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Meson cloud effects on the pion quark distribution function in the chiral constituent
quark model
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We investigate the valence quark distribution function of the pion vπ(x,Q2) in the framework of
the chiral constituent quark model and evaluate the meson cloud effects on vπ(x,Q2). We explicitly
demonstrate how the meson cloud effects affect vπ(x,Q2) in detail. We find that the meson cloud
correction causes an overall 32% reduction of the valence quark distribution and an enhancement
at the small Bjorken x regime. Besides, we also find that the dressing effect of the meson cloud will
make the valence quark distribution to be softer in the large x region.
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I. INTRODUCTION

The parton distribution functions (PDFs) of the hadrons delineate the partonic structure of the hadrons and have
been intensively studied for several decades. However their non-perturbative nature prevents any direct application
of the fundamental theory of the strong interaction, quantum chromo dynamics (QCD), since the usual perturbative
technique is not applicable here. Lattice QCD can provide some moments of the PDFs, and recently new attempts to
calculate the x dependencies of PDFs on the lattice have been done motivated by the X. Ji’s proposal [1, 2], although
the extraction of the light-cone PDFs from the quasi-PDFs is still under discussion. Therefore, it remains one of the
greatest challenges in hadronic physics to understand the PDFs of the hadrons from the fundamental principles of
QCD.

Fortunately one is still able to make connections between the hadronic phenomenology at low energy and QCD
in indirect ways. For example, the SU(3) flavour symmetry of QCD provides us the clues to study the property
of the hadronic bound states even though the strange quark masses explicitly break this symmetry. Furthermore
we have also learned that the light pseudoscalar mesons are the Nambu-Goldstone bosons. It is the consequence of
the spontaneously chiral symmetry breaking of the QCD vacuum. Those Nambu-Goldstone bosons play dominant
roles in the low energy hadronic structures and interactions because they will couple to particles and develop the
meson clouds around the core. The meson clouds have important impacts on the hadronic interactions and structures.

Actually it also explains why the constituent quark picture works so well in some aspect of low energy hadronic
phenomenology because there are always meson clouds surrounding the light quarks such that the light quarks
appear to be much heavier objects called the constituent quarks. Furthermore, the sea-quarks and the gluons are
absorbed into constituent quarks as the components of the meson clouds. The hadrons are now treated as the bound
states of these constituent quarks. One may expect to use such a picture to compute the PDFs of the quarks at
low Q2 and the sea-quarks and gluons will reappear as the PDFs are evolved by the DGLAP equation to higher
Q2 in which high energy scatterings occur. However, to apply the leading-order or even the next-to-leading-order
(NLO) QCD evolution when the initial Q value is far below 1 GeV is hard to justify because the value of αs
is usually too large. Hence it is necessary to take the meson cloud effects into account when one computes the
PDFs in constituent quark models since the inner structure of the constituent quarks is not completely irrelevant [3, 4].

There are many applications of this meson cloud dressing scheme to the PDFs, but most of them are devoted to
the PDFs of the nucleon. For example, it has been found that the Goldstone boson fluctuations generate a flavour
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asymmetry of the quark distribution functions inside the nucleon and significant depolarization effects reducing
the fraction of the nucleon spin carried by the quarks [5]. However the study of the effects of Goldstone boson
fluctuation on the quark distribution functions inside the pion was less active because it is much difficult to extract
the distributions experimentally. Our knowledge of the pion quark distribution is only from the Drell-Yan di-muon
production by charged pion incident on the fixed nuclear target π±N → µ+µ−X [6–8].

Nevertheless, the pion is still one of the most important subjects in hadronic physics because of its Nambu-
Goldstone character and its simplest quark content so that there are several theoretical efforts focusing on the PDFs
of the pion [9–20] and some related lattice studies [21, 22]. In particular, the valence quark distribution functions
of the pion have been extracted from the analysis including the next-to-leading-logarithmic threshold resummation
effects in the calculation of the Drell-Yan cross section [23]. They found that at large x the distribution becomes
much softer than those shown in well-known PDF sets of the pion, e.g., SMRS [24] and GRS [25]. Interestingly, their
results are in very good agreement with those of the preceding study based on Dyson-Schwinger equations [13].

In this article we would like to investigate the meson cloud dressing effects of the quark distribution functions
of the pion qualitatively. At first we look for the bare quark distribution functions which can reproduce the
phenomenological satisfactory result in Ref. [23] after the dressing processes. Then we study how the meson cloud
dressing effects modify the x-dependence of the bare quark distribution functions. We also figure out how the meson
cloud effects in vπ(x,Q2) change as Q2 changes.

This article is organized as follows: We briefly review how to calculate the meson cloud dressing effects in general
in Sec. II. In Sec. III we explain the way we study the meson cloud effects on the pion valence quark distribution
functions. We present and discuss our numerical results in Sec. IV and give our conclusion in Sec. V.

II. DRESSING CORRECTIONS TO CONSTITUENT QUARKS

In this section we give a brief review of the method to compute the meson cloud dressing corrections on constituent
quarks following Ref. [5]. The interactions between the Nambu-Goldstone bosons and the constituent quarks are
described by the following effective Lagrangian,

Lint = −gA
f
ψ̄γµγ5(∂µΠ)ψ, (1)

with the constituent quark field ψ and the Nambu-Goldstone boson fields Π defined as

ψ =

ud
s

 , Π =
1√
2


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 − 2η√
6

 . (2)

Here f and gA stands for the pseudoscalar decay constant and the quark axial-vector coupling constant, respectively.
The dressed and bare states of constituent quarks are related by the following relations,

|U〉 =
√
Z|u0〉+ aπ|dπ+〉+

aπ
2
|uπ0〉+ aK |sK+〉+

aη
6
|uη〉,

|D〉 =
√
Z|d0〉+ aπ|uπ−〉+

aπ
2
|dπ0〉+ aK |sK0〉+

aη
6
|dη〉, (3)

where Z is the renormalization constant for a bare constituent quark. |aα|2 means the probability of discovering a
Goldstone boson α in the dressed state of a constituent quark. The meson cloud dressing effects are depicted as
the diagrams in Fig. 1. In Fig. 1 (a) the Goldstone bosons around the constituent quarks are just spectators and
the virtual photons directly couple to the constituent quarks. In Fig. 1 (b) the virtual photons couple to the sea-
quark pair emitted by the Goldstone boson dressing the constituent quarks. Those diagrams are evaluated in the
infinite momentum frame so that the calculation will be simplified a lot by neglecting the Z-graph terms. The quark
distribution with the correction corresponding to Fig. 1 (a) is given by

qj (x) =

∫ 1

x

dy

y
Pjα/i (y) qi

(
x

y

)
, (4)
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(a) (b)

FIG. 1: Diagrams representing the Goldstone boson dressing corrections to a constituent quark. The wavy lines denote the
virtual photons. The thick lines denote the constituent quarks and the dashed lines represent the Goldstone bosons. (a)
describes the process in which the virtual photons couple directly to the constituent quarks and the Goldstone boson is emitted
and absorbed by the constituent quark but does not couple to the photons. (b) describes the process where the virtual photons
couple to the sea-quark pair emitted by the Goldstone boson dressing the constituent quarks.

where Pjα/i is the splitting function which gives the probability to find a constituent quark j carrying the momentum
fraction y together with a spectator Goldstone boson α, whose parent constituent quark is denoted by i. With the
masses of the constituent quarks and the pseudoscalar mesons, mi, mj , and mα, Pjα/i is expressed as

Pjα/i (y) =
1

8π2

(
gAm̄

f

)2 ∫
dk2
T

(mj −miy)
2

+ k2
T

y2 (1− y)
(
m2
i −M2

jα

)2 . (5)

M2
jα is the invariant mass squared of the final state expressed as

M2
jα =

m2
j + k2

T

y
+
m2
α + k2

T

1− y
, (6)

and m̄ = (mi +mj)/2 is the average of the constituent quark masses. To perform the integration of Eq. (5), a cutoff
is required. Therefore we replace gA by the following function [26],

gA exp

(
m2
i −M2

jα

4Λ2

)
, (7)

where Λ is the cutoff parameter. The moments of the splitting functions are defined by〈
xn−1Pjα/i

〉
≡
∫ 1

0

dxxn−1Pjα/i (x) , (8)

and the first moments with n = 1, 〈
Pjα/i

〉
=
〈
Pαj/i

〉
≡ 〈Pα〉 , (9)

are also defined. The renormalization constant Z is then expressed as

Z = 1− 3

2
〈Pπ〉 − 〈PK〉 . (10)

Here only the pion and kaon contributions are considered. Since the contribution from η is relatively small compared
to them due to the factor 1/6 which appears in Eqs. (3), we simply neglect it in this study.

The diagram Fig. 1 (b) represents the process in which the sea-quark pair emitted from Goldstone boson is probed.
The corresponding contribution is given by

qk (x) =

∫
dy1

y1

dy2

y2
Vk/α

(
x

y1

)
Pαj/i

(
y1

y2

)
qi (y2) . (11)

Here Pαj/i(x) = Pjα/i(1 − x) and Vk/α is the quark distribution function with the flavor index k in the Goldstone
boson α, for which the normalization condition, ∫ 1

0

dxVk/α (x) = 1, (12)

is satisfied.
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TABLE I: The set of parameters chosen in this article.

gA mu md ms mπ mK fπ Λ

1.0 360 MeV 360 MeV 570 MeV 140 MeV 494 MeV 93 MeV 1.4 GeV

 0

 0.1

 0.2

 0.3

 0.4
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 0.6

 0  0.2  0.4  0.6  0.8  1

xv
π (x

)

x

bare
with pion only
with pion and kaon
Aicher et al.

FIG. 2: The valence quark distribution functions of the pion at Q = 4 GeV as a function of Bjorken x. The solid curve shows
the bare distribution vπbare(x). The dashed and dotted lines represent the dressed vπ(x) including only the pion dressing effect,
and both the pion and kaon dressing effects, respectively. The dashed-dotted line represents the empirical curve provided in
Ref. [23].

III. DRESSING CORRECTIONS TO THE VALENCE QUARK DISTRIBUTION FUNCTIONS OF PION

In this section we will apply the procedure in the previous section to the pion valence quark distribution functions.
To evaluate the meson cloud dressing corrections, we choose the values for some parameters shown in Table I. These
are typical values guided by preceding studies based on the Nambu–Jona-Lasinio model [27–29]. It has been observed
for the nucleon that the obtained value of the Gottfried sum rule with this parameter set in the present framework is
consistent with the experimentally observed empirical one [5].

Our first task is to choose the appropriate bare quark distribution functions of π+, u0(x) and d̄0(x) satisfying the
normalization conditions, ∫ 1

0

dxu0 (x) =

∫ 1

0

dxd̄0 (x) = 1. (13)

Through this article we adopt the following short hand notation,

P ⊗ q ≡
∫ 1

x

dy

y
P (y) q

(
x

y

)
. (14)

According to Eq. (4) and Eq. (11), after the dressing the distribution functions of u and ū quarks in π+ become as



5

follows,

u (x) =Zu0 (x) +
1

2
Puπ/u ⊗ u0 + Vu/π ⊗ Pπd/u ⊗ u0 + Vu/π ⊗ Pπū/d̄ ⊗ d̄0

+
1

4
Vu/π ⊗ Pπu/u ⊗ u0 +

1

4
Vu/π ⊗ Pπd̄/d̄ ⊗ d̄0 + Vu/K ⊗ PKs/u ⊗ u0, (15)

ū (x) =Pūπ/d̄ ⊗ d̄0 +
1

4
Vū/π ⊗ Pπu/u ⊗ u0 +

1

4
Vū/π ⊗ Pπd̄/d̄ ⊗ d̄0. (16)

We then define the valence quark PDF of the pion as vπdressed(x) = uπ
+

v (x) = d̄π
+

v (x) = dπ
−

v (x) = ūπ
−

v (x), and obtain
the following expression,

vπdressed (x) = u (x)− ū (x)

= Zu0 (x) +
1

2
Puπ/u ⊗ u0 + Vu/π ⊗ Pπd/u ⊗ u0 + Vu/π ⊗ Pπū/d̄ ⊗ d̄0

+ Vu/K ⊗ PKs/u ⊗ u0 − Pūπ/d̄ ⊗ d̄0. (17)

Integrating both sides of Eq. (17), we obtain∫ 1

0

dxvπdressed (x) =

∫ 1

0

dx {u (x)− ū (x)} = Z +
3

2
〈Pπ〉+ 〈PK〉 = 1, (18)

which shows the correct normalization, following Eq. (10).

To make the physics to be more transparent, we divide the dressed valence PDF into four terms according to their
origins,

vπ(x,Q2) = vπ,0(x,Q2) + vπ,a(x,Q2) + vπ,b1(x,Q2) + vπ,b2(x,Q2), (19)

where each term is defined as follows,

vπ,0(x,Q2) = Zu0 (x) ,

vπ,a(x,Q2) =
1

2
Puπ/u ⊗ u0 − Pūπ/d̄ ⊗ d̄0,

vπ,b1(x,Q2) = Vu/π ⊗ Pπd/u ⊗ u0 + Vu/π ⊗ Pπū/d̄ ⊗ d̄0,

vπ,b2(x,Q2) = Vu/K ⊗ PKs/u ⊗ u0. (20)

vπ,a(x,Q2) is the contribution from Fig. 1 (a). vπ,b1(x,Q2) and vπ,b2(x,Q2) are the contributions from Fig. 1 (b)
with the pion cloud and Fig. 1 (b) with the kaon cloud, respectively. For simplicity, we assume here the same initial
u quark distribution of the involved K+ as pion’s. To perform the Q2 evolution, we utilize the code produced by
Kobayashi, Konuma, and Kumano [30], and the results presented in the next section are obtained at NLO accuracy.

IV. RESULTS AND DISCUSSION

In this section we present and discuss our numerical results. First of all, we shall fix the bare valence quark
distribution function of the pion vπbare(x,Q2

0). We assume that only the valence quarks exist at the initial scale, and
start with the symmetric distribution, vπbare(x,Q2

0) ∝ xα(1−x)α. We try to find the value of α by fitting vπdressed(x,Q2)
to the distribution obtained from the fit 3 in Ref. [23] at Q = 4 GeV, varying the initial scale Q0. Since our purpose
of this study is to discuss the meson cloud effects qualitatively, we simply choose an integer value for α, and then fix
the bare distribution as

vπbare(x,Q2
0) = Nx1.8(1− x)1.8, (21)

where N is the normalization constant. The initial scale Q0 = 0.50 GeV is determined by fitting the resulting first
moment to that of Aicher et al. at Q = 4 GeV [23]. Our bare vπ(x,Q2) at Q = 4 GeV is depicted as the solid line in
Fig. 2. We also present the dressed vπ(x,Q2) with only pion cloud (in dashed line) and the one fully dressed with the
pion and kaon clouds (in dotted line) at Q = 4 GeV. One can compare our full result with the phenomenologically
satisfactory one (in dashed-dotted line) given by Ref. [23]. Our full result agrees with the empirical one excellently
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FIG. 3: The contributions of each term in Eq. (19) to xvπdressed(x) at Q = Q0. The dashed, dotted, dashed-dotted and dashed-
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term vπ,b2(x), respectively. The solid line represents the sum of the each terms.
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when x ≥ 0.5 and becomes a slightly smaller between x = 0.4 and 0.8, and slightly lager when x ≤ 0.2. However
the difference between our result and the empirical curve is always less than few percents such that our study in this
article is qualitatively reliable and not just a prototype study.

Fig. 3 provides a clear anatomy of the meson cloud dressing effects on the pion valence quark distribution function
at Q = Q0 since the contribution of each term in Eq. (19) is demonstrated explicitly there. The solid curve
corresponds to xvπ,0(x) which is just the bare valence quark PDF multiplying the renormalization factor Z. The
value of Z is about 2/3. Actually one finds that xvπ,0(x) and the total dressed xvπ(x) are almost identical when
x ≥ 0.5. Namely, at Q = Q0 the meson cloud dressing effect is exclusively the effect of the renormalization factor
Z in the large x regime. The contribution from Fig. 1 (a) represented in the dotted line in Fig. 3 is negative and
its magnitude is relatively small compared with xvπ,0(x) and xvπ,b1(x). On the contrary, the contribution from
Fig. 1 (b) involving the pion cloud is positive and much larger than xvπ,a(x) in the magnitude. It is represented
by the dashed-dotted line in Fig. 3. But it is only nonzero within 0 ≤ x ≤ 0.6. Moreover its effect is cancelled
by the vπ,a in the regime 0.4 ≤ x ≤ 0.6. Hence its effect is most significant in the regime 0 ≤ x ≤ 0.4. The
contribution of Fig. 1 (b) involving the kaon cloud represented in the dashed-double dotted line in Fig. 3 is small but
positive. Its contribution is largely cancelled by the xvπ,a(x) between x = 0 and 0.2. Hence the curve corresponding
to the total pion valence quark distribution function at Q = Q0 is just the sum of xvπ,0(x) and xvπ,b1(x) approximately.

Naively one may think that there is no dressing effect in the large x regime except the overall 32% reduction
according to the above analysis. Nevertheless the further analysis shows otherwise. To observe the total dressing
effect one is able to define the following quantity,

R(x,Q2) =
vπdressed(x,Q2)− vπbare(x,Q2)

vπbare(x,Q2)
. (22)

The quantity characterizes the extent of the modification of the valence quark distribution function due to the
Goldstone boson dressing effects. Our results are demonstrated in Fig. 4. At Q = Q0 indeed the dressing effect is
simply overall 32% reduction due to the renormalization factor Z in the large x region. However, when one goes to
a higher Q value, a suppression of R(x,Q2) appears in the region of x ≥ 0.8. Namely, the curves of R(x,Q2) drop
rather dramatically at the right end of the Fig. 4. This suppression becomes more pronounced as the Q2 increases.
Since the large x behavior of the valence quark PDF usually can be characterized by some exponent β such that
vπ(x) ∼ (1−x)β as x ∼ 1. The dressing effect will increase the value of β substantially as Q2 increases. Furthermore,
there is a plateau between x = 0.4 and 0.8 where the dressing effect is just overall 32% reduction for all curves at
different Q2 values. On the other hand, in the small x regime, the Goldstone boson dressing effect is to enhance the
vπ(x) significantly. But the magnitude of this enhancement decreases very fast as Q2 increases. For example, one can
find in Fig. 4, at x = 0.2 and Q = 1 GeV the enhancement of vπ is about 30%, but the enhancement is reduced to
only 15% at Q = 2 GeV, moreover, at Q = 4 GeV the enhancement becomes only 10%. The enhancement is mainly
due to the contribution of the Fig. 1 (b) involving the pion cloud according to Fig. 3. We conclude that the meson
cloud dressing effect on the valence quark distribution function is an overall 32% reduction with an enhancement at
the small x regime 0 ≤ x ≤ 0.4 and an additional suppression in the x ≥ 0.8 region. This generic feature is shared for
the curves with different Q2 values.

V. CONCLUSION

In this article, we have investigated the meson cloud dressing effects on the pion valence quark distribution
function vπ(x,Q2) in detail. We first choose the bare vπ(x,Q2) judiciously such that the dressed vπ(x,Q2) agrees
with the phenomenologically satisfactory vπ(x,Q2) given in Ref. [23], then we study the individual contribution of
the meson cloud dressing effects. We find that the meson cloud effect is mainly an overall 32% reduction due to
the renormalization factor Z with a suppression in the large x regime, x ≥ 0.8, and an enhancement in the small x
region, x ≤ 0.4. The extent of the enhancement decreases fast as Q2 increases, on the contrary, the magnitude of the
suppression increases as Q2 increases. We also find that the enhancement at the small x regime is mainly from the
pion cloud contribution.

Currently, COMPASS Collaboration at CERN is taking data of the pion-induced Drell-Yan process. Absolute
production cross sections will be measured there, and the preceding predictions for the valence quark distribution
function of the pion will be tested with the data. Besides, the pion-induced Drell-Yan experiment is also planned at
J-PARC in Japan. In this experimental facility, the beam energy is much lower compared to that of the COMPASS
experiment, so the cross sections are sensitive to the larger x region. Hence, our understanding of the valence quark



8

distribution of the pion in the region will be improved so that our understanding of the bare quark distribution
function also will be improved via the framework presented in this article.
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