

v2φ

[
µ23 + (2λ2 − λ5)v2φ + 4(λ3 + 3λ4)v2χ − 6M2vχ

]
, (12)

which follows from the minimization condition ∂V/∂vχ = 0 [30].
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The mixing angle and masses are given by

sin 2α =
2M2

12

m2
H −m2

h

, cos 2α =
M2

22 −M2
11

m2
H −m2

h

, (17)

m2
h,H =

1

2

[
M2

11 +M2
22 ∓

√
(M2

11 −M2
22)

2
+ 4 (M2

12)
2
]
,

where we choose mh < mH , and

M2
11 = 8λ1v

2
φ,

M2
12 =

√
3

2
vφ [−M1 + 4 (2λ2 − λ5) vχ] ,

M2
22 =

M1v
2
φ

4vχ
− 6M2vχ + 8 (λ3 + 3λ4) v2

χ. (18)

III. THEORETICAL CONSTRAINTS ON
LAGRANGIAN PARAMETERS

The singlet scalar dark matter extension of the GM
model has 13 free parameters, two of which can be fixed
by GF and the 125 GeV Higgs mass. Before scanning
over the remaining parameters, we first study the rele-
vant theoretical and experimental constraints. The the-
oretical constraints come from (1) perturbative unitarity
imposed on 2 → 2 scalar scattering amplitudes, (2) the
requirement that the scalar potential be bounded from
below, and (3) that the custodial SU(2)-preserving min-
imum is the true global minimum of the potential.

A. Perturbative unitarity of 2 → 2 scattering
amplitudes

The scalar couplings in Eq. 6 can be bounded by per-
turbative unitarity of the 2 → 2 scalar field scattering
amplitudes. These constraints were studied in the origi-
nal GM model in Refs. [19, 30]; here we extend them to
include the real singlet scalar.

The partial wave amplitudes aJ are related to the ma-
trix element M of the process by:

M = 16π
∑
J

(2J + 1)aJPJ(cos θ), (19)

where J is the (orbital) angular momentum and PJ(cos θ)
are the Legendre polynomials. Perturbative unitarity re-
quires that the zeroth partial wave amplitude, a0, satisfy
|a0| ≤ 1 or |Re a0| ≤ 1

2 . Because the 2 → 2 scalar field
scattering amplitudes are real at tree level, we adopt the
second, more stringent, constraint. We will use this to
constrain the magnitudes of the scalar quartic couplings
λi.

We work in the high energy limit, in which the only
tree-level diagrams that contribute to 2→ 2 scalar scat-
tering are those involving the four-point scalar couplings
since all diagrams involving scalar propagators are sup-
pressed by the square of the collision energy. Thus the

dimensionful couplings M1, M2, µ2
2, µ2

3 and µ2
S are not

constrained directly by perturbative unitarity. In the
high energy limit we can ignore electroweak symmetry
breaking and include the Goldstone bosons as physical
fields (this is equivalent to including scattering processes
involving longitudinally polarized W and Z bosons). We
neglect scattering processes involving transversely polar-
ized gauge bosons or fermions.

Under these conditions, only the zeroth partial wave
amplitude contributes to M, so that the constraint
|Re a0| < 1

2 corresponds to |M| < 8π. This condi-
tion must be applied to each of the eigenvalues of the
coupled-channel scattering matrixM including each pos-
sible combination of two scalar fields in the initial and
final states. Because the scalar potential is invariant un-
der SU(2)L × U(1)Y , the scattering processes preserve
electric charge and hypercharge and can be conveniently
classified by the total electric charge and hypercharge of
the incoming and outgoing states. We include a symme-
try factor of 1/

√
2 for each pair of identical particles in

the initial and final states.
The basis states for Q = Y = 0 are,

χ++∗χ++, χ+∗χ+, ξ+∗ξ+, φ+∗φ+,

ξ0ξ0

√
2
, χ0∗χ0, φ0∗φ0,

S2

√
2
, Sξ0. (20)

Scattering amplitudes involving these states yield eight
distinct eigenvalues of M,

x±2 = 4λ1 − 2λ3 + 4λ4 ±
√

(4λ1 + 2λ3 − 4λ4)2 + 4λ2
5,

y1 = 16λ3 + 8λ4,

y2 = 4λ3 + 8λ4,

zb = 4λb,

z1,2,3 = Roots(P (z)), (21)

where z1, z2, and z3 are the roots of the polynomial,

P (z) = det

24λ1 − z 12λ2 4λa
12λ2 28λ3 + 44λ4 − z 6λb
4λa 6λb 12λS − z

 .

(22)
We have followed the notation of Refs. [19, 30] where
possible. Note that the pair of eigenvalues x±1 of Refs. [19,
30] is recovered by taking λa = λb = λS = 0 in P (z).

The basis states for Q = 0 and Y = 1 are,

φ+ξ+∗, φ0ξ0, χ+φ+∗, χ0φ0∗, Sφ0. (23)

Scattering amplitudes involving these states yield four
additional distinct eigenvalues of M,

y3 = 4λ2 − λ5,

y4 = 4λ2 + 2λ5,

y5 = 4λ2 + 4λ5,

za = 4λa. (24)
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Scattering amplitudes involving basis states with other
values of Q and Y only repeat eigenvalues that have al-
ready been found. Note that by adding the real sin-
glet scalar S we have replaced the two eigenvalues x±1 of
Refs. [19, 30] with five new eigenvalues z1,2,3,a,b. We ob-
tain the unitarity bounds by requiring that the absolute
value of each of the eigenvalues in Eqs. (21) and (24) be

less than 8π.

The three unitarity constraints |z1,2,3| < 8π can be
made more algebraically tractable by replacing them
with three equivalent conditions as follows. First, since
Eq. (22) is linear in λS , we can solve the equation
P (z) = 0 for λS as a function of the root z,

λS(z) =
1

6

(
z

2
+

2λ2
a(7λ3 + 11λ4 − 1

8z) + 9λ2
b(3λ1 − 1

8z)− 18λ2λaλb

2(7λ3 + 11λ4 − 1
8z)(3λ1 − 1

8z)− 9λ2
2

)
. (25)

This function has two poles, across which λS(z) changes
sign. There are thus three values of z that yield the same
value of λS , corresponding to the three roots z1,2,3 of the
polynomial P (z). We now require that all three of these
roots satisfy |z1,2,3| < 8π. For this to be possible, the
two poles in λS(z) must also lie at z values between −8π
and 8π. The positions of these two poles are given by

z = x±1 , where

x±1 = 12λ1 + 14λ3 + 22λ4

±
√

(12λ1 − 14λ3 − 22λ4)2 + 144λ2
2. (26)

Therefore we require |x±1 | < 8π, reproducing two of the
unitarity constraints from the original GM model [19, 30].
The third condition restricts λS to lie in the range for
which the three roots of P (z) all lie within (−8π, 8π),

λmin
S < λS < λmax

S , (27)

where λmin
S = λS(z = −8π) and λmax

S = λS(z = 8π) from
Eq. (25).

To summarize, we will require that the following con-
straints from perturbative unitarity be satisfied:

8π >

∣∣∣∣12λ1 + 14λ3 + 22λ4 ±
√

(12λ1 − 14λ3 − 22λ4)2 + 144λ2
2

∣∣∣∣ = |x±1 |,

8π >

∣∣∣∣4λ1 − 2λ3 + 4λ4 ±
√

(4λ1 + 2λ3 − 4λ4)2 + 4λ2
5

∣∣∣∣ = |x±2 |,

8π >|16λ3 + 8λ4| = |y1|,
8π >|4λ3 + 8λ4| = |y2|,
8π >|4λ2 − λ5| = |y3|,
8π >|4λ2 + 2λ5| = |y4|,
8π >|4λ2 + 4λ5| = |y5|,
8π >|4λa| = |za|,
8π >|4λb| = |zb|,

λS <
1

6

(
4π +

2λ2
a(7λ3 + 11λ4 − π) + 9λ2

b(3λ1 − π)− 18λ2λaλb
2(7λ3 + 11λ4 − π)(3λ1 − π)− 9λ2

2

)
,

λS >
1

6

(
−4π +

2λ2
a(7λ3 + 11λ4 + π) + 9λ2

b(3λ1 + π)− 18λ2λaλb
2(7λ3 + 11λ4 + π)(3λ1 + π)− 9λ2

2

)
. (28)

B. Requirement that the scalar potential be
bounded from below

We next examine the constraints on the scalar cou-
plings imposed by requiring that the scalar potential be

bounded from below. The constraints that must be sat-
isfied at tree level for the scalar potential to be bounded
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from below can be determined by considering only the
terms that are quartic in the fields, because these terms
dominate at large field values. Following the approach of
Ref. [77], we parametrize the potential using the follow-
ing definitions,

r =
√

Tr(Φ†Φ) + Tr(X†X) + S2,

r2 cos2 γ sin2 β = Tr(Φ†Φ),

r2 sin2 γ sin2 β = Tr(X†X),

r2 cos2 β = S2,

ζ =
Tr(X†XX†X)

(Tr(X†X))2
,

ω =
Tr(Φ†τaΦτ b)Tr(X†taXtb)

Tr(Φ†Φ)Tr(X†X)
. (29)

Making these substitutions, we can write the quartic part
of the potential as

V4 =
r4

(1 + tan2 γ)2(1 + tan2 β)2
xTAy, (30)

where

x =

 1
tan2 β
tan4 β

 , y =

 1
tan2 γ
tan4 γ

 , (31)

and

A =

λS 2λS λS
λa λa + λb λb
λ1 λ2 − λ5ω λ3ζ + λ4

 . (32)

The first fraction in Eq. (30) is always positive, and grows
with the overall field excursion r. The xTAy term in
Eq. (30) can be positive or negative; we require it to
be positive to ensure that the potential is bounded from
below. This term can be expressed as a bi-quadratic in
tan γ with coefficients being other bi-quadradics in tanβ.
A bi-quadratic of the form a+ bz2 + cz4 will be positive
for all values of z if the following conditions are satisfied:

a > 0, c > 0, and b+ 2
√
ac > 0. (33)

In our case this leads to the following constraints on the
elements of the matrix A in Eq. (32):

0 < A11 = λS ,

0 < A33 = ζλ3 + λ4,

0 < A13 = λS ,

0 < A31 = λ1,

0 < A12 + 2
√
A11A13 = 4λS ,

0 < A32 + 2
√
A31A33 = λ2 − ωλ5 + 2

√
λ1(ζλ3 + λ4),

0 < A21 + 2
√
A11A31 = λa + 2

√
λ1λS ,

0 < A23 + 2
√
A13A33 = λb + 2

√
(ζλ3 + λ4)λS ,

0 < xiAi2 + 2
√
xjAj1xkAk3

= xTAe2 + 2
√

(xTAe1)(xTAe3),

0 < A2iyi + 2
√
A1jyjA3kyk

= eT2 Ay + 2
√

(eT1 Ay)(eT3 Ay), (34)

where it should be understood that repeated indices are
summed over, and ei is a unit vector with a 1 in the
ith component and zeros everywhere else. The last two
conditions do not provide any new information as they
are always satisfied when the others are, but we list them
for completeness.

The ranges of the parameters ζ and ω are given, as in
the original GM model [30], by

ζ ∈
[

1

3
, 1

]
, ω ∈

[
−1

4
,

1

2

]
. (35)

For a given value of ζ, we can write ω ∈ [ω−, ω+],
where [30]

ω±(ζ) =
1

6
(1−B)±

√
2

3

[
(1−B)

(
1

2
+B

)] 1
2

, (36)

with

B ≡

√
3

2

(
ζ − 1

3

)
∈ [0, 1]. (37)

Therefore, we can write our constraints as follows:

λ1 > 0,

λ4 >

{
− 1

3λ3 for λ3 ≥ 0,
−λ3 for λ3 < 0,

λ2 >


1
2λ5 − 2

√
λ1

(
1
3λ3 + λ4

)
for λ5 ≥ 0, λ3 ≥ 0,

ω+(ζ)λ5 − 2
√
λ1 (ζλ3 + λ4) for λ5 ≥ 0, λ3 < 0,

ω−(ζ)λ5 − 2
√
λ1 (ζλ3 + λ4) for λ5 < 0,

λa > −2
√
λ1λS ,

λb >

{
−2
√(

1
3λ3 + λ4

)
λS for λ3 ≥ 0,

−2
√

(λ3 + λ4)λS for λ3 < 0,

λS > 0. (38)
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The first three of these constraints are identical to those
in the original GM model, while the last three are new.

We note that the full parameter space of the quar-
tic scalar couplings as allowed by perturbative unitarity
and the requirement that the scalar potential be bounded
from below can be covered by scanning over the following
ranges. For the couplings λ1–λ5, the ranges are the same
as in the original GM model [30],

λ1 ∈
(

0,
π

3

)
, λ2 ∈

(
−2π

3
,

2π

3

)
, λ3 ∈

(
−π

2
,

3π

5

)
,

λ4 ∈
(
−π

5
,
π

2

)
, λ5 ∈

(
−8π

3
,

8π

3

)
. (39)

For the new couplings λa, λb, and λS in the singlet scalar
dark matter extension of the GM model, the ranges are,5

λa ∈

(
−2π(3

√
2− 2)

7
, 2π

)
, λb ∈

(
− 4π√

33
,

4π

3

)
,

λS ∈
(

0,
2π

3

)
. (40)

Within these ranges, the conditions in Eqs. (28) and (38)
must still be applied and any points in violation dis-
carded.

C. Conditions to avoid alternative minima

Finally we check that the scalar potential does not con-
tain any deeper minima that spontaneously break the
custodial symmetry or that give the singlet a vev.

The constraints on the parameters required to en-
sure that the desired electroweak-breaking and custodial
SU(2)-preserving minimum is the true global minimum
were studied for the original GM model in Ref. [30].
These continue to apply in the singlet-extension that we
study here and we implement them as follows. Using
ζ and ω from Eq. (29) and introducing the additional

5 The upper limits of these ranges come from the unitarity con-
straints in Eq. (28). The upper limit on λa comes directly from
|za| < 4π. The upper limit on λb comes from the upper and lower
bounds on λS : for large enough λb these two bounds meet each
other, and the least stringent bound on λb comes from taking all
other quartic couplings equal to zero in these expressions. The
upper limit on λS comes directly from the expression in Eq. (28),
which is least stringent when all other quartic couplings are set
to zero.

The lower limit on λa comes from an interplay of the bounded-
from-below constraint λa > −2

√
λ1λS in Eq. (38) and the upper

bound on λS from Eq. (28) when λ2 = λ3 = λ4 = λ5 = λb = 0
and λS = 2λ1. The lower limit on λb comes from an interplay
of the constraint in Eq. (38) and the bound on λ3 and λ4 from
|x±1 | < 8π in Eq. (28). The least stringent limit occurs when
λ1 = λ2 = λ3 = 0. The lower limit on λS comes trivially from
Eq. (38).

parameters

σ =
Tr(Φ†τaΦτ b)(UXU†)ab

Tr(Φ†Φ)[Tr(X†X)]
1
2

,

ρ =
Tr(X†taXtb)(UXU†)ab

[Tr(X†X)]
3
2

,

x2 = Tr(Φ†Φ),

y2 = Tr(X†X),

z2 = S2, (41)

the scalar potential can be written as

V =
µ2

2

2
x2 +

µ2
3

2
y2 +

µ2
S

2
z2 + (λ2 − λ5ω)x2y2

+ λax
2z2 + λby

2z2 + λ1x
4 + (λ3ζ + λ4)y4

+ λSz
4 −M1σx

2y −M2ρy
3. (42)

The parameters ζ, ω, σ and ρ capture the dependence
on which component(s) of X obtain a vev. The correct
custodial SU(2)-preserving vacuum corresponds to ζ =

1/3, ω = 1/2, σ =
√

3/4, and ρ = 2/
√

3 [30]. For a
given set of Lagrangian parameters, we check that these
values yield the lowest value of the potential V by using
the convenient parameterization [30]

ζ =
1

2
sin4 θ + cos4 θ,

ω =
1

4
sin2 θ +

1√
2

sin θ cos θ,

σ =
1

2
√

2
sin θ +

1

4
cos θ,

ρ = 3 sin2 θ cos θ, (43)

and scanning over θ ∈ [0, 2π).
We then check that the potential does not have any

deeper minima in which S gets a vev. If µ2
S , λa and

λb are all positive, then S cannot get a vev. We only
have to worry about this possibility if one or two of these
parameters are negative (all three cannot be negative be-
cause we require m2

S = µ2
S + 2λav

2
φ + 6λbv

2
χ > 0). Taking

∂V/∂z = 0 yields two possible extrema,

z = 0,

z2 = − 1

4λS
(µ2
S + 2λax

2 + 2λby
2). (44)

We then take ∂V/∂x = 0 and ∂V/∂y = 0, plug in each
of the two solutions for z from Eq. (44), solve for the
possible values of x and y in each case, and then plug
these back into V to obtain the depth of the potential at
each extremum. Points are discarded if a minimum with
z 6= 0 is deeper than the desired one with z = 0.

IV. THERMAL RELIC DENSITY

We now turn to constraints from the dark matter relic
abundance. We assume that the scalar dark matter can-
didate S constitutes all of the dark matter. We will use
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the observed relic density to fix a combination of λa and
λb. We show that the direct detection constraints re-
strict the dark matter mass to be near half the Higgs
mass around 62 GeV or above approximately 120 GeV.

A. Thermal Freezeout

The relic density of S through thermal freeze-out in
the early universe is determined by the annihilation cross
section for SS → anything. We calculate the thermally
averaged cross section as a function of temperature using
[78, 79]:

〈σ12→34vrel〉 =
g1g2T

32π4neq
1 n

eq
2

(45)

×
∫ ∞

4m2
S

σ12→34

[
s− 4m2

S

]2√
sK1

(√
s

T

)
ds,

where s = (p1 + p2)2 is the usual Mandelstam variable,
g1 = g2 ≡ gS = 1 is the number of internal degrees of
freedom of S, vrel is the relative velocity of particles 1 and
2, and K1 is the modified Bessel function of the second
kind of order 1. We use the thermally averaged total an-
nihilation cross section as input for the usual Boltzmann
equation [75, 78, 79]:

dnS
dt

+ 3HnS = −〈σvrel〉
[
n2
S − (neq

S )
2
]
, (46)

where H is the Hubble parameter and nS is the number
density of S. Here neq

S is the equilibrium number density
of S and is given by [78, 79]:

neq
S =

gS
(2π3)

∫
e−ES/T d3pi

=
gSm

2
ST

2π2
K2(mS/T ) (47)

≈ gS
(
mST

2π

)3/2

e−mS/T , (48)

where K2 is the modified Bessel function of the second
kind of order 2 and where the approximation holds for
when mS � T . We then solve this equation numerically
to obtain the number density today which translates to
a value for the relic abundance.

We need to include all final states arising from SS
annihilation into SM particles and various other scalar
final states appearing in the model. We group them by
final state.

1. ff̄ , V V , and H3V final states

We begin with the final states for which the SS anni-
hilation proceeds by the s-channel exchange of h and H
bosons only (the first diagram in Fig. 1). We write this
annihilation cross sections by incorporating the expres-
sion for the SM Higgs decay width, setting the Higgs mass
to the center of mass energy. For decays to AB = ff̄ or
V V , the resulting expression is:

σvrel =
2√
s

(
gSShghAB
s−m2

h

+
gSSHgHAB
s−m2

H

)2
1

g2
hSMAB

×Γ(mhSM =
√
s, hSM → AB), (49)

where Γ is the decay width of a SM Higgs boson with
a mass of

√
s into final state AB. This decay width is

calculated using the usual SM formulas.
We must also include the final state with one H3 scalar

and one vector boson. The cross section of this process
when

√
s > m3 +mV is:

σvrel =
(s2 − 2s(m2

3 +m2
V ) + (m2

3 −m2
V )2)

3
2

8πs2m2
W

×
(
gSShghH3V

s−m2
h

+
gSSHgHH3V

s−m2
H

)2

. (50)

When
√
s < m3 + mV , we include the offshell process

SS → V ∗H3, whose cross section is given by

σvrel =

(
gSShghH3V

s−m2
h

+
gSSHgHH3V

s−m2
H

)2

δV
3m2

V

8π3v2
Gij ,

(51)
where [80–82]

Gij =
1

4

[
2(−1 + kj − ki)

√
λij

(
π

2
+ arctan

(
kj(1− kj + ki)− λij

(1− ki)
√
λij

))

+(λij − 2ki) log ki +
1

3
(1− ki)

(
5(1 + ki)− 4kj +

2λij
kj

)]
, (52)

with

δW =
3

2
, δZ = 3

(
7

12
− 10

9
s2
W +

40

27
s4
W

)
. (53)

Here ki = m2
3/s, kj = m2

V /s, sW is the sine of the weak
mixing angle, and λij = −1 + 2ki + 2kj − (ki − ki)2.
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FIG. 1. Feynman diagrams for SS annihilation. In the first,
the final state can be any allowed pair of SM particles or
GM scalars. However, in the second and third diagrams, only
scalar final states can appear. Crossed diagrams (not shown)
are also included in the calculation.

2. Final states involving H3 or H5 pairs

We now compute the SS annihilation cross sections
into final states that consist of neutral or charged H3

and H5 scalars. The possible final states considered here
are:

(H0
3 , H

0
3 ), (H+

3 , H
−
3 ), (H0

5 , H
0
5 ), (H+

5 , H
−
5 ), (H++

5 , H−−5 ).
(54)

Since the two particles in each of these final states have
the same mass, we will label it as mi. Annihilation into
these final states proceeds via s-channel and four-point
diagrams (the first two diagrams in Fig. 1). The cross
section for final-state particles h1 and h2 is given by:

σvrel = δ12

(s− 4m2
h1

)
1
2

16πs
3
2

(55)

×
(
gSSh1h2

+
gSShghh1h2

s−m2
h

+
gSSHgHh1h2

s−m2
H

)2

,

where δ12 = 1/2 for identical final-state particles h1 = h2

and δ12 = 1 for non-identical final-state particles.

3. (h,H), (h, h) and (H,H) final states

The cross sections with (h,H), (h, h) or (H,H) in the
final state proceed via s-channel, four-point, and t- and
u-channel diagrams (all the diagrams in Fig. 1 plus the
crossed diagram). For non-identical hi, hj in the final
state, we obtain:

σvrel =

√
s2 + (m2

hj
−m2

hi
)2 − 2s(m2

hj
+m2

hi
)

16πs2
g(s),

(56)

and for identical particles in the final state, we obtain:

σvrel =

√
s− 4m2

hi

32πs3/2
g(s), (57)

where g, a, b, c, and d are defined as follows:

g(s) =2a2 +
b2

c2(c2 − d2)
+
b(b− 4ac2)

c3d
tanh−1

(
d

c

)
,

(58)

a =gSShihj +
∑
k

gSShkghkhihj
s−m2

hk

, (59)

b =4gSShigSShj (s− (m2
hi +m2

hj )), (60)

c2 =(s−m2
hj −m

2
hi)

2, (61)

d2 =

(
1− 4m2

S

s

)(
(s−m2

hj +m2
hi)

2 − 4sm2
hi

)
, (62)

where the sum in a runs over hk = h,H.

B. Imposing Relic Density

Here we give details on how we impose the relic den-
sity as a constraint on λa and λb. We first note that
the thermally averaged cross section is a strictly increas-
ing function of |λa| and |λb|. In our numerical scans,
we would like to be able to randomly select a particular
linear combination of the couplings λa and λb and then
scale them both until the correct relic density is obtained.
After generating a scan point in the original GM model
(see next section for details), we select the values of λa,
λb and µ2

S as follows:

• First, generate a random angle θλ ∈
[
−π2 ,

π
2

]
;

• Randomly select either the positive or negative so-
lution for λa;

• Set λb = λa tan θλ;

• Generate a random mass mS > 0 GeV;

• Find a value of λa that yields a relic density of
0.1064 ≤ ΩDMh

2 ≤ 0.1176 [83];

• Once the value of λa is found we can find λb and,
in turn, µ2

S using Eq. (14).

The first three steps allows us to select a particular
linear combination of λa and λb. Generating mS directly
lets us avoid unphysical negative m2

S values regardless
of the actual values of λa and λb. Finally, numerically
searching for the correct value of λa is straightforward
because σvrel is an increasing function of λa and σvrel →
∞ when λa →∞ and σvrel → 0 when λa → 0.

V. NUMERICAL SCAN PROCEDURE

To map out the allowed parameter space, we perform
numerical scans. In these scans, we start by imposing the
theoretical constraints and the relic density constraint.
We then check whether the points pass the remaining
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experimental constraints. In the plots that follow, points
that pass the experimental constraints will be blue, while
points that fail at least one constraint will be red.

For the dimensionful parameters, the ranges we scan
over are:

• −4× 104 GeV2 ≤ µ2
3 ≤ 106 GeV2;

• 0 ≤M1 ≤ max(3500 GeV, 3.5
√
|µ2

3|);

• |M2| ≤ max(250 GeV, 1.3
√
|µ2

3|), with either sign
allowed;

• 0 ≤ mS ≤ 1000 GeV, 0 ≤ mS ≤ 125 GeV, or
56 ≤ mS ≤ 63 GeV (see text below for explanation
of these three regions).

The ranges for M1 and M2 are chosen to minimize the
number of points generated which fail the theory con-
straints while still scanning the whole parameter space.
The mass parameters µ2

3 and mS do not have upper
bounds so we impose arbitrary bounds for the purpose of
the scan. We perform a scan with 0 ≤ mS ≤ 1000 GeV in
order to obtain a general picture of the parameter space,
one with 0 ≤ mS ≤ 125 GeV in order to obtain higher
statistics in the interesting low-mS region, and finally a
smaller dedicated scan with 56 ≤ mS ≤ 63 GeV to fur-
ther investigate the Higgs pole region.

From these values, we calculate λ1, µ2
2 and µ2

S , and all
the masses and couplings, and then use the relic density
to fix a random linear combination of λa and λb.

VI. DIRECT AND INDIRECT COLLIDER
CONSTRAINTS ON THE GM MODEL

Very low masses for H0,±
3 and H0,±,±±

5 can have a
substantial effect on the dark matter relic abundance
through annihilations into pairs of these scalars. We
constrain these masses using direct experimental search
limits as follows. LHC limits on anomalous like-sign
dimuon production [84] set a lower bound on the mass
of a doubly-charged scalar decaying to like-sign W boson
pairs. This was studied in Ref. [85] for the Higgs Triplet
Model [86] and recast into the GM model in Ref. [11].
This yields a lower bound m5 ≥ 76 GeV, so long as
H3 is heavier than H5 so that decays H±±5 → W±H±3
do not compete with the decays into like-sign W pairs.
Searches for a charged Higgs boson at the CERN Large
Electron-Positron (LEP) collider [87] exclude charged
Higgs masses below 78 GeV, assuming that the charged
Higgs decays entirely into a combination of τν and cs
final states. This limit can be applied to H±3 so long
as decays H±3 →W±H0

5 , ZH
±
5 do not compete with the

decays to fermions. This holds when H5 is heavier than
H3. We therefore impose the lower bounds

m3 ≥ 76 GeV, m5 ≥ 76 GeV. (63)

Low H±3 masses can also be constrained from their
effect on the loop-induced decay of b → sγ. We use

FIG. 2. Feynman diagram for direct detection via t-channel
Higgs exchange in SN → SN scattering. There is a second
diagram in which h is replaced by H.

the “loose” constraint determined for the GM model in
Ref. [34], which is based on an experimental average from
the Heavy Flavour Averaging Group [88, 89] and a theo-
retical prediction from the public code SuperIso v3.3 [90].
The b → sγ constraint sets a maximum value of vχ as a
function of m3. Although this could potentially be con-
straining, all points in our numerical scan satisfied this
constraint.

VII. CONSTRAINTS FROM DARK MATTER

A. Dark Matter Direct Detection

When a dark matter particle is in close proximity with
a nucleon, there may be a scattering via the t-exchange
of a Higgs boson. This transfer of momentum can be
detected from the nucleon recoil so that experimental
limits can be used to constrain our model. In our model,
this process proceeds via exchange of a virtual h or H as
shown in Fig. 2.

The spin-independent cross section for the scattering
of a scalar dark matter particle S off of a single nucleon
is given by

σ =

(
gSShcα
m2
hcH

+
gSSHsα
m2
HcH

)2
f2
Nm

4
N

4π(mN +mS)2v2
, (64)

where we neglect the momentum transfer relative to the
h or H mass, cH was defined in Eq. (10), cα ≡ cosα,
sα ≡ sinα, and fN is the nucleon vertex factor [60],

fN =
∑
q

fq =
∑
q

mq

mN
< N |q̄q|N >, (65)

where the sum is over all quark flavours, and the Feyn-
man rule for the Higgs-nucleon vertex is −ifNmN/v.
We follow Ref. [60] in using fN = 0.30 ± 0.03 and
mN = (mn +mp)/2 = 938.95 MeV.

In Fig. 3 we illustrate the effect of the direct detection
constraints on our model. The scan points shown are
those that satisfy the theoretical constraints and yield
the correct dark matter relic abundance. The blue points
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FIG. 3. Direct detection cross section as a function of mS .
The top plot is a zoom of the low-mS region while the bottom
plot shows the full mS range scanned. The red (grey) points
are eliminated by direct or indirect dark matter detection
measurements and the blue (black) points are the remaining
ones that are allowed. On the right side of the figures, starting
at the top are the exclusion limits from LUX (solid magenta)
[76], as well as projected sensitivities of DEAP-3600 (dashed
green) [91], and XENON1T (dashed brown) [92]. The yellow
shaded region below the lowest line is the coherent neutrino
scattering background (“neutrino floor”) [93]. Data files were
taken from the DMTools website [94].

satisfy the constraints from the dark matter direct de-
tection experiments as well as limits from indirect detec-
tion (see next subsection), while the red points fail those
constraints. The current most stringent direct-detection
cross section limit comes from the LUX experiment [76]
and is shown as the solid magenta line in Fig. 3. As can
be seen, this constraint is responsible for excluding the
great majority of the red (excluded) points in our scan,
except for a small collection of points on the higher-mass
side of the Higgs pole at mh/2 = 62.5 GeV. We also show
the projected limits from DEAP-3600 [91] (dotted green)
and XENON1T [92] (dotted brown), as well as the “neu-
trino floor” (yellow shaded region) below which coherent
neutrino scattering becomes an irreducible background
to the dark matter direct detection experiments [93].

FIG. 4. Present-day annihilation cross section for SS → bb̄
as a function of mS . The blue (black) points are allowed
while the red (grey) points are excluded by direct detection
or dwarf spheroidal galaxy constraints. Points above the blue
line are excluded by the dSphs bb̄ constraint from the Fermi
satellite [95]. Fermi gives the thermally averaged cross section
while we use the low velocity approximation and take s =
4m2

S .

B. Dark matter indirect detection

Dwarf spheroidal satellite galaxies (dSphs) are typi-
cally dark matter dominated so are a good place to study
dark matter. The Fermi collaboration has acquired 6
years worth of data observing 15 dSphs and have re-
leased bounds for WIMP dark matter annihilation based
on their gamma ray flux. They considered the following
representative final states for the dark matter annihila-
tion: e+e−, µ+µ−, τ+τ−, uū, bb̄, and W+W− [95].

We can translate the Fermi bounds into constraints on
our model by considering the branching ratio of the sin-
glet annihilation to these final states. Although all of the
final states are considered in our analysis, the strongest
constraint comes from the bb̄ final state for singlet scalar
masses just below half the h mass. Figure 4 shows the
results of applying the bb̄ constraint to the scan points.
As can be seen, there is a sharp dip in the cross section
followed by a sharp peak. The dip can be understood
as coming from having to lower the values of λa and λb
near the Higgs resonance, therefore lowering the gSSh
coupling, in order to obtain the correct relic density. As
the singlet mass approaches the Higgs pole, the thermal
distribution during freeze-out pushes the center of mass
energy above the pole. This results in increased values of
λa and λb to obtain the correct relic density. However,
since the temperature of dark matter is much lower today
(we use the approximation that vrel = 0), the increased
coupling appears at a center of mass energy closer to the
Higgs resonance and creates this peak. The indirect de-
tection constraint thereby excludes a small collection of
points on the heavier side of the h pole dip in Fig. 3 that
are not yet excluded by direct detection.
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VIII. CONTRAINTS FROM HIGGS BOSON
PROPERTIES

A. Higgs Invisible Width

When mS < mh,H/2, the decay of the Higgs boson to
two dark matter candidates is kinematically accessible.
For convenience we define:

κhf =
ghff̄
gSM
hff̄

=
cα
cH

,

κhV =
ghV V
gSMhV V

= cαsH −
√

8

3
sαsH ,

κhγ =

[
Γ(h→ γγ)

ΓSM (h→ γγ)

]1/2

. (66)

Note that κhf is the same for all fermions and κhV is the

same for V = Z and W±. Γ(h → γγ) receives contribu-
tions from H+

3 , H+
5 , and H++

5 in addition to the modified
htt̄ and hWW couplings. The expression for the width
of this process is

Γ(h→ inv) =
g2
SSh

32m2
hπ

√
m2
h − 4m2

S . (67)

The most stringent LHC constraint on invisible Higgs
decay comes from Higgs production in vector boson fu-
sion (VBF). To compare with experiment, we therefore
consider the ratio [96]

σV BFBRinv

σSMVBF
=

(κhV )2Γ(h→ inv)

Γtot
< 0.29, (68)

written in terms of the vector boson fusion (VBF) pro-
duction cross section and the invisible branching ratio.
In the total width Γtot of h we include decays to bb̄, cc̄,
ττ , gg, WW ∗, ZZ∗, γγ, and SS as computed above.

The ratio in Eq. (68) is shown in Fig. 5, plotted against
mS in the kinematically allowed region. The experimen-
tal constraint of σV BFBRinv/σ

SM
VBF < 0.29 [96] is shown

as the horizontal blue line. The bound from invisible
Higgs decays is currently not as strong as the constraints
from direct detection of dark matter.

B. Higgs Couplings and Signal Strength

We finally apply the latest combined measurements of
Higgs couplings from CMS and ATLAS from Run 1 of
the LHC [97] to our model. In this section we discard
the points that are excluded by dark matter direct de-
tection or indirect detection constraints. We will find
that the Higgs coupling measurements exclude a signifi-
cant fraction of the remaining points, in particular those
for which the h coupling to fermion or vector boson pairs
is sufficiently different from the SM.

FIG. 5. Cross section times branching ratio for h production
in vector boson fusion followed by invisible decays to SS,
normalized to the SM cross section, as a function of mS . The
blue (black) points are allowed while the red (grey) points
are excluded by direct detection or dwarf spheroidal galaxy
constraints. Points above the blue line are excluded by the
ATLAS limit on σV BFBRinv/σ

SM
VBF [96] .

We write the cross sections and branching ratios in
terms of the appropriate SM values and the κ factors
defined in Eq. (66) as follows:

σ(AB → h) = (κhAB)2σSM (AB → h),

BR(h→ AB) = (κhAB)2 ΓSMtot

Γtot
BRSM (h→ AB), (69)

where κhg = κhf .

We compute a χ2 using the ATLAS+CMS com-
bined results for the LHC Run 1 Higgs properties from
Table 9 and the correlation matrix from Fig. 28 of
Ref. [97]. The inputs we use in this analysis are:
σ(gg → h → ZZ), σVBF/σggF, σWh/σggF, σZh/σggF,

σtth/σggF, BRWW /BRZZ , BRγγ/BRZZ , BRττ/BRZZ ,

and BRbb/BRZZ . We start by symmetrizing the uncer-
tainties for a given observable by taking the root mean
square of the asymmetric uncertainties. We then con-
struct the variance matrix V from these symmetrized
uncertainties and the correlation matrix and define:

χ2 = (x− y)TV −1(x− y), (70)

where x is a vector of the experimental best fit values
and y is a vector of calculated values using the kappas
and the SM predictions from Table 9 of Ref. [97]. Using
the SM predictions for y we get:

χ2
SM = 30.0448. (71)

We will consider a point in our model to be consistent
with the experimental measurements of these observables
if:

∆χ2 ≡ |χ2 − χ2
SM | < 4.

We apply the constraints from the Higgs couplings fit
only to the points that have passed all previous dark
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FIG. 6. Couplings of h to fermions (κhf ) and W and Z bosons

(κhV ) normalized to their SM values, for only the points al-
lowed by the dark matter direct and indirect detection con-
straints. The dark blue (black) points satisfy the ∆χ2 < 4
condition for the Higgs coupling measurements from the LHC
Run 1 data [97], while the red (grey) points fail this condition.

FIG. 7. Branching ratio of h → SS as a function of κhV , for
only the points allowed by the dark matter direct and indirect
detection constraints and for which mS < mh/2. The dark
blue (black) points satisfy the ∆χ2 < 4 condition for the Higgs
coupling measurements from the LHC Run 1 data [97], while
the red (grey) points fail this condition.

matter constraints. Figure 6 shows the points that pass
(blue/black) and those that fail (red/gray) the χ2 con-
straint from Higgs couplings in the κhV -κhf plane. The
Higgs coupling measurements exclude points for which
κhV or κhf deviate too much from their SM value of 1.

Of particular interest for Higgs phenomenology is the
case where the singlet is lighter than half the Higgs mass.
This allows the Higgs to decay to a pair of singlets which
would then escape the detector. Figure 7 shows the
branching ratio of h → SS as a function of κhV for the
points that passed all previous constraints and have a
singlet mass less than half the Higgs mass.

The only observable in the χ2 analysis that is sensitive
to the total decay width of the Higgs boson is the σ(gg →
h → ZZ) cross section, because the total width cancels

out in all the other inputs. In particular, we have:

σ(gg → h→ ZZ)

σSM (gg → h→ ZZ)
=
(
κhfκ

h
V

)2 ΓSMtot

Γtot
. (72)

This observable allows us to potentially distinguish be-
tween our model and the original GM model without the
scalar singlet dark matter candidate. In Fig. 8 we plot
this observable versus κhV for the points that survive the
∆χ2 < 4 constraint and for which the mass of the singlet
is less than half the Higgs mass, so that h→ SS is kine-
matically allowed. These are the blue (black) points. We
then take the same points, set µs = λa = λb = λS = 0
while keeping the other Lagrangian parameters fixed, and
remove the singlet from the theory. These points are
plotted in red (gray). For these points the couplings
κhf , κhV , and κhγ are the same as in the full model, but

BR(h → SS) (and its contribution to the Higgs total
width) is eliminated.

As can be seen, for the original GM model without the
singlet, the red points fall roughly along a line due to
the correlation between κhV and BR(h → ZZ) after the
rest of the Higgs coupling measurements are imposed.
For the full GM model with the singlet scalar dark mat-
ter candidate, however, some of the points are scattered
downward to smaller values of σ(gg → h → ZZ)/SM,
due to the suppression of BR(h → ZZ) by the compet-
ing h → SS decay mode. These are the same points for
which BR(h → SS) is visibly above zero in Fig. 7. This
offers a second way to potentially discriminate between
the original GM model and its scalar singlet extension
through an improved precision on the measurement of
σ(gg → h→ ZZ), when mS < mh/2.

FIG. 8. Prediction for the cross section σ(gg → h → ZZ)

normalized to its SM value as a function of κfV . The dark
blue (black) points are the points that pass the dark mat-
ter direct and indirect detection constraints and satisfy the
∆χ2 < 4 constraint from the Higgs coupling measurements.
The red (gray) points are the same parameter points but with
the h → SS decays switched off (see text for details) – these
correspond to the predictions in the original GM model with-
out the singlet scalar.
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IX. CONCLUSIONS

In this paper we studied the addition of a scalar dark
matter candidate to the Georgi-Machacek model. This
provides a concrete implementation of a scenario in which
the Higgs couplings to vector boson and fermion pairs
can be enhanced while a new, non-SM decay mode is
also present, thereby allowing an exploration of the in-
terplay of Higgs production and decay constraints. We
showed that the dark matter candidate in this model can
be made to respect all current constraints while allowing
for a sizable (up to 10%) branching ratio for the Higgs to
the dark matter candidate in certain areas of parameter
space.

The model consists of the Georgi-Machacek model with
the addition of a real singlet which has a Z2 symmetry
to make it stable. We first studied the theoretical con-
straints on the new parameters by imposing tree-level
unitarity in 2→ 2 scalar scattering amplitudes, requiring
that the potential is bounded from below, and requiring
that deeper custodial SU(2)-violating minima are absent.
We found that we could translate all the constraints from
the original GM model to our extended model and sim-
ply add a few new constraints on the new Lagrangian
parameters.

We performed a numerical scan over the Lagrangian
parameters, imposing the theoretical constraints and re-
quiring that the singlet scalar accounts for all of the
dark matter in the universe through thermal freeze-out.
We identified the parameter regions that satisfy the con-
straints from dark matter direct-detection searches as
well as the indirect constraints from gamma ray mea-
surements of dwarf spheroidal galaxies. This constrained
the dark matter mass to be either near the Higgs pole for
resonant annihilation (57-62 GeV) or mostly above about
120 GeV. We also saw that for parameter values where
the dark matter mass was near the Higgs pole we could
attain a sizable branching ratio for h → SS; however,
after imposing the dark matter constraints, the current
limit on the Higgs invisible decays does not further con-
strain the model.

We finally studied the constraints from the LHC Run
1 Higgs coupling measurements. While these measure-
ments further constrain the parameter space, they do
so mostly by constraining the hff̄ , hV V , and hγγ cou-
plings. The Higgs coupling measurements are not yet
precise enough to be sensitive to the modification of sig-
nal rates by the presence of the h → SS decay mode,
so that the constraints from Higgs measurements are so
far the same as they would be in the original GM model
without the singlet scalar.

The allowed region of parameter space that we iden-

tified can be further probed in the future by the next
generation of dark matter direct detection experiments,
as well as improved precision on the invisible Higgs decay
width and Higgs coupling measurements.
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Appendix A: Feynman rules for couplings involving
S

1. Triple scalar couplings

The Feynman rules for couplings to S are given by
−igSShi with all particles incoming and the couplings
defined as follows:

gSSh = −4
(
λasαvφ +

√
3λbcαvχ

)
,

gSSH = −4
(
λacαvφ +

√
3λbsαvχ

)
, (A1)

where we use the notation sα ≡ sinα and cα ≡ cosα.

2. Quartic scalar couplings

The Feynman rules for couplings to S are given by
−igSSs1s2 with all particles incoming and the couplings
defined as follows:

gSShh = −4
(
λac

2
α + λbs

2
α

)
,

gSSHH = −4
(
λas

2
α + λbc

2
α

)
,

gSShH = −4sαcα (λa − λb) ,
gSSG0G0 = gSSG+G+∗ = −4

(
λac

2
H + λbs

2
H

)
,

gSSH0
3H

0
3

= gSSH+
3 H

+∗
3

= −4
(
λas

2
H + λbc

2
H

)
,

gSSG0H0
3

= gSSG+H+∗
3

= gSSH+
3 G

+∗ = −4sHcH (λb − λa) ,

gSSH0
5H

0
5

= gSSH+
5 H

+∗
5

= gSSH++
5 H++∗

5
= −4λb, (A2)

where we use the notation sH ≡ sin θH and cH ≡ cos θH ,
and G0 and G± are the Goldstone bosons.

All other Feynman rules are identical to those in the
original GM model and can be found in Appendix A of
Ref. [30]
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