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From the perspective that the Λc(2595) and Λc(2625) are dynamically generated resonances from
the DN, D∗N interaction and coupled channels, we have evaluated the rates for Λb → π−Λc(2595)
and Λb → π−Λc(2625) up to a global unknown factor that allows us to calculate the ratio of rates and
compare with experiment, where good agreement is found. Similarly, we can also make predictions
for the ratio of rates of the, yet unknown, decays of Λb → D−

s Λc(2595) and Λb → D−
s Λc(2625) and

make estimates for their individual branching fractions.

PACS numbers:

I. INTRODUCTION

The weak decay of B and D mesons, as well as that
of Λb,Λc baryons, has brought an unexpected source of
information on the nature of many hadrons which are
produced in the final states (see recent reviews in Ref.
[1]), adding new elements into the debate on the struc-
ture of hadrons [2, 3]. The reactions that triggered these
studies were the B0 → J/ψπ+π− and B0

s → J/ψπ+π−

observed in LHCb [4]. In the first reaction the π+π−

gave rise to the f0(500) and there was only a very weak
signal of the f0(980), while in the second reaction the
f0(980) excitation was very pronounced and there was
no signal of the f0(500). These results were soon inter-
preted within the context of the chiral unitary approach
in Ref. [5], where the f0(500) and f0(980) appear as a
consequence of the pseudoscalar meson-pseudoscalar me-
son interaction in coupled channels [6], using dynamics
from the chiral Lagrangians [7]. The same idea, with a
different formalism, has been applied later with the same
conclusions [8, 9].
Λb decays followed in this line, and in Ref. [10] the

Λb → J/ψΛ(1405) decay was studied, making predic-
tions for πΣ and K̄N invariant mass distributions. The
predictions for the s-wave K−p mass distribution, asso-
ciated to the Λ(1405), were corroborated in the posterior
experimental study of this reaction by the LHCb collab-
oration, in the experiment where two pentaquark signals
were found [11]. Related work followed in Ref. [12] in the
weak decay of the Λc into π

+ and a pair of meson-baryon
states, MB, which gives rise to the Λ(1405) and the
Λ(1670). Similarly, in Ref. [13] the Λb → J/ψKΞ reac-
tion was studied, which sheds light on the pseudoscalar-
baryon interaction at energies above the Λ(1405) region.
More recently the Ξc → π+MB reaction has also been
shown to be a good tool to investigate the Ξ(1620) and
Ξ(1690) resonances [14]. Related reactions aimed at the
production of pentaquark states have been reviewed in
Refs. [15–17].
In the present work we study the Λb →

π−Λc(2595), π−Λc(2625), Λb → D−
s Λc(2595) and

Λb → D−
s Λc(2625) reactions and make predictions for

the ratios of the branching fractions for the first two and
last two reactions. Also, using the experimental values
of the branching ratios for the first two decay modes,
we make predictions for the branching fractions of the
last two reactions. The starting point of our study is
the assumption that the Λc(2595) and Λc(2625) states
are dynamically generated from the pseudoscalar-baryon
and vector-baryon interaction, and particularly from the
DN and D∗N channels. The Λc(2595) (J

P = 1/2−) has
much resemblance to the Λ(1405), and can be thought as
being obtained by substituting the strange quark by a c
quark. The history of the Λ(1405) is long (see review in
the PDG [18]). It appears dynamically generated from
the interaction of K̄N, πΣ and other coupled channels,
and there are two states in the vicinity of the nominal
mass [19, 20].

Within the picture of dynamically generated reso-
nances, the Λc(2595) was obtained in Ref. [21] from
the interaction of pseudoscalar-baryon channels, DN and
πΣc, essentially. The formalism was simplified and im-
proved in Ref. [22]. A step forward was given in Ref. [23],
were vector-baryon states, in particular D∗N where
added as coupled channels. An SU(8) spin-flavour sym-
metry scheme was used and the Λc(2595) was obtained
with a large coupling to the D∗N . Further steps were
given in Ref. [24], where once again the SU(8) scheme
was used, with some symmetry breaking to match an ex-
tension of the Weinberg-Tomozawa interaction in SU(3).
Among other resonances, the Λc(2595) (J

P = 1/2−) and
the Λc(2625) (J

P = 3/2−) were obtained.

Further work to include the vector-baryon states was
done in Ref. [25], where following the work of Ref. [26]
in the light sector, a microscopic picture for DN, D∗N
transition based on pion exchange was used. The state
Λc(2595) was obtained in s-wave, coupling both to DN
and D∗N , and the Λc(2625), with JP = 3/2−, was ob-
tained from D∗N and other coupled channels of vector-
baryon type, with the largest coupling to D∗N .

In the present work we shall be able to show that
both the DN and D∗N components are relevant in the

http://arxiv.org/abs/1610.08296v2
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FIG. 1: Basic diagram for Λb → π−Λc(2595). The u and
d quarks are spectators and in isospin and strangeness I =
0, S = 0.
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FIG. 2: Hadronization creating the q̄q pairs.

Λb → π−Λc(2595) and also we can relate this reaction to
the Λb → π−Λc(2625). We shall also see that the rates
obtained are very sensitive to the relative sign of the cou-
pling of this resonance to DN and D∗N , and how the
proper sign gives rise to results compatible with experi-
ments. In addition, the formalism developed here allows
one to obtain the branching ratios for Λb → D−

s Λc(2595)
and Λb → D−

s Λc(2625) from those of Λb → π−Λc(2595)
and Λb → π−Λc(2625) respectively.

II. FORMALISM

The basic diagram for the Λb → π−Λc(2595) decay is
shown in Fig. 1.
The weak transition occurs on the b quark, which turns

into a c quark, and a π− is produced through the mech-

anism of external emission [27]. Since we will have a
1/2− or 3/2− state at the end, and the u, d quarks are
spectators, the final c quark must carry negative parity
and hence must be in an L = 1 level. Since the Λc(2595)
and Λc(2625) come from meson-baryon interaction in our
picture, we must hadronize the final state including a q̄q
pair with the quantum numbers of the vacuum. This
is done following the work of Ref. [10]. We include the
ūu+ d̄d+ s̄s as in Fig. 2. The c quark must be involved
in the hadronization, because it is originally in an L = 1
state, but after the hadronization produces theDN state,
the c quark in the D meson is in an L = 0 state.
The original state is

|Λb〉 =
1√
2
|b(ud− du)〉, (1)

and after the weak process it becomes

|H〉 = 1√
2
|c(ud− du)〉. (2)

The hadronization converts this state into |H ′〉,

|H ′〉 = 1√
2
|c(ūu+ d̄d+ s̄s)(ud− du)〉, (3)

which can be written as

|H ′〉 = 1√
2

3
∑

i=1

|P4i qi(ud− du)〉, (4)

where P4i is the 4i matrix element of the qq̄ matrix in
SU(4),

P ≡ (qq̄) =









uū ud̄ us̄ uc̄
dū dd̄ ds̄ dc̄
sū sd̄ ss̄ sc̄
cū cd̄ cs̄ cc̄









. (5)

The matrix can be written in terms of the physical
mesons, pseudoscalar at the moment, and given in
Ref. [28]

M → φ ≡











1√
2
π0 + 1√

3
η + 1√

6
η′ π+ K+ D̄0

π− − 1√
2
π0 + 1√

3
η + 1√

6
η′ K0 D−

K− K̄0 − 1√
3
η +

√

2
3η

′ D−
s

D0 D+ D+
s ηc











. (6)

Then Eq. (4) can be written as

|H ′〉 = 1√
2
[D0u(ud−du)+D+d(ud−du)+D+

s s(ud−du)].
(7)

We can see that we have the three quarks in a mixed
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FIG. 3: Diagram to produce the Λc(2595) through an inter-
mediate propagation of the DN state.

antisymmetric representation. Recalling that [29]

|p〉 = 1√
2
|u(ud− du)〉,

|n〉 = 1√
2
|d(ud− du)〉,

|Λ〉 = 1√
12

|(usd− dsu) + (dus− uds) + 2(sud− sdu)〉.

We finally see that the hadronization has given rise to

|H ′〉 = |D0p+D+n+

√

2

3
D+

s Λ〉

≃
√
2|DN, I = 0〉, (8)

where we neglect the D+
s Λ that has a much higher mass

than the DN and does not play a role in the generation
of the Λc(2595). The isospin I = 0 in Eq. (8) comes from
the implicit phase convention in our approach, with the
doublets (D+, −D0) and (D̄0, D−).

The production of the resonance is done after the pro-
duced DN in the first step merges into the resonance, as
shown in Fig. 3. The transition matrix for the mecha-
nism of Fig. 3 gives us

tR = VP
√
2 GDN · gR,DN , (9)

where VP is a factor that includes the dynamics of
Λb → π−DN , GDN is the loop function for theDN prop-
agation [25], and gR,DN is the coupling of the resonance
to the DN channel in I = 0 [25].

The width for the decay process is given by

ΓR =
1

2π

MΛ∗

c

MΛb

∑∑

|tR|2 pπ− , (10)

where
∑∑

stands for the sum and average over polar-
izations.

The arguments used above can be equally used for the
production of D∗N . The Vp factor would now be differ-
ent, but in the next section we shall show how to relate
them.

III. ANGULAR AND SPIN MATRIX

ELEMENTS

The discussion in the former section has only payed
attention to the flavour aspect of the hadronization. If we
wish to relate the DN and D∗N production, we need to
go in more detail into the problem and take into account
explicitly the matrix elements involved. The first step
is to consider the spin and angular dependence of the
created pair. We want it in J = 0, positive parity and
positive C parity. Since the parity of the antiquark is
negative, we need it in L = 1, which also forces the spin
of the pair to be S = 1, leading to the 3P0 configuration
[29–31].
Since the q̄q pair has J = 0 and so has the ud spectator

pair, the total angular momentum of the final meson-
baryon state is given by the combination of the angular
momentum and spin of the c quark, and we have

|JM〉 =
∑

m

C(11
2
J ; m,M −m)Y1m

∣

∣

∣

∣

1

2
,M −m

〉

, (11)

where C(J1J2J ; m1,m2,M) [or writing equivalently as
C(J1J2J ; m1,M −m1)] is the Clebsh-Gordan coefficient
(CGC) combining |J1m1〉 and |J2m2〉 to get the |JM〉
state, and Ylm is the spherical harmonic. On the other
hand, the spin state of the q̄q pair is given by

|1S3〉 =
∑

s

C(1
2

1

2
1; s, S3 − s)

∣

∣

∣

∣

1

2
, s

〉 ∣

∣

∣

∣

1

2
, S3 − s

〉

. (12)

We are only concerned about the angular momentum
counting and can consider a zero range interaction, as
done in a similar problem where the angular momen-
tum is at stake, the pairing in nuclei [32, 33]. Then
we associate to the antiquark an angular momentum
|1,M3〉 ≡ Y1M3

, and thus the J = 0 q̄q wave function
is given by

|00〉 =
∑

M3,S3

C(110; M3, S3, 0)Y1M3
|1 S3〉, (13)

which requires M3 + S3 = 0, S3 = −M3, hence,

|00〉 =
∑

M3

C(110; M3,−M3) Y1M3

×
∑

s

C(1
2

1

2
1; s,−M3 − s)|1

2
, s〉|1

2
,−M3 − s〉. (14)

The final meson-baryon state is |JM〉|00〉, given by Eqs.
(11), (14). We can combine the two spherical harmonics
(we use formulas of Ref. [34] in what follows)

Y1m Y1M3
=

∑

l

3

[

1

4π(2l + 1)

]1/2

× C(11l; m,M3) C(11l; 000) Yl,m+M3
, (15)

where for parity reasons, only l = 0, 2 contribute, but
we are only concerned about l = 0, which is suited for
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pseudoscalar-baryon final states with the s-wave that we
only consider, and all quarks in the ground state. Then

Y1mY1M3
→ (−1)m

1

4π
δM3,−m. (16)

Then |JM〉 |00〉 is given, rearranging the CGC, by

|JM〉|00〉 = − 1√
3

1

4π

∑

m

∑

s

C(11
2
J ; m,M −m) C(1

2

1

2
1; s,m− s) |1

2
,M −m〉 |1

2
, s〉 |1

2
,m− s〉. (17)

Finally we combine the spin states of the c quark and the
antiparticle as

|1
2
,M −m〉|1

2
, s〉 =

∑

j

C(1
2

1

2
j; M −m, s)|j,M −m+ s〉

(18)
such that j will be the spin of the pseudoscalar D meson
(j = 0) or the vector D∗ meson (j = 1). Since the ud
quarks have s = 0, the state | 12 ,m− s〉 gives the spin of
the baryon and we can write

|j,M −m+ s〉 |1
2
,m− s〉

=
∑

J′

C(j 1
2
J ′; M −m+ s,m− s) |J ′,M〉, (19)

where now J ′ will be the final angular momentum of the

DN system. Obviously J ′ should be equal to J , but
this requires a bit of Racah algebra to show up. The
|JM〉 |00〉 state can now be written as

|JM〉|00〉

= − 1√
3

1

4π

∑

m,s

C(11
2
J ; m,M −m)C(1

2

1

2
1; s,m− s)

×
∑

j,J′

C(1
2

1

2
j; M −m, s)C(j 1

2
J ′; M −m+ s,m− s)

× |J ′,M〉. (20)

Recombining the CGC and using their symmetry prop-
erties, we can use Eq. (6.5a) of Ref. [34] and find

∑

s

C(11
2

1

2
; m,−s) C(1

2
jJ ′; m− s,M −m+ s) C(1

2
j
1

2
; −s,M −m+ s) = R 1

2

1

2

C(11
2
J ′; m,M −m). (21)

where

R 1

2

1

2

≡ 2W (1
1

2
Jj;

1

2

1

2
) (22)

in terms of theW Racah coefficients. The other sum over
m gives now J ′ = J

∑

m

C(11
2
J ; m,M−m) C(11

2
J ′; m,M−m) = δJJ′ (23)

such that finally

|JM〉|00〉

=
1

4π

∑

j

(−1)j−J+1/2
√

2j + 1W (1
1

2
Jj;

1

2

1

2
)

×|JM,meson-baryon〉
≡

∑

j

C(j, J)|JM,meson-baryon〉. (24)

C(j, J) J = 1/2 J = 3/2

(pseudoscalar) j = 0 1

4π

1

2
0

(vector) j = 1 1

4π

1

2
√

3
−

1

4π

1√
3

TABLE I: C(j, J) coefficients in Eq. (24).

Evaluating the Racah coefficients with formulas of the
Appendix of Ref. [34], we have the results shown in table
I.

IV. EVALUATION OF THE WEAK MATRIX

ELEMENTS

Up to global factors which are the same for vector-
baryon or pseudoscalar-baryon production, the relevant
elements that we need are that theW− → π− production
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is of the type [35, 36]

LW,π ∼Wµ∂µφ, (25)

and the bWc vertex of the type [1, 27]

Lq̄Wq = q̄finWµγ
µ(1− γ5)qin. (26)

For small energies of the quarks, the relevant matrix el-
ements are the γ0 and the γiγ5(i = 1, 2, 3). Combining
Eqs. (25) and (26), and using the nonrelativistic reduc-
tion of γ0, γiγ5, the weak external pseudoscalar meson
production has the structure

VP ∼ q0 + ~σ · ~q, (27)

with q0, ~q the energy and momentum of the pion and
~σ the Pauli spin matrix acting on the quarks. Assume
ϕin(r) is the b quark radial wave function and ϕfin(r) the
radial wave function of the c quark, and take the state
|JM ′〉 of Eq. (11) for the c quark. The space matrix
element is given by

∫

d3r ϕin(r) ϕ
∗
fin(r) Y

∗
1m(r̂) e−i~q·~r Y00, (28)

where e−i~q·~r stands for the plane wave function for the
outcoming pion. By using the expansion of e−i~q·~r

e−i~q·~r = 4π
∑

l′

(−1)l
′

jl′(qr)
∑

µ

(−1)µY ∗
l′µ(r̂)Y

∗
l′,−µ(q̂),

Eq. (28) gives

−
√
4π i Y ∗

1m(q) ME(q), (29)

where

ME(q) ≡
∫

r2dr j1(qr) ϕin(r) ϕ
∗
fin(r). (30)

One could evaluate this ME with some quark model,
but given the fact that we only want to evaluate ratios
of rates, that the momenta q involved in the different
transitions are very similar and that ϕfin(r) is the same
for all of them, we shall assume ME(q) to be the same
for all these transitions. Hence, the weak matrix element
for the q0 term of Eq. (27) is (note that Y ∗

1m becomes
Y ∗
1,M ′−M )

〈JM ′|q0|1
2
M〉

= −
√
4π iq0

∑

m

C(11
2
J ; m,M ′ −m)

×〈1
2
,M ′ −m|1

2
M〉Y ∗

1,M ′−M (q̂)ME(q)

= −
√
4π iq0C(11

2
J ; M ′ −m,M)Y ∗

1,M ′−M (q̂)ME(q).

In the case of J = 1/2, it is practical to write this
matrix element in terms of the macroscopical ~σ · ~q op-
erators, where ~σ is acting not within quarks but within

the baryon states Λb and Λ∗
c . Using the Wigner-Eckart

theorem and ~σ · ~q =
∑

µ(−1)µσµq−µ, with µ indices in

spherical basis, q−µ = q
√

4π
3 Y1,−µ(q̂), we have

〈1
2
M ′|~σ · ~q|1

2
M〉

= −
√
4π q C(11

2

1

2
; M ′ −M,M)Y ∗

1,M ′−m(q̂). (31)

We have (q0 = wπ)

J = 1/2 :

q0 |quark level→ i
wπ

q
ME(q)~σ · ~q |macroscopical level . (32)

In the case of J = 3/2, we proceed in a similar way
and introduce the macroscopical spin transition operator
~S+ from spin 1/2 to 3/2, defined as

〈3
2
M ′|~S+ · ~q|1

2
M〉 = C(1

2
1
3

2
; MµM

′), (33)

which, via the Wigner-Eckart theorem implies a normal-
ization of S+ such that 〈32 ||S+|| 12 〉 ≡ 1. With this nor-
malization we have the sum rule in Cartesian coordinates
[37]

∑

M ′

Si|M ′〉〈M ′|S+
j =

2

3
δij −

i

3
ǫijkσk. (34)

Then Eq. (31) can be cast at the macroscopical level
through the substitution

J = 3/2 :

q0
∣

∣

quark level
→ −iwπ

q
ME(q)

√
3~S+ · ~q |macroscopical level .(35)

We must work now with the matrix element for the
~σ · ~q operator of Eq. (27) at quark level. By analogy to
Eq. (31), the matrix element is now

〈JM ′|~σ · ~q|1
2
M〉

= −
√
4πi

∑

m

C(11
2
J ; m,M ′ −m)

×〈1
2
,M ′ −m |~σ · ~q| 1

2
M〉Y ∗

1m(q̂)ME(q)

= −
√
4πi

∑

m

C(11
2
J ; m,M ′ −m)(−)

√
4πqY ∗

1m(q̂)

×C(11
2

1

2
; M ′ −m−M,M)Y ∗

1,M ′−m−M (q̂)ME(q),(36)

where in the last step we have used Eq. (31).

Next we combine
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Y ∗
lm(q̂)Y ∗

l,M ′−m−M (q̂) =
∑

l′

3

[

1

4π(2l′ + 1)

]1/2

C(11l′; M ′ −m−M,m) C(11l′; 000)Y ∗
l′,M ′−M (q̂), (37)

which again only contribution for l′ = 1, 2. We keep just
the term with lowest angular momentum that should give
the largest contribution, hence,

Y ∗
lm(q̂)Y ∗

l,M ′−m−M (q̂) → (−1)m
1

4π
δMM ′ .

Then Eq. (36) becomes

〈JM ′|~σ · ~q|1
2
M〉

→ iδMM ′

∑

m

(−1)m C(11
2
J ; m,M −m)q

× C(11
2

1

2
; −m,M)

= iq
∑

m

C(11
2
J ; m,M −m) C(11

2

1

2
; m,M −m)

= iqδJ, 1
2

, (38)

where in the second last step we have permuted the last
two angular momenta in C(1 1

2
1
2 ; −m,M) and changed

the sign of the third components, which introduces the
phase (−1)m that cancels the original (−1)m phase. We
thus see that this term only contributes to J = 1/2.

The study done allows us to write the weak vertex
transition in terms of the following operator at the macro-
scopic level of the Λb and Λ∗

c baryons as

(

iq + i
wπ

q
~σ · ~q

)

δJ, 1
2

+

(

−iwπ

q

√
3~S+ · ~q

)

δJ, 3
2

, (39)

where we have removed the factorME(q) in both terms.
If we combine this operator with the meson-baryon de-
composition of Eq. (36), we finally have a full transition
t matrix given, up to an arbitrary common factor, by

tR =

(

iq + i
wπ

q
~σ · ~q

)(

1

2
GDN gR,DN +

1

2
√
3
GD∗N gR,D∗N

)

δJ, 1
2

+

(

−iwπ

q

√
3~S+ · ~q

)

1√
3
GD∗N gR,D∗N δJ, 3

2

. (40)

Using Eq. (34) and properties of the ~σ matrix, it is easy to write now
∑∑ |tR|2 in Eq. (10) as

[

∑∑

|tR|2
]

1

= (q2 + w2
π)

∣

∣

∣

∣

1

2
GDN gR,DN +

1

2
√
3
GD∗N gR,D∗N

∣

∣

∣

∣

2

, for J =
1

2
; (41)

and

[

∑∑

|tR|2
]

2

= 2w2
π

∣

∣

∣

∣

1√
3
GD∗N gR,D∗N

∣

∣

∣

∣

2

, for J =
3

2
. (42)

Eq. (10) gives then the partial decay widths up to an
arbitrary normalization factor, the same for all the pro-
cesses.

V. RESULTS

The momentum of the pion in the decay is given by

pπ =
λ1/2(M2

Λb
,m2

π,M
2
R)

2MΛb

. (43)

On the other hand, the product GDN ·gR,DN and GD∗N ·
gR,D∗N are tabulated in Ref. [25]. We copy these results
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GDN · gR,DN GD∗N · gR,D∗N

Λc(2595) 13.88 − 1.06i 26.51 + 2.1i

Λc(2625) 0 29.10

TABLE II: The values of GDN · gR,DN and GD∗N · gR,D∗N

from Ref. [25]. The signs of GD∗N · gR,D∗N are changed with
respect to Ref. [25] as discussed in the text.

in Table II.
By looking at Eq. (10), we can immediately write the

ratio of Γ for Λc(2595) and Λc(2625) production,

Γ[Λb → π−Λc(2595)]

Γ[Λb → π−Λc(2625)]
=
MΛc(2595)

MΛc(2625)

pπ1
pπ2

[

∑∑ |tR|2
]

1
[

∑∑

|tR|2
]

2

,

(44)
where pπ1 and pπ2 are the pion momenta for the Λc(2595)
and Λc(2625) production respectively, given by Eq. (43)

and
[

∑∑ |tR|2
]

1,2
are given by Eqs. (41), (42) respec-

tively. Using the numerical values of Table II, we find

Γ[Λb → π−Λc(2595)]

Γ[Λb → π−Λc(2625)]
= 0.76 . (45)

Experimentally we have [38]

BR[Λb → π−Λc(2595), Λc(2595) → Λcπ
+π−]

= (3.2± 1.4)× 10−4, (46)

BR[Λb → π−Λc(2625), Λc(2625) → Λcπ
+π−]

= (3.1± 1.2)× 10−4. (47)

Since the BR for Λ∗
c → Λcπ

+π− is 67% for both reso-
nances, the ratio of partial decay widths for the Λc(2595)
to Λc(2625) summing in quadrature the relative errors is
given by

Γ[Λb → π−Λc(2595)]

Γ[Λb → π−Λc(2625)]

∣

∣

∣

∣

Exp.

= 1.03± 0.60. (48)

The value that we get in Eq. (45) is compatible within
errors.
We should call the attention to the fact that the

DN and D∗N contributions are about the same for the
Λc(2595) case and sum constructively. Should the sign
be opposite then there would be a near cancellation of
the rate for the case of Λc(2595) and there would have
been massive disagreement with experiment. This point
is worth mentioning because in Ref. [25] the signs for the
D∗N couplings are opposite to those in Table II. The
reason for the change of sign here is that in Ref. [25]
a full box diagram with π exchange on each side was
evaluated. This provided the value of V 2

eff to be used in
coupled channels of DN and D∗N and, since the sign
did not matter for the spectra discussed in Ref. [25] the
positive sign of Veff was chosen by default. The sign here
is crucial and hence, taking the negative sign for Veff , as

it corresponds to π exchange, is the correct choice. The
signs then also agree with those obtained in Ref. [24] just
using symmetries.
We can now make prediction for the reactions Λb →

D−
s Λc(2595) and Λb → D−

s Λc(2625). The reactions are
analogous. It suffices to substitute the W−ūd vertex in
Fig. 1 byW−c̄s, which is also Cabibbo favoured and goes
with cos θC as in the π− case. Thus, the formulae for the
widths are identical changing the kinematics to account
for the larger D−

s mass. Yet, given the large mass of the
Λb and the available phase space, the momenta of the
pseudoscalar mesons, and particularly the energies are
not too different to those in the π case.
We can construct the ratio of Eq. (44) for the D−

s case
and we find

Γ[Λb → D−
s Λc(2595)]

Γ[Λb → D−
s Λc(2625)]

= 0.54 . (49)

This is a good prediction that relies upon the ME(q)
being about the same for the decay into Λc(2595) and
Λc(2625).
Assuming that ME(q) is the same for Λb →

D−
s Λc(2595) and Λb → π−Λc(2595), we can make an-

other prediction but with larger error. Actually qDs
=

1630 MeV/c and qπ = 2208 MeV/c, so ME(q) is not
necessarily equal, but we can provide some estimate of
the rate assuming the same value for ME(q). Then we
have

Γ[Λb → D−
s Λc(2595)]

=
qDs

(q2Ds
+ w2

Ds
)

qπ(q2π + w2
π)

Γ[Λb → π−Λc(2595)], (50)

Γ[Λb → D−
s Λc(2625)]

=
qDs

· 2w2
Ds

qπ · 2w2
π

Γ[Λb → π−Λc(2625)], (51)

and we obtain

BR[Λb → D−
s Λc(2595)] ∼ (2.22± 0.97)× 10−4, (52)

BR[Λb → D−
s Λc(2625)] ∼ (3.03± 1.70)× 10−4, (53)

where in Eqs. (52),(53) we have taken the experimental
rates for Λb → π−Λc(2595) and Λb → π−Λc(2625) with
their errors. Since the momenta of the D−

s is smaller
than the one of π− and ME(q) should decrease with q,
we could expect the values of Eqs. (52), (53) to be lower
limits, but given the large errors, the order of magnitude
of these numbers should be relatively accurate.

VI. CONCLUSIONS

We have studied the Λb → π−Λc(2595) and Λb →
π−Λc(2625) from the perspective that the Λc(2595) and
Λc(2625) are dynamically generated resonances from the
interaction of DN,D∗N with coupled channels. We have
developed a formalism to relate the Λb → π−DN and
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Λb → π−D∗N decays. For this we make a detailed model
of the q̄q hadronization, using the 3P0 picture for the cre-
ation of q̄q with the quantum numbers of the vacuum.
Racah algebra is used to relate these couplings and final
easy expressions are obtained. This, together with the
couplings of the resonances Λc(2595) and Λc(2625) to
DN and D∗N obtained before in a full coupled channel
approach, including DN and D∗N , allows us to obtain
the decay rates up to an unknown global factor related
to the matrix element of the radial wave functions of
the b and c quarks. The ratio of rates is then a pre-
diction of the theory and is in good agreement with ex-
periment within experimental uncertainties. We could
also obtain the ratio of rates for Λb → D−

s Λc(2595) and
Λb → D−

s Λc(2625), which are not measured so far. We
also made estimates of the branching fractions for these
two latter decays, not only their ratio.
One of the important findings of the work was the rel-

evance of the D∗N component in the Λc(2595), which
was overlooked in early works studying these resonances.
We found that the D∗N had a strength similar to that
of the DN component and was essential to have good
agreement with experiment. Also, the relative sign of the
coupling of the Λc(2595) to DN and D∗N was of crucial
importance. An opposite sign to the one that we obtain

leads to large cancellations of the Λb → π−Λc(2595), such
that there would be an absolute disagreement with the
data.

The mixture of pseudoscalar-baryon and vector-baryon
states in coupled channels is catching up [25, 26, 39–42]
and, as done in the present work, it would be interesting
to find similar reactions that evidence the relevance of
this mixing.
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