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Geometric phase of neutrinos: differences between Dirac and Majorana neutrinos
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1Dipartimento di Fisica ”E.R. Caianiello” Universitá di Salerno, and INFN - Gruppo Collegato di Salerno, Italy
2International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal-RN, Brazil

3Fakultat fur Physik, Universitat Wien, Boltzmanngasse 5, 1090 Vienna, Austria.
(Dated: November 21, 2021)

We analize the non-cyclic geometric phase for neutrinos. We find that the geometric phase and
the total phase associated to the mixing phenomenon provide a tool to distinguish between Dirac
and Majorana neutrinos. Our results hold for neutrinos propagating in vacuum and through the
matter. Future experiments, based on interferometry, could reveal the nature of neutrinos.
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–Introduction. The mixing and oscillation of neutrinos
represent one of the most intriguing phenomena in parti-
cle physics. The main issues of neutrino physics are the
neutrino mass and the nature of the Dirac vs Majorana
neutrino. Many experiments [1]-[6] have confirmed neu-
trino oscillations. Such a phenomenon implies that the
neutrino has mass. Since neutrinos are neutral particles,
they can be Majorana (with neutrinos and antineutri-
nos being the same), or Dirac particles (with neutrinos
and antineutrinos being different objects). The Majo-
rana neutrinos allow processes in which the total lepton
number is not conserved, as the neutrinoless double β
decay. Such processes are inhibited for Dirac neutrinos.
Experiments based on the detection of the double beta
decay may contribute to determine the neutrino nature
[7], however, at the moment the nature of the neutrino
remains an unsolved question.

Here, we show that the study of the total and the ge-
ometric phases for neutrino propagation in vacuum and
through matter could open a new scenario in the inves-
tigation of the neutrino properties.

In the case of neutrinos travelling through a dense
medium, as for example, the Sun or the Earth, the neu-
trino propagation can be affected by interactions with the
particles in the medium. Therefore, the oscillation prob-
abilities can be considerably different than the ones due
to vacuum propagation. Such an effect is called Mikhaev-
Smirnov-Wolfenstein (MSW) effect [8, 9]. The phe-
nomenon originates from the fact that electron–neutrinos
(and antineutrinos) have different interactions with mat-
ter compared to the two other flavour neutrinos. This
means that in the effective HamiltonianH , which governs
the propagation of neutrinos in matter, there is an extra-
potential term for the electron neutrinos. In the ordinary
matter, due to the coherent forward scattering on elec-
trons such an extra-potential term is Ae = ±

√
2GFne,

with ne the electron density in the matter. GF is the
Fermi constant, and the positive (negative) sign applies
to electron-neutrino (antineutrinos).
On the other hand, the interferometry and the study

of geometric phases [10]-[23] which appear in the evolu-
tion of many physical systems [24–26] have attracted the

attention in recent years. A geometric phase arises in the
evolution of any state |ψ〉, describing a quantum system
characterized by a Hamiltonian defined on a parameter
space (in the present case the relevant parameters are
∆m2 and the mixing angles). The geometric phase re-
sults from the geometrical properties of such a param-
eter space and can be used to study the properties of
the system [25]. Berry and Berry-like phases have been
shown in experimental observations to characterize phys-
ical properties of specific quantum systems. In particu-
lar, geometric phases turn out to be by themselves phys-
ical observables [20]-[25]. Typical examples are graphene
systems [24], superconducting nanocircuits and devices,
semiconductors [25], etc.
Berry-like phases and noncyclic invariants associated

to particle oscillations (see, for example, Ref.[27] and ref-
erences therein) have also been studied extensively.
In the present paper we consider the two flavor neu-

trino mixing case (the discussion can be generalized to
the three flavor mixing case). We show that different
choices of the Majorana phase φ, violating the charge-
parity (CP) symmetry, in the mixing matrix lead to dif-
ferent values of the total and of the geometric phases.
The oscillation formulas, on the contrary, are indepen-
dent from the Majorana phase and consequently cannot
be used to distinguish between Majorana and Dirac neu-
trinos [28, 29].
Therefore, in order to derive the oscillation formulas

for Majorana neutrinos, one can use indifferently any of
the mixing matrices, containing the Majorana phase φ,
obtained by the rephasing the lepton charge fields in the
charged current weak-interaction Lagrangian, (for details
see Ref.[28]). For example, one can consider the following
mixing matrix

U1 =

(

cos θ sin θeiφ

− sin θ cos θeiφ

)

, (1)

or

U2 =

(

cos θ sin θe−iφ

− sin θeiφ cos θ

)

, (2)

and obtain the same oscillation formulas. The probabili-
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ties of neutrino transitions are indeed invariant under the
rephasing Uαk → eiφkUαk (α = e, µ; k = 1, 2).

The amplitude of transitions between different flavors
are instead depending on the choice of the matrix U ; see
Eq.(22) of [28], here reported for reader’s convenience:
〈µ+, νe|ψ(t)〉 = Aµ

(

Ue1U
∗
µ1e

−iE1t +Ue2U
∗
µ2e

−iE2t
)

.
Obviously, when squaring the amplitudes, the phases dis-
appear and the resulting oscillation formulas do not de-
pend on the phase.

As we will show below, the total phase (the dynamical
and the geometric one) depends on the transition am-
plitudes and, in the case of transition between different
flavors, it depends on the choice of the matrix U . In these
transitions, different choices of U lead thus to different
values of the total phases.

In our computations we consider the matrices corre-
sponding to U1 and U2, for the case of neutrinos travel-
ling through a dense medium.

We show that, by using the matrix corresponding to
U2 in Eq.(2), the geometric and the total phase due to
the transition between different flavors are different for
Majorana and for Dirac neutrinos. On the other hand,
by using the matrix corresponding to U1, all the phases
are independent from φ and Majorana neutrinos cannot
be distinguished from the Dirac ones.

A measurement of the total and geometric phase may
thus determine the choice of the mixing matrix U . Sim-
ilar results are obtain in the case of propagation in the
vacuum.

–Majorana and Dirac neutrino. AMajorana field has a
physical phase φ which violates the CP symmetry. In this
case, assuming for simplicity only two flavour eigenstates,
|νe〉, |νµ〉, by considering the mixing matrix U2, one can
write

|νe〉 = cos θ|ν1〉+ e−iφ sin θ|ν2〉
|νµ〉 = −eiφ sin θ|ν1〉+ cos θ|ν2〉 , (3)

where θ is the mixing angle and |ν1〉, |ν2〉 are the eigen-
states of the free Hamiltonian. The phase φ cannot
be eliminated since the Lagrangian of Majorana neu-
trinos is not invariant under U(1) global transforma-
tion and the rephasing is not possible (see below). In
this case, only left-handed components of the neutrino
fields νeL = 1+γ5

2
νe, νµL = 1+γ5

2
νµ and right-handed

components of the antineutrino fields νCeR = 1−γ5
2
νCe =

(νeL)
C
, νCµR = 1−γ5

2
νCµ = (νµL)

C
appear in the

Hamiltonian. Here γ5 = i
4!
ǫµναβγ

µγνγαγβ , with γj

Dirac matrices [30], νCe,µ = Cν̄e,µ is the charge conju-
gated spinor and the matrix C satisfies the relations:
C†C = 1 , CγTαC

−1 = −γα , CT = −C . For Majorana
neutrinos the interaction Hamiltonian, which does not
conserve the lepton numbers, has the form

H=mēeν̄
C
eRνeL+mµ̄µν̄

C
µRνµL+mµ̄e

(

ν̄CµRνeL + ν̄CeRνµL
)

+h.c.

where the parameters mēe, mµ̄µ, mµ̄e have the dimen-
sions of a mass.
On the contrary, for Dirac neutrino, the Lagrangian is

invariant under U(1) global transformation and the phase
φ can be removed. The Hamiltonian interaction in this
case is

H = mēeν̄eνe +mµ̄µν̄µνµ +mµ̄e (ν̄µνe + ν̄eνµ) ,

where ν̄σ, with σ = e, µ are the antineutrino fields.
The phase φ does not affect the oscillation formulas for

neutrino propagating in the vacuum and through matter.
Therefore, neglecting the dissipation [31], the oscillation
formulas cannot reveal the nature of neutrinos [32].
–Neutrinos propagating through the matter. In the case

of neutrinos propagating through the matter, the evo-
lution equation in the flavour basis is described by the
Schrödinger equation

i
d

dt

(

|νe〉
|νµ〉

)

= Hf

(

|νe〉
|νµ〉

)

,

where the Wolfenstein effective Hamiltonian [9] for fla-
vored neutrinos can be written as (for a formal derivation
see also Ref.[33])

Hf =

(

p+
m2

1 +m2
2

4E
+

√
2

2
GF (ne − nn)

)

I+HI . (4)

Here, p is the neutrino momentum, mi are the masses
of the free fields νi (i = 1, 2) (for relativistic neutrinos

Ei ≈ p+
m2

i

2E
), ne is the electron density, nn is the neutron

number density, GF the Fermi weak coupling constant
and HI for Majorana neutrinos is [34]

HI =

(

GFne√
2

− ∆m2

4E
cos 2θ ∆m2

4E
e−iφ sin 2θ

∆m2

4E
eiφ sin 2θ −GFne√

2
+ ∆m2

4E
cos 2θ

)

.(5)

I is the 2×2 identity matrix, φ the CP violating phase
(which can be put equal to zero in the Dirac neutrino
case), E the neutrino energy and ∆m2 = m2

2 −m2
1. The

first term of H (the one proportional to the identity ma-
trix) is responsible only of an overall phase factor in the
neutrino evolution, therefore we will neglected it in the
computation of the geometric phase and focus on HI .
By defining ∆m2

m = ∆m2R, sin 2θm = sin 2θ/R, with

R =

√

√

√

√

(

cos 2θ − 2
√
2GFneE

∆m2

)2

+ sin2 2θ , (6)

HI in Eq. (5) can be written as

HI =
∆m2

m

4E

(

− cos 2θm e−iφ sin 2θm
eiφ sin 2θm cos 2θm

)

. (7)

The eigenvalues of HI are λ± = ±∆m2

m

4E
. Moreover, HI

can be diagonalized by means of the matrix Um,

Um =

(

cos θm e−iφ sin θm
−eiφ sin θm cos θm

)

, (8)
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so that HI = UmH0U
−1
m , with H0 = diag(λ+, λ−). The

matrix Um relates the flavor states |νe(z)〉 and |νµ(z)〉
with the energy eigenstates |ν1(z)〉 and |ν2(z)〉. Here
we consider, in natural units, the approximation, z ≈ t,
where t is the neutrino propagation time and z the dis-
tance traveled by neutrinos. Explicitely one has

|νe(z)〉 = cos θme
i
∆m2

m
4E

z|ν1〉+ e−iφ sin θme
−i∆m2

m
4E

z |ν2〉,

|νµ(z)〉 = −eiφ sin θmei
∆m2

m
4E

z|ν1〉+ cos θme
−i∆m2

m
4E

z|ν2〉,
(9)

with 〈νe(z)|νe(z)〉 = 〈νµ(z)|νµ(z)〉 = 1 and
〈νe(z)|νµ(z)〉 = 0. In the case of the propagation in vac-
uum, R = 1, then ∆m2

m → ∆m2, θm → θ and Um in
Eq.(8) coincides with U2 of Eq.(2).
–Geometric phases for neutrinos in matter. In the fol-

lowing we consider the states given by Eq. (9). To com-
pute the geometric and the total phases generated by
the states (9), we use the definition of Mukunda-Simon
geometric phase [16], which generalizes the Berry phase
to the non-adiabatic and non-cyclic case. Such a phase,
derived within a kinematical approach, is associated to
any open curve of unit vectors in Hilbert space. For a
quantum system whose state vector |ψ(s)〉 belongs to a
curve Γ, with the real parameter s such that s ∈ [s1, s2],
the Mukunda–Simon phase is defined as the difference
between the total and the dynamic phase:

Φg(Γ) = Φtotψ (s)− Φdynψ (s)

= arg〈ψ(s1)|ψ(s2)〉 − ℑ
∫ s2

s1

〈ψ(s)|ψ̇(s)〉ds .(10)

Here the dot denotes the derivative with respect to the
real parameter s. In Eq.(10), arg〈ψ(s1)|ψ(s2)〉 represents
the total phase, and ℑ

∫ s2

s1
〈ψ(s)|ψ̇(s)〉ds is the dynamical

one.
In the specific case of neutrinos, the geometric phase

of electron neutrino, for an initial state |νe〉, is

Φgνe(z) = Φtotνe (z)− Φdynνe
(z) (11)

= arg [〈νe(0)|νe(z)〉]−ℑ
∫ z

0

〈νe(z′)|ν̇e(z′)〉dz′ ,

and explicitly one obtains

Φgνe(z) = arg

[

cos

(

∆m2
mz

4E

)

+ i cos 2θm sin

(

∆m2
mz

4E

)]

− ∆m2
mz

4E
cos 2θm . (12)

In a similar way, the geometric phase for the muon
neutrino, for an initial state |νµ〉, is given by Φgνµ(z) =

arg [〈νµ(0)|νµ(z)〉] − ℑ
∫ z

0
〈νµ(z′)|ν̇µ(z′)〉dz′. One has

Φgνµ(z) = −Φgνe(z). Eq.(12) does not depends on the CP
violating phase, thus, it holds both for Majorana and for
Dirac neutrinos.
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Figure 1: (Color online) Plots of the total and the geometric
phases associated to the evolution of νe, as a function of the
neutrino energy E, for a distance length z = 100km. - The
red dot dashed line is the total phase; - the blue dashed line is
the geometric phase.

However, in addition to the phases Φgνe(z) and Φgνµ(z),
one also has the following phases due to the neutrino
transitions between different flavors,

Φgνe→νµ
(z) = arg [〈νe(0)|νµ(z)〉]−ℑ

∫ z

0

〈νe(z′)|ν̇µ(z′)〉dz′ ,

(13)

Φgνµ→νe
(z) = arg [〈νµ(0)|νe(z)〉]−ℑ

∫ z

0

〈νµ(z′)|ν̇e(z′)〉dz′ .

(14)

In this case, by using the states in Eq.(9) for Majorana
neutrinos, since φ cannot be removed, one obtains

Φgνe→νµ
(z) = arg

[

sin 2θm sin

(

∆m2
mz

4E

)

(sinφ− i cosφ)

]

+

(

∆m2
m

4E
sin 2θm cosφ

)

z , (15)

which holds provided there is mixing (∆m2 6= 0 and θ 6=
0). Thus, we have

Φgνe→νµ
(z) =

3π

2
+ φ+

(

∆m2
m

4E
sin 2θm cosφ

)

z , (16)

and in similar way

Φgνµ→νe
(z) =

3π

2
− φ+

(

∆m2
m

4E
sin 2θm cosφ

)

z . (17)

Then, Φνe→νµ 6= Φνµ→νe , which reveals an asymmetry
between the transitions νe → νµ and νµ → νe due to the
presence of φ.
On the contrary, in the case of Dirac neutrinos, the

phase φ can be removed by means of U(1) global transfor-
mation, then, the phases of Eqs.(13) and (14) (or equiva-
lently Eqs. (16) and (17)) become equivalent and reduce
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to

Φgνe→νµ
(z) = Φgνµ→νe

(z)

=
3π

2
+

(

∆m2
m

4E
sin 2θm

)

z. (18)

Let us now observe that the result of Eq.(12) is inde-
pendent on the choice of the mixing matrix. The same
result is indeed obtained by using, for example, the mix-
ing matrix corresponding to U1 which diagonalize the
interaction Hamiltonian HD

I , derived by HI in Eq.(7) by
setting φ = 0.
On the contrary, the phases defined in Eqs.(13) and

(14) are dependent on the choice of the mixing matrix.
Indeed, the result of Eq.(18) is obtained also for Majo-
rana neutrinos when one considers the mixing matrix cor-
responding to U1. We therefore conclude that the phases
Φgνe→νµ

and Φgνµ→νe
discriminate between the two matri-

ces U1 and U2.
Notice that all the above phases vanish in the limit

of zero neutrino masses where the mixing is absent and
Dirac and Majorana neutrinos are equivalent.
–Numerical analysis. In our analysis, for the total and

geometric phases associated with the evolution of νe, we
consider the energy of neutrinos produced in nuclear re-
actors E ∈ [2−8]MeV , the earth density ne = 1024cm−3,
∆m2 = 7.6 × 10−3eV 2 and a distance z = 100km. We
obtain the results reported in Fig.1 which could be de-
tected in experiments like RENO [2]. Similar results can
be found considering energies of few GeV , which are char-
acteristic of neutrino beams produced at particle accel-
erators, and distances of several hundred of km, as in
long base line experiments. For the analysis of geomet-
ric phases due to the transition between different flavors
(Eqs.(13) and (14)), we consider energies E ∼ 1GeV and
a distance z = 300km, which are values similar to the
ones in T 2K experiment. Moreover we consider φ = 0.3,
and the values of ne and ∆m2 considered above. The
plots of the phases in Eqs.(16), (17) and (18) are reported
in Fig.2.
–Conclusions. We have shown that the total and geo-

metric phase, due to a transition between different neu-
trino flavors, take different values depending on the rep-
resentation of the mixing matrix and on the nature of
neutrinos. Measurement of different values for Φgνe→νµ

and Φgνµ→νe
could allow the detection of the Majorana

phase φ. Such a measurement implies that the mixing
matrix to be used is of type U2, which then removes
the ambiguity in the use of U1 and U2. On the other
hand, if the measurement of the geometric phase leads to
Φgνe→νµ

= Φgνµ→νe
, then the ambiguity between U1 and

U2 remains and nothing can be said on the nature (Dirac
or Majorana) of neutrinos. The phases above analyzed
are in principle detectable, and next long baseline neu-
trino oscillation experiment like T 2K [35], or short base
line experiments like RENO [2], could reveal the correct
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Figure 2: (Color online) Plot of the geometric phases Φg
νe→νµ

(the blue dashed line) and Φg
νµ→νe (the red dot dashed line)

for Majorana neutrinos as a function of the neutrino energy
E, for a distance length z = 300km. The geometric phases
Φg

νe→νµ = Φg
νµ→νe for Dirac neutrinos is represented by the

black solid line.

mixing matrix for Majorana neutrinos and the nature of
the neutrinos by means of interferometric analysis.

In a forthcoming paper we will consider the case of
Dirac and Majorana neutrinos propagating through a
magnetic field.

The theoretical aspects of particle mixing have been
studied extensively in the contexts of quantum mechanics
(QM) [36]-[39] and of quantum field theory (QFT) [40]-
[42] where corrections to the QM oscillation formulas in
vacuum have been derived (see also Refs. [43]-[44]). In
the discussion here presented these corrections can be
safely neglected [41].
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