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It is simply anticipated that in a strong magnetic configuration, the Landau quantization ceases
the neutral rho meson to decay to the charged pion pair, so the neutral rho meson will be long-lived.
To closely access this naive observation, we explicitly compute the charged pion-loop in the magnetic
field at the one-loop level, to evaluate the magnetic dependence of the lifetime for the neutral rho
meson as well as its mass. Due to the dimensional reduction induced by the magnetic field (violation
of the Lorentz invariance), the polarization (spin sz = 0,±1) modes of the rho meson, as well as
the corresponding pole mass and width, are decomposed in a nontrivial manner compared to the
vacuum case. To see the significance of the reduction effect, we simply take the lowest-Landau level
approximation to analyze the spin-dependent rho masses and widths. We find that the “fate” of
the rho meson may be more complicated because of the magnetic-dimensional reduction: as the
magnetic field increases, the rho width for the spin sz = 0 starts to develop, reach a peak, to be
vanishing at the critical magnetic field to which the folklore refers. On the other side, the decay
rates of the other rhos for sz = ±1 monotonically increase as the magnetic field develops. The
correlation between the polarization dependence and the Landau-level truncation is also addressed.

I. INTRODUCTION

Studies on hadron properties under the influence of the magnetic field have been extensively done so far. The
development on such a hadron physics in the magnetic field would be relevant to gain some new insights for existing
environment systems with the presence of strong magnetic fields, like in relativistic heavy ion collision [1, 2] and
neutron stars [3–6].
In the magnetic field, hadron properties will indeed be dramatically changed. For the neutral rho meson, in

particular, it is expected that the decay channel to the charged pion pair, which is the main decay mode in the
vacuum (without the magnetic configuration), will be closed, and hence the neutral rho meson can be long-lived. This
is a naively-believed folklore, which can be reasoned by the Landau quantization for the charged pions: in the vacuum
the neutral rho-meson decay width to the charged pion pair, Γ(ρ → ππ), is given as

Γ(ρ0 → π+π−)vac =
|gρππ|2
6πm2

ρ

(
√

m2
ρ − 4m2

π

4

)3

, (I.1)

with the ρ0 − π+ − π− coupling strength gρππ(≃ 6). Now, turn on the magnetic field. Since the charged pions carry

the electromagnetic charge, the mass (mπ) will be shifted by the magnetic field to be
√

m2
π + eB in the lowest Landau

level (LLL). Then, one may naively suspect that the decay width in Eq.(I.1) will be modified in the phase space factor
like

Γ(ρ0 → π+π−)naive =
|gρππ|2
6πm2

ρ

(√

m2
ρ − 4(m2

π + eB)

4

)3

. (I.2)

Thus, the ρ0 → π+π− decay channel is expected to be closed when the magnetic field reaches the critical scale
eBc = (m2

ρ − 4m2
π)/4 ≃ 0.13GeV2.

Note that the above widely-accepted argument invokes only the kinematics, relying on the modification of the phase
space factor: the dynamical properties in the magnetic field, such as the dimensional reduction, are not taken into

account at all. Therefore, a more rigorous argument on this issue should involve some explicit dynamical computation
of the rho width.
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In this paper, we explicitly compute the charged pion-loop in the magnetic field at the one-loop level based on
a chiral effective model. We evaluate the magnetic dependence of the decay width (lifetime) for the neutral rho
meson as well as its mass. We find that the polarization (spin sz = 0,±1) modes of the rho meson, as well as the
corresponding pole mass and width, are decomposed in a nontrivial manner compared to the vacuum case. This is
due to the dimensional reduction induced by the magnetic field.
In order to study the significance of the reduction effect, we simply take the LLL approximation and analyze the

spin-dependent rho masses and widths. We find that as the magnetic field increases, the rho width for the spin sz = 0
starts to develop, reach a peak, to be vanishing at the critical magnetic field to which the folklore refers: this result
would suggest that the “fate” of the neutral rho meson in the magnetic field may be more complicated than the
aforementioned naive expectation. On the other side, the decay rates of the other rhos for sz = ±1 monotonically
increase as the magnetic field develops. The correlation between the polarization dependence and the Landau-level
truncation is also addressed.
This paper is constructed as follows: in Sec. II we introduce a chiral-effective model and extract the Lagrangian

terms relevant to the later discussions. Sec. III provides the explicit computation of the pion-loop contribution,
including the effect of the magnetic-dimensional reduction, to the rho meson propagator at the one-loop level. In
Sec. IV we numerically evaluate the magnetic dependence of the neutral rho meson with respect to the polarization
states intrinsically decomposed by the presence of the magnetic field. Some possible interpretations for the results
obtained in Sec. IV are proposed in Sec. V. Summary is given in Sec. VI. The appendix A provides formulae for the
Feynman parameter integrals relevant to evaluation of the one-loop terms given in Sec. III.

II. A CHIRAL EFFECTIVE MODEL

We employ a chiral effective model based on the coset space, G/H = [SU(2)L × SU(2)R ×U(1)V ]/SU(2)V=L=R ×
U(1)V . The fundamental dynamical variables to construct the chiral effective Lagrangian are the nonlinear bases

ξL,R, which transform under the G as ξL,R → h(π, gL, gR) · ξL,R · g†L,R, where h(π, gL, gR) ∈ H and gL,R ∈ G.

These variables are parameterized by the pions as ξL,R = e∓iπaTa/Fπ with πa (a = 1, 2, 3) being the pion fields, T a

generators of SU(2) normalized by tr[T aT b] = δab/2 and Fπ is the pion decay constant. It is convenient to introduce
the Maurer-Cartan 1-forms:

α⊥,||µ =
1

2i
(DµξR · ξ†R ∓DµξL · ξ†L) . (II.3)

Here we have gauged the chiral symmetry with the external gauge fields Lµ and Rµ, and

DµξL = ∂µξL + iξLLµ ,

DµξR = ∂µξR + iξRRµ , (II.4)

with the photon field Aµ incorporated as Lµ = Rµ = eQemAµ involving the electromagnetic coupling e and the charge
matrix Qem = T 3 + 1/6 · 12×2 = diag(2/3,−1/3). The 1-forms α⊥,||µ transform under the G as

α⊥µ → h(π, gL, gR) · α⊥µ · h†(π, gL, gR) ,

α||µ → h(π, gL, gR) · α||µ · h†(π, gL, gR)− i∂µh(π, gL, gR) · h†(π, gL, gR). (II.5)

We include the vector meson field as a matter field (a la Callan-Coleman-Wess-Zumino) in the adjoint representation,
ρµ = ρaµTa, which transforms homogeneously under the chiral symmetry as ρµ → h(π, gR, gL) · ρµ · h†(π, gL, gR). The
chiral-covariant derivative for the ρµ is then defined by Dµρν = ∂µρν − i[α||µ, ρν ]. The chiral invariant Lagrangian
including the ρ meson and the π meson is thus written as

L = F 2
π tr[α⊥µα

µ
⊥] +

F 2
π

4
tr[χ̂† + χ̂]

−1

2
tr[ρµνρ

µν ] +m2
ρtr[ρµρ

µ]− iGtr[ρµναµ
⊥α

ν
⊥], (II.6)

where ρµν = Dµρν − Dνρµ and G is a coupling constant related to the ρ − π − π vertex. In Eq.(II.6) we also
introduced the pion mass term (the second term in the first line) in which the chiral invariance is ensured by the

spurion field χ̂ = ξLχξ
†
R having the transformation law χ → gL · χ · g†R. When the χ gets the vacuum expectation

value, 〈χ〉 = m2
π · 12×2, the second term gives the pion mass.
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Expanding the 1-forms in Eq.(II.3) in powers of the pion field, we extract portions relevant to the present study,

Lρ0,π± = Dµπ
+Dµπ− −m2

ππ
+π− − 1

2
(∂µρ

0
ν − ∂νρ

0
µ)(∂

µρ0ν − ∂νρ0µ) +
1

2
m2

ρρ
0
µρ

0µ

+igρππρ
0µ(∂µπ

+ · π− − ∂µπ
− · π+), (II.7)

where we defined Dµπ
± = (∂µ∓ ieAµ)π

± for the charged pions, π± ≡ (π1∓ iπ2)/
√
2, and used the equation of motion

for the rho field to get the on-shell ρ − π − π coupling, gρππ = Gm2
ρ/(4F

2
π ) in the last line, which is experimentally

≃ 6 in the vacuum. The covariantized-pion kinetic term (|Dµπ
±|2) in Eq.(II.7) provides the charged-pion propagator

under the magnetic field B (in Aµ). It can be expressed by the Schwinger’s proper-time procedure [7]. In the present
analysis, instead of the Schwinger form, we shall take a form expanded in terms of the Landau levels as done in
Ref. [8].
Let us consider the constant magnetic field B oriented along the z-direction in the position-space time. The π±

propagator, GB(x, y), then takes the form

GB(x, y) = Φ(x, y)

∫

d4p

(2π)4
GB(p)e−ip·(x−y) , (II.8)

where

Φ(x, y) = exp

[

ie

∫ x

y

dx′
µA

µ(x′)

]

,

GB(p) = 2i

∞
∑

l=0

(−1)lLl

(

2
p2⊥
eB

)

exp

[

p2⊥
eB

]

1

p2|| − (2l+ 1)eB −m2
π

, (II.9)

with Ll

(

2
p2

⊥

eB

)

being the Laguerre polynomials labeling the Landau level as l. In Eq.(II.9) we have introduced the

following notations for the four-momenta:

pµ|| = (pt, 0, 0, pz), pµ⊥ = (0, px, py, 0) ,

p2|| = (pt)2 − (pz)2, p2⊥ = −(px)2 − (py)2 . (II.10)

Note also that the functional Φ(x, y) obviously depends on the gauge. Here we shall choose the gauge so as to set
Φ ≡ 1.
From the propagator expression in Eq.(II.9), one should note that since nonzero constant magnetic field is present,

no matter how small it is, the Lorentz invariance in four-dimension has been lost: the propagation of the π± is now
confined to the z-direction parallel to the magnetic field. This is the consequence of the dimensional reduction.

III. RHO MESON PROPAGATOR ON THE MAGNETIC-DIMENSIONAL REDUCTION

In this section, based on the Lagrangian Eq.(II.7) and the π± propagator GB in Eq.(II.9) (with Φ = 1), we shall
compute and evaluate the π±-loop corrections to the ρ0 propagator at the one-loop level. As noted in the last
paragraph of Sec. II, due to the magnetic-dimensional reduction the ρ0 propagator and polarization structure no
longer take the Lorentz-covariant form. To see the effect of the significant reduction, we shall hereafter take the LLL
approximation and explicitly evaluate how the effect of the magnetic-dimensional reduction for the π± propagator is
transferred to the ρ0-polarization structure, mass and widths.
By including the one-loop correction arising from the ρ− π − π vertex with the coupling strength in Eq.(II.7), the

resultant inversed-ρ0 propagator is expressed as

D−1
µν = D−1

Fµν +Πµν , (III.11)

where D−1
Fµν(p) = −(p2 −m2

ρ)gµν + pµpν denotes the free inversed-propagator and Πµν is the self-energy function,

iΠµν = −4(gρππ)
2

∫

d4k

(2π)4
kµkνG

B(k − p

2
)GB(k +

p

2
) . (III.12)

In the LLL approximation (with only l = 0 kept in Eq.(II.9)), the Πµν is decomposed by reflecting the dimensional
reduction:

iΠµν(p
2
||, p

2
⊥) = i

(

ΠS
||(p

2
||, p

2
⊥)g||µν +ΠT

|| (p
2
||, p

2
⊥)(p

2
||g||µν − p||µp||ν) + ΠS

⊥(p
2
||, p

2
⊥)g⊥µν

)

, (III.13)
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where g||µν = diag(1, 0, 0− 1) and g⊥µν = diag(0,−1,−1, 0), and

ΠS
||(p

2
||, p

2
⊥) =

2(eB)

(4π)2
(gρππ)

2e
p2⊥
2eB

∫ 1

0

dx
(

−2 ln
Λ2

∆
+ p2||(2x− 1)2

1

∆

)

,

ΠT
|| (p

2
||, p

2
⊥) = −2(eB)

(4π)2
(gρππ)

2e
p2⊥
2eB

∫ 1

0

dx
(2x− 1)2

∆
,

ΠS
⊥(p

2
||, p

2
⊥) = −2(eB)

(4π)2
(gρππ)

2e
p2⊥
2eB

∫ 1

0

dx
eB

∆
, (III.14)

with ∆ = x(x − 1)p2|| + m2
π + eB. (The relevant formulas for the Feynman parameter integrals in Eq.(III.14) are

presented in Appendix A.) In evaluating the loop integrals, one has encountered the divergent term, which has been
regularized by the dimensional regularization with the D = 2 pole being replaced by the cutoff dependence Λ. Note
that the overall factors of (eB) in Eq.(III.14) come from the loop integrations of the pion momentum along the
perpendicular direction (k⊥ in Eq.(III.12)). That is the consequence of the dimensional reduction.
By performing the inversion of Eq.(III.11), one finds the propagator Dµν in the presence of the magnetic field

(Fµν = ∂µAν − ∂νAµ = B(δµ1δν2 − δν1δµ2)), which can generically be decomposed into four independent polarization
structures [9–11]:

Dµν = Dp
pµpν
p2

+DL
LµLν

L2
+DQ

Q∗
µQν

Q∗ ·Q +DG
GµGν

G2
, (III.15)

where the polarization vectors Lµ, Qµ and Gµ are defined as

Lµ = Fµνpν = −B(0, py,−px, 0) ,

Qµ =
i

2
ǫµνρσFρσpν = iB(−pz, 0, 0,−pt) ,

Gµ = (p2/LµL
µ)FµνFνλp

λ + pµ =

(

pt,−
p2||

p2⊥
px,−

p2||

p2⊥
py, pz

)

, (III.16)

and

Dp =
i

m2
ρ +ΠS

||

p2

||

p2 +ΠS
⊥

p2

⊥

p2

,

DL =
i

m2
ρ − p2 +ΠS

⊥

,

DQ =
i

m2
ρ − p2 +ΠS

|| + p2||Π
T
||

,

DG =
i

m2
ρ − p2 +ΠS

||

p2

⊥

p2 +ΠS
⊥

p2

||

p2

. (III.17)

It turns out that the polarization mode along with the Dp corresponds to the unphysical degree of freedom, like a
scalar mode. (One can easily check it by constructing the equation of motion corresponding to the Dp propagator
form and finding that it satisfies the Klein-Gordon equation, so it is nothing but a scalar with spin S = 0.) For the
other three physical modes, Lµ, Qµ and Gµ, the ρ0 effective masses are defined as

M2
L = m2

ρ +ReΠS
⊥(p

t = ML, ~p = ~0) ,

M2
Q = m2

ρ +ReΠS
||(p

t = MQ, ~p = ~0) +M2
QReΠ

T
|| (p

t = MQ, ~p = ~0) ,

M2
G = m2

ρ +ReΠS
⊥(p

t = MG, ~p = ~0) , (III.18)

where ~p = (px, py, pz). To be canonical, the neutral ρ(L), ρ(Q) and ρ(G) fields are rescaled by the field renormalization
constants ZL, ZQ and ZG respectively:

Z−1
L = 1−

∂ReΠS
⊥(p

2
||, p

2
⊥)

∂p2||

∣

∣

∣

∣

∣

pt=ML,~p=~0

,
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Z−1
Q = 1−

∂
(

ReΠS
||(p

2
||, p

2
⊥) + p2||ReΠ

T
|| (p

2
||, p

2
⊥)
)

∂p2||

∣

∣

∣

pt=MQ,~p=~0
,

Z−1
G = 1−

∂ReΠS
⊥(p

2
||, p

2
⊥)

∂p2||

∣

∣

∣

∣

∣

pt=MG,~p=~0

. (III.19)

By expanding the propagators around the effective masses of ρ(L), ρ(Q) and ρ(G) fields, the functions DL, DQ and DG

in Eq.(III.17) take the forms

DL =
−iZL

p2|| −M2
L + ZL

(

1− ∂ReΠS
⊥

∂p2

⊥

∣

∣

∣

pt=ML,~p=~0

)

p2⊥ − iZLImΠS
⊥

+ · · · ,

DQ =
−iZQ

p2|| −M2
Q + ZQ

(

1− ∂
(

ReΠS
||
+p2

||
ReΠT

||

)

∂p2

⊥

∣

∣

∣

pt=MQ,~p=~0

)

p2⊥ − iZQImΠS
|| − iZQImΠT

|| · p2||
+ · · · ,

DG =
−iZG

p2|| −M2
G + ZG

(

1− ∂
(

p2
⊥

p2
ΠS

||
+

p2
||

p2
ΠS

⊥

)

∂p2

⊥

∣

∣

∣

pt=MG,~p=~0

)

p2⊥ − iZGImΠS
|| ·

p2

⊥

p2 − iZGImΠS
⊥ · p2

||

p2

+ · · · ,(III.20)

where the ellipses denote terms having no pole structure.
As to the decay width to the LLL-charged pions (π±

(l=0)), we assume the Breit-Wigner form for the propagators to

extract the imaginary parts in Eq.(III.20):

Γ(ρ(L) → π+
(l=0)π

−
(l=0)) = −ZLImΠS

⊥(ML,~0)

ML
,

Γ(ρ(Q) → π+
(l=0)π

−
(l=0)) = −ZQ

ImΠS
||(MQ,~0) +M2

QImΠT
|| (MQ,~0)

MQ
,

Γ(ρ(G) → π+
(l=0)π

−
(l=0)) = −ZGImΠS

⊥(MG,~0)

MG
. (III.21)

Note from Eqs.(III.18) and (III.19) that the mass and the decay width for the ρ(L) coincide with those of the ρ(G).

IV. THE MAGNETIC DEPENDENCE OF MASSES AND WIDTHS

In the previous section we derived the formulae for masses and widths at the one-loop level of the chiral effec-
tive model, which have been decomposed into the intrinsic polarization modes (ρ(L), ρ(Q), ρ(G)) by the magnetic-
dimensional reduction. Thus we are now ready to numerically study the magnetic dependence of the rho meson
masses and widths.
First of all, to be fully consistent with the one-loop level computation, we expand the formulae of masses and widths

in Eqs.(III.18) and (III.21), with the Feynman parameter integrals in Eq.(III.14) properly evaluated, up to terms of
order of O((gρππ/4π)

2), to get

M2
L/G =



































m2
ρ + 8(eB)2

( gρππ

4π

)2 1

mρ

√
m2

ρ−4(m2
π+eB)

ln

√
m2

ρ−4(m2
π+eB)+mρ

2
√

m2
π+eB

(for eB <
m2

ρ−4m2

π

4 )

m2
ρ − 8(eB)2

( gρππ

4π

)2 1

mρ

√
4(m2

π+eB)−m2
ρ

arctan

(

mρ√
4(m2

π+eB)−m2
ρ

)

(for
m2

ρ−4m2

π

4 < eB) ,
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M2
Q =











































m2
ρ − 4(eB)

( gρππ

4π

)2

(

ln Λ2

m2
π+eB + 2− 2

mρ

√

m2
ρ − 4(m2

π + eB) ln

√
m2

ρ−4(m2
π+eB)+mρ

2
√

m2
π+eB

)

(for eB <
m2

ρ−4m2

π

4 )

m2
ρ − 4(eB)

( gρππ

4π

)2

(

ln Λ2

m2
π+eB + 2− 2

mρ

√

4(m2
π + eB)−m2

ρ arctan
mρ√

4(m2
π+eB)−m2

ρ

)

(for
m2

ρ−4m2

π

4 < eB) ,

(IV.22)

and

Γ(ρ(L/G) → π+
(l=0)π

−
(l=0)) =

(eB)2(gρππ)
2

8πm2
ρ

√

4

m2
ρ − 4(m2

π + eB)
(for eB <

m2
ρ − 4m2

π

4
) ,

Γ(ρ(Q) → π+
(l=0)π

−
(l=0)) =

eB(gρππ)
2

πm2
ρ

√

m2
ρ − 4(m2

π + eB)

4
(for eB <

m2
ρ − 4m2

π

4
). (IV.23)

Here one should also notice from Eq.(IV.22) that the consistency of the one-loop computation including the constant
magnetic scale requires the eB to be constrained in such a way that the one-loop terms in total should be smaller
than the vacuum term (m2

ρ). Thus the magnetic scale is bounded from above as

eB ≪
4πm2

ρ

gρππ
∼ 1GeV2 . (IV.24)

Furthermore, since our computation has been restricted only to the LLL approximation, the magnetic scale eB actually
has the lower bound: it is set by requiring the (eB) not to exceed the scale above which the decay channel involving
at least one pion labeled as the the next-to-LLL is open, namely,

(

√

m2
π + eB +

√

m2
π + 3eB

)2

> m2
ρ , (IV.25)

where the (m2
π + 1(3)eB) correspond to the LLL (the next-to-LLL) pion mass.

In Fig. 1 we plot the masses in Eq.(IV.22) and the decay widths in Eq.(IV.23) as a function of the magnetic scale
(eB). We have used the experimental values in the vacuum [12], mπ± = 0.140GeV, mρ = 0.775GeV and gρππ = 5.98
(which is estimated by the ρ → ππ decay width in the vacuum), and taken the cutoff scale Λ as Λ ∼ 4πFπ ≃ 1 GeV.
In the figure the magnetic scale has been constrained (from below) so as to satisfy the condition in Eq.(IV.25), i.e.,
eB & 0.07GeV2.

ML/G

MQ

���� ���� ���� ���� ���� ���� ����
���

���

���

���

��	

���


�[�
�]

�
�
�
�
[�
�
�
]

Γnaive

Γvac

ΓL/G

ΓQ

���� ���� ���� ���� ���� ���� ����
���

���

���

���

��	

��


��[���]

Γ
[�
�
�
]

FIG. 1: The magnetic-dependences of the rho masses (left panel) and widths (right panel) in the LLL approximation. In
the right panel the naive expectation of the magnetic dependence on the decay width following from Eq.(I.2) has also been
displayed together with the vacuum-width value estimated from Eq.(I.1).

We first discuss the magnetic dependences of the decay widths of for ρ(L/G) and ρ(Q). As clearly seen in the right
panel of Fig. 1, the magnetic dependence of the rho meson decay rate is more complicated than that expected from
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the naive observation (Eq.(I.2)): as the eB scale gets larger than the lowest eB ≃ 0.07GeV2, both the ρ(L/G) and ρ(Q)

widths start to increase. As to the ρ(Q) width, it reaches a peak at around eB ≃ 0.09GeV2 to go down after that, while
the ρ(L/G) width develops the size monotonically. At the critical magnetic scale eBc = (m2

ρ − 4m2
π)/4 ≃ 0.13GeV2,

the difference in magnetic dependences drastically gets prominent: the ρ(L/G) width diverges at the critical point,
while the ρ(Q) width goes to zero. These tendencies can be understood from Eq.(IV.22): the decay width to the LLL
pion, ΓL/G(π

+
(l=0)π

−
(l=0)), develops like

ΓL/G(π
+
(l=0)π

−
(l=0)) ∼

(eB)2
√

m2
ρ − 4(m2

π + eB)
, (IV.26)

which diverges at the critical point eBc, while the ΓQ(π
+
(l=0)π

−
(l=0)) scales like

ΓQ(π
+
(l=0)π

−
(l=0)) ∼ (eB)

√

m2
ρ − 4(m2

π + eB) , (IV.27)

which has the peak (at around eB ≃ 0.09GeV2). This discrepant tendency would actually imply the difference in the
polarization (spin) sensitivity related to the Landau-level number conservation, as will be discussed later.
As to the magnetic dependence of the ρ(L/G) and ρ(Q) masses, actually, it looks somewhat complicated compared

to the widths as depicted in the left panel of Fig. 1: below the critical magnetic scale eBc ≃ 0.13GeV2, ML/G gets

larger, while MQ becomes smaller as the eB increases from the lowest value ≃ 0.07GeV2. This is thought to happen
due to the net contributions coming from the complicated functional forms at around the lowest magnetic scale (see
Eq.(IV.22). At the critical point eBc, the discrepancy in magnetic dependences for ML/G and MQ drastically gets
large: the ML/G becomes non-analytic at the critical point, while the MQ still looks continuous. The discontinuity for
ML/G is actually related to the ill behavior for the ρL/G decay width at the critical point (see Eq.(IV.23) and the right

panel of Fig. 1). Above the critical magnetic scale eBc ≃ 0.07GeV2, the effect of the magnetic-dimensional reduction
looks fairly mild for both ML/G and MQ. (Actually, this tendency will be altered when one could ideally increase

the magnetic field up to the scale above the upper limit eB ∼ 1GeV2 in Eq.(IV.24): looking at Eq.(IV.22) one can
easily see that the asymptotic behaviors of ML/G and MQ, in the strong magnetic field limit, go like M2

L/G ∼ −eB

and M2
Q ∼ +eB.)

V. DISCUSSION

In the previous section we have numerically evaluated the magnetic-dependences of the rho mass and decay width,
which are classified with respect to the rho-meson polarization structures including the effect of the magnetic-
dimensional reduction. In this section, we shall discuss possible interpretations for our findings from several views of
the field theoretical ground.

A. Moving onto the rest-frame representation

We have so far analyzed the rho meson masses and decay rates by decomposing the polarization states defined in an
active frame where the rho mesons are energetically moving in the three-space dimension (see Eq.(III.16)). Instead,

we shall here choose a rest frame, in which the rho meson has zero three-space momentum (~p = ~0), to rephrase the
results in the previous section, in terms of spin associated with the magnetic-direction, sz. This would help us make
comparison with other works based on the sz-spin component.
To this end, we use the following polarization vectors irreducibly decomposed with respect to the sz:

ǫµ1 =
1√
2
(0, 1, i, 0) (sz = 1, for ρ0) ,

ǫµ2 =
1√
2
(0, 1,−i, 0) (sz = −1, for ρ0) ,

bµ = (0, 0, 0, 1) (sz = 0, for ρ0) ,

uµ = (1, 0, 0, 0) . (V.28)

The inversed-propagator of the rho meson is then decomposed into the form:

D−1
µν (p

t,~0) = m2
ρgµν − (pt)2gµν +

(

pt
)2

uµuν +ΠS
||(p

t,~0)(uµuν − bµbν)
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−ΠT
|| (p

t,~0)p2t bµbν −ΠS
⊥(p

t,~0)(ǫ∗1µǫ1ν + ǫ∗µ2ǫ2ν) . (V.29)

The corresponding ρ0 meson propagator can be expressed by using the polarization vectors in Eq.(V.28) to be

Dµν = D(sz=+1)ǫ∗µ1 ǫν1 +D(sz=−1)ǫ∗µ2 ǫν2 +D(sz=0)bµbν +D(u)uµuν . (V.30)

Consequently, D(sz=+1), D(sz=−1), D(sz=0) and D(u) are obtained as the functions of Πs as

D(sz=+1) =
i

m2
ρ − p2t +ΠS

⊥(p
t,~0)

,

D(sz=−1) =
i

m2
ρ − p2t +ΠS

⊥(p
t,~0)

,

D(sz=0) =
i

m2
ρ − p2t +ΠS

||(p
t,~0) + ΠT

|| (p
t,~0)p2t

,

D(u) =
i

m2
ρ +ΠS

||(p
t,~0)

. (V.31)

It is obvious from Eqs.(III.17) and (V.31) that the masses and widths for the physical spin-1 modes (D(sz=±1,0)) are
respectively identical to those for the physical-active polarization modes (DL,G,Q), namely,

ML/G = M(sz=±1) , MQ = M(sz=0) ,

Γ(ρ(L/G) → π+
(l=0)π

−
(l=0)) = Γ(ρ(sz=±1) → π+

(l=0)π
−
(l=0)) ,

Γ(ρ(Q) → π+
(l=0)π

−
(l=0)) = Γ(ρ(sz=0) → π+

(l=0)π
−
(l=0)) . (V.32)

Thus, the results on the ρ(L/G) and ρ(Q) obtained in the previous section can be reinterpreted as those for the ρ(sz=±1)

and ρ(sz=0), respectively.

B. Polarization (spin)-dependence sensitive to Landau-level number-conservation?

In the previous section, Sec. IV, we observed somewhat ill behaviors for the ρ(L/G) meson (i.e. ρ(sz=±1)): the
discontinuity for the mass and the divergence for the widths at the critical magnetic scale eBc ≃ 0.13GeV2 (see
Fig. 1). As to this result, here we shall address a possible interpretation in relation to the Landau-level number-
conservation.
First of all, once encountering such an ill tendency, one might simply think that the wavefunction-renormalization

factor (Z(L/G)) should diverge at the point (see the width formula in Eq.(III.21)). In the present situation, however,
it is not the case: we have explicitly checked that the Z(L/G) keeps finite values even at the critical magnetic scale.
Therefore, the ill behavior seems to have nothing to do with the wavefunction-renormalization factor.
Now we would suspect that the issue could be related to the conservation of the Landau-level number: actually, if

going beyond the LLL approximation in evaluating the pion-loop integral, one could find that terms involving pions
carrying different Landau levels are present in the (L/G)-polarization (sz = ±1) state of the rho meson. Note from
Eq.(III.16) that only the L/G polarization mode carries the spatial-momentum perpendicular (⊥) to the magnetic
field, which contaminates the Landau-level number conservation when couples to pions via the ρ− π − π vertex like
ρ⊥π

+
(l1)

∂⊥π
−
(l2)

, resulting in the Landau-level number violation. Thus, the ill behavior about the ρ(L/G) (or ρ(sz=±1))

may be understood by the disastrous breaking of the Landau-level number, which originates from the naive LLL
truncation, hence the result on this polarization mode may be unreliable at this moment.
The well-defined magnetic-dependence of the ρ(L/G) would be obtained when one fully sums up the infinite tower

of the Landau levels.
In contrast, the polarization mode of the ρ(Q) (or ρ(sz=0)), which accompanies only the momentum parallel to the

magnetic field (see Eq.(III.16)), is harmless against the Landau-level number conservation because there does not exist
a coupling form like ρ||π

+
(l1)

∂⊥π
−
(l2)

breaking the Landau-level number when couples to pions. Thus, to this polarization

mode, the LLL truncation is safely doable, hence we might have arrived at the well-defined magnetic-dependences as
seen from Fig. 1.
Consequently, the result on the lifetime, the inverse of Γ(ρ(Q)(ρ(sz=0)) → π+

(l=0)π
−
(l=0)) in Fig. 1 and Eq.(IV.23),

is manifestly physical: recall the constrained region of the magnetic scale in Eq.(IV.25) up to the critical scale
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(eBc ≃ 0.13GeV2), 0.07 . eB . 0.13GeV2, which only allows the decay channel to the LLL-charged pion pair,
namely,

Γ(ρ(Q)(ρ(sz=0)) → π+
(l=0)π

−
(l=0)) = Γ(ρ(Q)(ρ(sz=0)) → π+π−) , (V.33)

where π± include the full Landau-level tower. This clearly suggests a new “fate” of the rho meson in the magnetic
field, which would be more complicated than the naive expectation followed from Eq.(I.2), as displayed in the right
panel of Fig. 1.
Unlike the case of the lifetime, the mass of the ρ(Q) (ρ(sz=0)) might get significant contributions from the higher

Landau-levels even in the present restricted magnetic domain, 0.07 . eB . 0.13GeV2. One could compare the
present result on the ρ(sz=0) mass with other works in Refs. [13–18]. To make a conclusive answer to the validity of
the LLL approximation for the mass estimation, one would need more rigorous argument including higher Landau
levels.
The full computations regarding the ρ(L/G) mode including the infinite tower of the Landau levels would be also of

importance, to be pursued in the future work.

VI. SUMMARY

In summary, we have attempted to access the naive expectation on the lifetime of the neutral rho meson in the
magnetic field (Eq.(I.2)), by explicitly computing the charged pion loop correction to the neutral rho meson propagator
based on a chiral effective model. To see the significance of the magnetic-dimensional reduction-effect, we simply took
the LLL approximation. We found that the magnetic field significantly separates the rho-meson polarization states
in a nontrivial way, compared to the vacuum case, which is due to the magnetic-dimensional reduction (Eqs.(III.16)
and (III.17)). According to the intrinsic polarization decomposition, the neutral rho mass and width are split as
well, so the magnetic-dependences show up with respect to the polarization (spin) modes, labeled by L/G and Q, or
sz = ±1, 0 for the physical modes. Then we numerically evaluated the magnetic-dependences of the masses and the
widths respectively for the polarization (spin) modes. Of particular interest is that as the magnetic field increases,
the rho width for the spin sz = 0 starts to develop, reach a peak, to be vanishing at the critical magnetic field to
which the folklore refers (Fig. 1). This result is exact at the LLL approximation (Eq.(V.33)), and would suggest that
the life of the neutral rho meson in the magnetic field may be more complicated than the naive expectation.
A possible correlation between the spin-dependent magnetic scaling, the Landau-level number-conversation and the

validity of the LLL approximation was also discussed.

Note added: After completion of the present manuscript, we noticed a paper (arXiv:1610.07887), in which a similar
computation on the charged pion loop contribution to the neutral rho meson decay width has been made. In that
paper, the spin-dependent decomposition due to the magnetic-dimensional reduction has not clearly been addressed,
though, some portion of what we found in the present paper might be overlapped with theirs.
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Appendix A: The Feynman parameter integrals

In this Appendix we present the Feynman parameter integrals relevant to the evaluation of the charged pion loop
diagram in Sec. III.

http://arxiv.org/abs/1610.07887
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∫ 1

0

dx ln
Λ2

∆
=



















































ln Λ2 + 2− ln
(

m2
π + eB

)

− 2
√

p2

||

√

4(m2
π + eB)− p2|| arctan

√

p2

||

4m2
π+eB−p2

||
(

for p2|| < 4(m2
π + eB)

)

ln Λ2 + 2− ln
(

m2
π + eB

)

− 2
√

p2

||

√

p2|| − 4(m2
π + eB)

[

ln

√

p2

||
−4(m2

π+eB)+
√

p2

||

2
√

m2
π+eB

− iπ

]

(

for 4(m2
π + eB) < p2||

)

,

(A.1)

∫ 1

0

dx
1

∆
=































4
√

p2

||

√

4(m2
π+eB)−p2

||

arctan

(

p2

||
√

p2

||

√

4(m2
π+eB)−p2

||

)

(

for p2|| < 4(m2
π + eB)

)

1
√

p2

||

√

p2

||
−4(m2

π+eB)

[

−4 ln

√

p2

||
−4(m2

π+eB)+
√

p2

||

2
√

m2
π+eB

+ 2iπ

]

(

for 4(m2
π + eB) < p2||

)

,

(A.2)

where ∆ = x(x − 1)p2|| +m2
π + eB.
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