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We explore the model-building and phenomenology of flavored gauge mediation models of

supersymmetry breaking in which the electroweak Higgs doublets and the SU(2) messenger

doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and

messenger fields into representations of this non-Abelian Higgs-messenger symmetry results

in specific relations between the Standard Model Yukawa couplings and the messenger-matter

Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we

demonstrate that while the minimal implementation of this scenario suffers from a severe

µ/Bµ problem that is well-known from ordinary gauge mediation, expanding the Higgs-

messenger field content allows for the possibility that µ and Bµ can be separately tuned,

allowing for the possibility of phenomenologically viable models of the soft supersymmetry

breaking terms. We construct toy examples of this type that are consistent with the observed

125 GeV Higgs boson mass.

I. INTRODUCTION

The theoretical paradigm of TeV-scale supersymmetry (SUSY) continues to be one of the best-

motivated candidates for new physics that can be probed extensively at the Large Hadron Collider

(LHC) (see e.g. [1, 2] for reviews). Indeed, supersymmetric extensions of the Standard Model (SM)

such as the minimal supersymmetric standard model (MSSM) have already been subjected to strin-

gent tests at the LHC, both from direct constraints such as the non-observation of superpartners

to date, with limits on colored superpartners that reach well into the TeV region, and constraints

from the 2012 discovery [3, 4] of a new scalar particle that is compatible with the SM Higgs boson.

While the Higgs mass mh ≈ 125 GeV is within the allowed range of (perturbative) supersymmetric

models, its relatively high value requires either (i) large stop mixing or very heavy stops in the

MSSM (see e.g. [5]) or (ii) extended Higgs sectors. Together, the data has placed severe limits on

the viable regions of the vast (more than 100-dimensional) parameter space of the MSSM, largely
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ruling out many minimal scenarios for the soft supersymmetry breaking parameters.

Of the possible directions to explore in SUSY model-building in light of the experimental bounds,

the gauge-mediated supersymmetry breaking framework [6–9] is particularly compelling due to its

lack of sensitivity to unknown UV physics as compared to the gravity mediation framework. In the

context of the MSSM, however, the minimal implementation of this idea, known as minimal gauge

mediation, is particularly constrained by the LHC Higgs measurements [10–12]. The reason is that

minimal gauge mediation models predict family-universal scalar masses and vanishing soft trilinear

scalar parameters (A terms) at the messenger scale, requiring a significant amount of renormaliza-

tion group (RG) evolution to generate the needed stop mixing. Even when this structure can be

obtained, in this class of models it is generally the case that the Higgs mass bound requires a very

heavy superpartner spectrum that is largely inaccessible at the LHC.

Therefore, it is desirable to go beyond minimal gauge mediation and consider more intricate

models in which the messengers have nontrivial Yukawa couplings to the SM fields, as first discussed

in [8, 9, 13] and more recently considered in [14, 15, 18–25, 27–30]. With a standard messenger

sector of some number of vectorlike pairs of (5, 5̄) of SU(5) (as typically assumed so as not to spoil

the approximate gauge coupling unification of the MSSM), there are many possible renormalizable

couplings of the messengers to the matter fields, as enumerated e.g. in [24, 31]. The generic

outcome of the presence of one or more of such couplings is that the soft terms now include two-

loop contributions to the scalar masses and one-loop contributions to the A terms that depend

on the messenger Yukawa couplings (and depending on the model, there can also be one-loop

contributions to the scalar masses). Hence, while the flavor-blind structure of minimal gauge

mediation is sacrificed, what has been gained is a much greater ease in accommodating the Higgs

mass constraints, and thus in constructing viable models of the MSSM parameter space.

One class of interesting models of this type is one in which the SU(2) messenger doublets of

the (5, 5̄) pairs couple to the SM fields in a similar way to the electroweak Higgs fields Hu,d. In

such models, which are known as “flavored gauge mediation” models (see e.g. [14, 21, 25, 27–30]),

the underlying mechanism for generating the SM Yukawa couplings, such as via a horizontal U(1)

symmetry, should also play a dominant role in the structure of the messenger Yukawa couplings.

One immediate situation then is to address the impact of the flavor-violating contributions to

the soft supersymmetry breaking parameters (see e.g. [32–35]) that are a generic consequence

of this model structure. Models of this type can be constructed such that new contributions are

consistent with minimal flavor violation (MFV), and thus are safe from large flavor-violating effects

beyond the SM. In cases in which there is not precise alignment of this type, viable models can
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also be constructed in which the messenger Yukawas can share the same parametric suppression

as the SM Yukawas, which can also result in acceptably small flavor violation [14, 21, 25, 27].

While phenomenologically acceptable constructions are not guaranteed, it has been shown that

the potential flavor and CP violation in this class of models is more strongly suppressed in general

than indicated by naive estimates due to the special structure of the soft terms as governed by a

(softly) broken “messenger number” symmetry [29, 30].

Within the flavored gauge mediation framework, one novel model-building direction is to con-

sider scenarios in which the SU(2) messenger doublets and the electroweak Higgs doublets trans-

form as multiplets under a discrete non-Abelian symmetry. The idea that this discrete non-Abelian

symmetry is also the horizontal family symmetry that governs the SM and messenger Yukawa cou-

plings was first proposed by proposed by Perez, Ramond, and Zhang [22] (hereafter referred to as

“PRZ”). In the PRZ approach, the field that breaks the family symmetry also breaks supersym-

metry, resulting in soft supersymmetry breaking terms with a nontrivial flavor dependence that

originates both from the details of the family symmetry breaking and the mixing of the Higgs and

messenger fields. After enumerating the constraints for generating reasonable soft supersymmetry

breaking terms, PRZ constructed a toy two-generation model in which the non-Abelian symmetry

group is the S3 symmetry group. This model achieves hierarchical SM Yukawas and predicts that

the messenger Yukawas obey an inverted hierarchy; the resulting off-diagonal flavor-violating cou-

plings of the soft supersymmetry breaking terms can be reduced by RG effects from the messenger

scale to the electroweak scale. PRZ’s approach is striking in that it dispels the standard folklore

that the unification of family symmetry breaking and supersymmetry breaking inevitably leads

to excessive flavor violation. Their approach also suggests new flavor model-building directions in

which the Higgs fields transform nontrivially under the family symmetry group.

In this paper, we continue the exploration of the idea that the electroweak and messenger

doublets are connected via a discrete non-Abelian symmetry, which we also take to be S3 for sim-

plicity, and explore possibilities for constructing potentially viable models with three generations.

Our study deviates from the PRZ framework in that we consider two possibilities for the S3 sym-

metry: (i) it is just a symmetry relating the Higgs and messenger doublets, and hence the SM

fields are S3 singlets, and (ii) it is (part of) the full family symmetry that governs the SM Yukawa

couplings, and hence the SM fields are embedded in nontrivial S3 representations. Clearly, the

choice made will dramatically affect the possibilities for the SM and messenger Yukawa couplings,

and thus the structure of the resulting soft terms. Our focus will not be on constructing fully viable

three-generation models of the SM and messenger Yukawas, but instead on the structure of the
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soft terms in each case and the resulting constraints on the superpartner mass spectrum. Hence,

we will focus on third generation couplings, and defer a more complete study for future work.

We will see immediately that in this approach, we will generally be confronted by a severe

µ/Bµ problem that must be addressed to have any hope of obtaining a realistic theory. The

presence of a µ/Bµ problem is a well-known problem in gauge mediation [37, 38] (see also [9] for

an overview). Here it is more severe than usual because of the necessity of coupling the Higgs

fields to the supersymmetry breaking field at the renormalizable level, since the Higgs and doublet

messengers are connected by the discrete non-Abelian symmetry. We will show that while a minimal

implementation of this framework leads inevitably to this severe µ/Bµ problem, viable scenarios

can be constructed when the messenger sector is enlarged to include different representations of

the Higgs-messenger fields with respect to the S3 symmetry, such that the µ and Bµ parameters

can be separately tuned to acceptable values. This therefore is not a compelling solution to the

µ/Bµ problem of gauge mediation, but it does at least allow for the possibility of viable (albeit

tuned) models of the soft supersymmetry breaking mass parameters of the MSSM.

The structure of the paper is as follows. We begin in the next section with an overview of

our theoretical model-building framework, and discuss the ways in which it has similarities and

differences to the PRZ approach. We then demonstrate how a minimal implementation of the

Higgs-messenger sector results in the severe µ/Bµ problem just mentioned, and discuss possible

resolutions of the issue. In the following section, we next present an example of an enlarged Higgs-

messenger field content that allows for separate adjustments of µ and Bµ. We follow this discussion

with examples of different assignments of the SM fields into representations of the S3 symmetry,

and discuss the resulting impact on the Yukawa couplings of the SM fields to the electroweak

Higgs fields and the messenger fields. For each example, we investigate the phenomenology of

the resulting soft supersymmetry breaking terms, and investigate patterns of superpartner mass

spectra that are consistent with the 125 GeV Higgs mass. Finally, we summarize and discuss

prospects future model-building directions along these lines.

II. THEORETICAL FRAMEWORK

A. General considerations

Our framework for exploring flavored gauge mediation is as follows. We assume the presence of

a discrete non-Abelian symmetry that we denote by G. The key features of G are as follows. First,
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G relates the chiral superfields that will later be identified as the electroweak Higgs fields Hu,d and

the SU(2) doublet messengers Mui,di, in which i = 1, 2, . . . , N , into a set of representations of G,

that we denote collectively as follows:

Hu =


Hu1

Hu2

...

HuN+1

 = Ru


Hu

Mu1

...

MuN

 , Hd =


Hd1

Hd2

...

HdN+1

 = Rd


Hd

Md1

...

MdN

 , (1)

in which the Ru/d are rotation matrices that are obtained upon diagonalizing the mass matrices

of the Higgs/doublet messenger sector of the theory. In the above, we note that Hu,d can either

represent a single set of multiplets of G, or it can represent a collection of them, as we will later

explore in greater detail. We will take the SU(3) triplet messengers Tui,di, which are needed to

generate gluino masses, to be G singlets for simplicity. Recall that the messenger triplets Tui,di and

messenger doublets Mui,di together form N vectorlike pairs of 5, 5 representations of SU(5).

Second, the spontaneous breaking of G is due at least partially to a field or fields that break

supersymmetry in the hidden sector. In other words, in the supersymmetry breaking sector, which

consists of superfields that develop both scalar and F-component vacuum expectation values (vevs),

there is at least one field that has a nontrivial G representation. We will also assume that there is

a supersymmetry-breaking field XT that is a singlet with respect to G; we assume throughout that

this field couples only to the (SU(3)c triplet and G-singlet) messengers Tui,di as follows:

WT = λTXTTuiTdi, (2)

such that when XT develops vacuum expectation values in the scalar and F-components

〈λTXT 〉 = MT + θ2FT . (3)

We will later specify options for the coupling of Hu,d to the supersymmetry breaking sector. In

addition, depending on the model in question, there may be other “flavon” supermultiplets that

are SM singlets charged under G that acquire scalar vevs, but do not participate in supersymmetry

breaking. These fields may be needed to generate nontrivial Yukawa couplings to the matter fields,

as discussed below.

The role of G for the observable sector fields other than the electroweak Higgs doublets has not

yet been specified. In this sector, which we presume for simplicity consists solely of the MSSM

matter and gauge supermultiplets, the question of whether the matter fields are also charged with
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respect to G or not will be a model-building choice that will have a significant impact on the

resulting MSSM and messenger Yukawa couplings. We will explore different options in this work.

The diagonalization of the messenger-Higgs sector and the identification of the electroweak

Higgs fields Hu,d and the (heavier) messenger doublets Mui,di, together with the mixing matrices

Ru,d, will play a critical role in the structure of the MSSM and messenger Yukawa couplings. In

a schematic form, the superpotential couplings involving the MSSM matter superfields (in self-

evident notation) and Hu,d of Eq. (1) take the form (neglecting neutrino masses for simplicity):

WY = (yuQuHu) + (ydQdHd) + (yeLeHd), (4)

in which family indices have been suppressed for simplicity, and the parentheses denote contrac-

tions of G. yu,d,e represent prefactors that may either be Yukawa couplings of renormalizable su-

perpotential couplings or effective couplings originating from higher-dimensional operators. Upon

supersymmetry breaking and the breakdown of G, the effective Yukawa couplings of the MSSM

fields to the MSSM Higgs fields Hu,d and to the heavy messenger doublets Mu,di, take the form

WY = YuQuHu + YdQdHd + YeLeHd + Y ′uiQuMui + Y ′diQdMdi + Y ′eiLmeMdi. (5)

While the details of the relations between the MSSM Yukawa couplings Yu, Yd, Ye and the messenger

Yukawa couplings Y ′ui, Y
′
di, and Y ′ei will depend in detail on the model, the two sets of couplings

are generally related and depend on various entries of the unitary matrices Ru,d. As is well known,

messenger Yukawa couplings of this type result in additional contributions to the soft terms beyond

those present in minimal gauge mediation. These corrections have been computed for example in

[21] and are given for completeness in full three-family structure in Appendix A.

The messenger Yukawas are not necessarily diagonal in the same basis as the MSSM Yukawas,

such that the constraints from experimental bounds on flavor-changing processes must be consid-

ered carefully in each case. Analyses of the constraints from flavor physics on certain classes of

flavored gauge mediation scenarios have been presented in [25]. A complete analysis of the question

of the viability of full three-family models necessarily involves the complete modeling of the SM

Yukawa couplings, which we do not pursue here. Instead, we consider toy scenarios, depending on

ways in which the MSSM matter fields are embedded within representations of the non-Abelian

discrete symmetry group G, and focus on the effects on the MSSM soft terms.

In this paper, we presume that the couplings between the messengers and the MSSM fields as

given in Eq. (5) are the only direct interactions between the sectors (see [24] for a classification of

additional terms that can be in principle be present). This will generically require the presence of
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symmetries in addition to G to ensure that such additional messenger-matter couplings are absent;

we leave the possibility of including them to future work.

Up to this point, we have left G unspecified. We will now consider the concrete case that

G = S3, the permutation group on three objects. The group theory of S3 can be found in many

references (see e.g. [22]); here we just mention a few main features for completeness. S3 contains

three irreducible representations, the singlet 1, a one-dimensional representation 1′, and a doublet,

2, with tensor products

1⊗ 2 = 2, 1′ ⊗ 2 = 2, 2⊗ 2 = 1⊕ 1′ ⊕ 2. (6)

We will use the same presentation as PRZ [22]. In this basis, the singlet representation obtained

from the tensor products of either two doublets or three doublets is as follows:

(2⊗ 2)1 =

 a1

a2

⊗
 b1

b2


1

= a1b2 + a2b1. (7)

(2⊗ 2⊗ 2)1 =

 a1

a2

⊗
 b1

b2

⊗
 c1

c2


1

= a1b1c1 + a2b2c2. (8)

Here we will restrict ourselves for simplicity to the case in which the fields in our model framework

are either the 1 or 2 representations of S3, in which case Eq. (8) provide us with the relations

needed to construct S3 invariants.

B. A minimal Higgs-messenger sector and the µ/Bµ problem

We now turn to the model-building of the Higgs-messenger sector. We will first consider a

minimal implementation of this sector, in which by minimal we mean the number of degrees of

freedom; this scenario was also considered in PRZ [22]. The first ingredient is the introduction

of a hidden sector field XH , which is taken to be a 2 of S3. The next ingredients are the assign-

ment of Higgs-messenger fields Hu and Hd to doublet representations of S3 as well. These charge

assignments are shown in Fig. I (here we neglect to show XH and the triplets Tui,di).

Hu2 Hd2 XH

S3 2 2 2

TABLE I: S3 charge assignments for a minimal Higgs-messenger sector as studied in [22].
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With these S3 charge assignments, the renormalizable Higgs-messenger interactions in the su-

perpotential then take the form

WH = mHuHd + λ(XHHuHd), (9)

in which λ is a dimensionless coupling, m is a supersymmetric mass parameter (i.e., a µ term),

and the parentheses denote S3 contractions. Through some hidden sector dynamics XH acquires

a vacuum expectation value for its scalar and F -components, which is parametrized as follows:

〈λXH〉 = M

 sinφ

cosφ

+ θ2F

 sin ξ

cos ξ

 , (10)

where φ and ξ characterize the vev directions of the scalar and F components, respectively. Here

we will work in the limit in which F �M2 for simplicity. After symmetry breaking, the effective

superpotential takes the following form (in self-evident notation):

WH = HTu

M sinφ m

m M cosφ

Hd + θ2 HTu

 F sin ξ 0

0 F cos ξ

Hd
≡ HTu

(
M + θ2 F

)
Hd. (11)

As discussed in PRZ [22], it is preferable to consider the case that

[M,F] = 0. (12)

Once Eq. (12) is imposed, the same unitary rotation diagonalizes both M and F. Thus, in the

situation of interest, in which there is a mass hierarchy obtained upon the diagonalization of these

quantities such that the lighter states can be identified as Hu,d and the heavier state as Mu,d (note

here N = 1 with this minimal particle content), the heavier states can be smoothly integrated out

to obtain the effective theory. PRZ showed that if [M,F] 6= 0, the resulting soft mass parameters

have some pathologies, including one-loop contributions to the soft scalar mass-squared parameters

that are not strongly suppressed in the F �M2 limit [22]. Thus, we will focus on the case of the

vanishing commutator of Eq. (12), which yields the condition:

[M,F] =

 0 mF (cos ξ − sin ξ)

−mF (cos ξ − sin ξ) 0

 = 0. (13)

Neglecting the trivial solutions to Eq. (13) in which m and/or F are equal to zero, we see that we

need ξ = π/4, i.e., F must be proportional to the identity, while M is not constrained.

In this case, we see immediately that this scenario suffers from a severe µ/Bµ problem. More

precisely, as F is proportional to the identity, an eigenvalue hierarchy is not possible, and hence



9

b = Bµµ ∼ O(F ). While it is in principle possible to obtain a hierarchy of eigenvalues for M (for

example, in PRZ there is an effective seesaw structure for the µ term that results from taking φ = 0

[22]), generally we have Bµ � µ, and thus if µ ∼ msoft, Bµ � msoft.

The µ/Bµ problem encountered here is not surprising, given the well-known fact that gauge-

mediated models generically suffer from a µ/Bµ problem (see e.g. [9] for an overview). However,

the problem here is particularly severe. To see this more clearly, recall that it has long been realized

that a direct superpotential coupling of the supersymmetry breaking field to the electroweak Higgs

doublets Hu,d is problematic because it results in an undesirable hierarchy between µ and Bµ. With

the usual notation that the supersymmetry-breaking field is denoted by X, the superpotential

WH = λXHuHd (14)

generates a tree-level value for both µ and b = Bµµ:

µ = λ〈X〉, b = Bµµ = λ〈FX〉. (15)

Given that msoft ∼ (1/(16π2))FX/X, we have

Bµ = 〈FX〉/〈X〉 ∼ 16π2msoft, (16)

and hence if µ ∼ msoft, Bµ is too large by a loop factor, which indicates that it is desirable to

eliminate the coupling of Eq. (14). In our framework, however, Hu,d are embedded together with

the doublet messengers Mui,di into S3 representations. A nonvanishing superpotential coupling

between X and the Mui,di then implies that the superpotential coupling of X to the Higgs fields

as in Eq. (14) is automatically also present, resulting in a severe µ/Bµ problem.

To move forward, therefore, it is necessary to avoid this problematic result. That being said,

most known approaches to resolving the µ/Bµ problem of gauge mediation without fine-tuning

begin by forbidding the coupling of Eq. (14) and generating µ and Bµ from alternative operators

(see e.g. [37, 38]). It is not at all obvious how such approaches could work in our framework. A

(less ambitious) option is to construct scenarios that alleviate this problem through fine-tuning.

To be more precise, this would entail having a situation in which it is possible to fine-tune both µ

and Bµ separately. This would not be a true solution to the µ/Bµ problem of gauge mediation in

that tuning is required, but it does allow for the construction of phenomenologically viable models

of the soft terms. This is the approach we will take in this paper.

We see that even with allowing fine-tuning, our minimal S3 Higgs-messenger scenario given

above is not viable, as merely setting the F term component of XH that couples to the eventual
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electroweak Higgs doublets to zero is not consistent with the requirement that [M,F] = 0. Hence,

to construct a working (toy) model, we need to extend this model to include additional degrees of

freedom. There are several model-building directions that can be taken:

• One option is to add additional singlet superfields that do not develop F terms and attempt to

address the µ/Bµ problem via a next-to-minimal supersymmetric standard model (NMSSM)-

like approach in which one or more singlets are tied with electroweak symmetry breaking

(see e.g. [9, 39]).

• A second option is to include an additional supersymmetry breaking field that couples to

Hu,d. This additional field, which we will call X ′, would need to have different S3 quantum

numbers from XH . The different S3 contractions of X ′HuHd and XHHuHd then will result

in a different structure for M and F, allowing for new possibilities for generating realistic

mass hierarchies while satisfying [M,F] = 0.

Indeed, we already have a candidate for this field. It is XT , the S3 singlet field that couples

to the messenger triplets. In our minimal scenario, XH couples only to Hu,d and XT only

couples to the triplets; however, the S3 assignments certainly allow for XT to couple to Hu,d.

• A third option is to keep the feature that it is only XH that couples to the Higgs-messenger

fields and enlarge the Higgs-messenger sector particle content to include different S3 repre-

sentations. In this case, the fields Hu,d as given in Eq. (1) then include both doublets and

singlets of S3. Depending on the details of the mass matrices for these fields, this can result

in additional messenger fields or additional electroweak Higgs fields in the theory. In either

case, the additional degrees of freedom gained through using more Higgs-messenger fields

provide new possibilities for obtaining viable scenarios in which µ and Bµ can be separately

tuned while maintaining [M,F] = 0.

Each of these possibilities lead to intriguing model-building directions. In the context of the MSSM,

the second and third choices are of particular interest. In this paper, we will focus on the third

option, as it turns out to be the most straightforward direction for obtaining models of the MSSM

soft terms. We leave the exploration of the second option to future work.

III. AN EXTENDED HIGGS-MESSENGER SECTOR

In this section, we will construct a scenario in which we can separately tune µ and Bµ while

maintaining [M,F] = 0, and determine the resulting messenger Yukawa couplings their subsequent
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contributions to the MSSM soft terms. As described in the previous section, this scenario will

include two supersymmetry breaking fields: XH , which is a 2 of S3 and couples only to the Higgs-

messenger fields at the renormalizable level, and XT , which is a S3 singlet that couples only to the

triplet messengers at the renormalizable level. To this, we add the following Higgs-messenger sector

field content. As in the minimal case also studied by PRZ, we include a pair of messenger-Higgs

fields that are in the 2 representation of S3. We will label these fields by H(2)
u,d. We also include

a pair of Higgs-messenger fields that are S3 singlets, which we will denote by H(1)
u,d. These charge

assignments are shown in Table II [42]. The renormalizable superpotential couplings of XH to the

Hu2 Hu1 Hd2 Hd1 XH

S3 2 1 2 1 2

TABLE II: The S3 charges for the extended Higgs-messenger model described in this section.

Higgs-messenger fields then take the form

WH = λ(XHH(2)
u H(2)

d ) + λ′(XHH(1)
u H(2)

d ) + λ′′(XHH(2)
u H(1)

d ) (17)

= MHTu


sinφ 0 ε′ cosφ

0 cosφ ε′ sinφ

ε′′ cosφ ε′′ sinφ 0

Hd + θ2FHTu


sin ξ 0 ε′ cos ξ

0 cos ξ ε′ sin ξ

ε′′ cos ξ ε′′ sin ξ 0

Hd,
in which ε′ = λ′/λ, ε′′ = λ′′/λ, and the quantities Hu,d are now given by

Hu =


(H(2)

u )1

(H(2)
u )2

H(1)
u

 , Hd =


(H(2)

d )1

(H(2)
d )2

H(1)
d

 . (18)

Let us assume for the moment that there are no bare mass terms. With only the couplings of

Eq.(18), the the commutation condition [M,F] = 0 only has solutions when ε′ = ε′′ = 0 or φ = ξ.

The case with ε′ = ε′′ = 0 results in uncoupled singlets that do not mix with the S3 doublets; and

in the case that φ = ξ, the two matrices have identical structure and thus the eigenvalues will be

proportional, resulting again in the µ/Bµ problem that Bµ/µ = F/M .

Hence, bare mass terms are needed, and indeed they are allowed by the S3 symmetry. Including

them results in the following modification to Eq. (18):

WH = λ(XHH(2)
u H(2)

d ) + λ′(XHH(1)
u H(2)

d ) + λ′′(XHH(2)
u H(1)

d ) + κM(H(2)
u H(2)

d ) + κ′M(H(1)
u H(1)

d ),

(19)
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such that in this case, M and F are given by

M = M


sinφ κ ε′ cosφ

κ cosφ ε′ sinφ

ε′′ cosφ ε′′ sinφ κ′

 , F = F


sin ξ 0 ε′ cos ξ

0 cos ξ ε′ sin ξ

ε′′ cos ξ ε′′ sin ξ 0

 .

For simplicity, we will take the case that ε′′ = ε, such that M and F are symmetric matrices, and

further take ε′ = 1 for concreteness. We will also restrict ourselves to real quantities only. In this

case, the commutation condition results in the nontrivial solution

κ′ = κ =
sin(φ− ξ)

cos ξ − sin ξ
, (20)

which clearly only holds for ξ 6= π/4, whereas for ξ = π/4, the only solution is φ = π/4, with no

constraints on κ. For reasons that will become clear shortly, we will focus on the solution that is

valid for ξ 6= π/4. In this case, we have

M = M cosφ


tanφ tanφ−tan ξ

1−tan ξ 1

tanφ−tan ξ
1−tan ξ 1 tanφ

1 tanφ tanφ−tan ξ
1−tan ξ

 , F = F cos ξ


tan ξ 0 1

0 1 tan ξ

1 tan ξ 0

 . (21)

Since M and F are simultaneously diagonalizable, we see from the form of F that the mixing only

depends on tan ξ. The eigenvalues of F, which we denote by Fi=1,2,3 take the form

F1 = F (cos ξ + sin ξ), F2,3 = ∓F
√

1− sin ξ cos ξ. (22)

Similarly, the eigenvalues of M, denoted by Mi=1,2,3, are given by

M1 = M

(
cos(ξ + φ)− 2 sin(ξ − φ)

cos ξ − sin ξ

)
, M2,3 = ∓M

(
cosφ− sinφ

cos ξ − sin ξ

)√
1− sin ξ cos ξ. (23)

The eigenvalues F1 and M1 are associated with the trimaximal vector, (1/
√

3)(1, 1, 1). The minus

sign associated with F2 and M2 can be removed by a rephasing of its associated eigenvector in

either Ru or Rd. With this in mind, one specific choice for the rotation matrices Ru,d is as follows:

Ru =


1√
3
∓ 1√

2N2

(
1− tan ξ

1+δ

)
− 1√

2N3

(
1− tan ξ

1−δ

)
1√
3

∓ 1√
2N2

tan ξ
1+δ − 1√

2N3

tan ξ
1−δ

1√
3

± 1√
2N2

− 1√
2N3

 (24)

in which the upper (lower) sign in the second column denotes Ru (Rd), δ =
√

1− tan ξ + tan ξ2 =
√

1− sin ξ cos ξ/ cos ξ, and the coefficients N2,3 take the form

N2 =

√
1− tan ξ

1 + δ
+

(
tan ξ

1 + δ

)2

(25)

N3 =

√
1− tan ξ

1− δ +

(
tan ξ2

1− δ

)2

. (26)
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We now need to build in the eigenvalue hierarchies, i.e., F1 ≡ b � F2,3 and M1 ≡ µ � M2,3. We

start by setting µ = M1 and b = F1, such that we obtain one light pair of doublets that will be

identified as Hu,d. Eq. (22) shows that b is naturally O(F ), but a light eigenvalue can be obtained

for ξ → −π/4, with b = 0 in the exact limit that ξ = −π/4. Writing ξ = −π/4 + η, we have

b

F
≡ F1 =

√
2η +O(η2),

F2,3

F
=

√
3

2
+O(η2). (27)

Hence, a tuning of b to phenomenologically acceptable values can be done via the parameter η.

Turning to the issue of tuning the µ parameter, we see that if φ = ξ, then µ/M = b/F , which

is the statement of the µ/Bµ problem in gauge mediation. Therefore, a detuning of φ from ξ is

needed, while still obtaining µ�M2,3 ∼ O(M). Setting φ = ξ + ρ, we have to leading order that

in the ξ → −π/4 limit,

µ

M
'
√

2η +
3√
2
ρ,

M2,3

M
'
√

3

2
, (28)

which demonstrates that in the expression for µ, the term proportional to ρ must be able to counter

the
√

2η term sufficiently, such that the appropriate hierarchy between µ and Bµ can be achieved.

More precisely, what is needed is that in this limit,

Bµ =
b

µ
=

F

M

2η

3ρ
∼ 1

16π2

F

M
∼ msoft, (29)

i.e., both η � 1 and ρ� 1, and ρ/η →∼ (4π)2. In the ξ → −π/4 limit, the matrices Ru,d are

Ru,d =


1√
3
∓1

2

(
1 + 1√

3

)
1
2

(
1− 1√

3

)
1√
3
±1

2

(
1− 1√

3

)
−1

2

(
1 + 1√

3

)
1√
3

± 1√
3

1√
3

+O(η). (30)

Though this fine-tuning is not esthetically very pleasing, it is worth noting that something has

been accomplished in this section: we are now able to construct viable models since µ and b can be

tuned independently while keeping [M,F] = 0, which was not possible in the more minimal scenario

described previously. Thus, the µ/Bµ problem has been alleviated, though not solved dynamically.

Hence, this Higgs-messenger sector will be our starting point for model-building. To this sector,

we will add two pairs of SU(3) messenger triplets to preserve anomaly cancellation, gauge coupling,

unification, and generate a nonzero gluino mass. With this result in hand, we now turn to an

examination of the possibilities for generating the Yukawa couplings to the observable sector and

the resulting gauge-mediated MSSM soft terms.
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IV. MODELS

We now turn to the observable sector, and discuss options for embedding the MSSM matter

fields into representations of G. There are clearly a variety of possibilities. If the MSSM matter

fields have nontrivial G quantum numbers, then by definition G then is (at least part) of the family

symmetry group as well as the Higgs-messenger symmetry group. This is the strategy that was

employed by PRZ [22]; working with G = S3 (as we do here), they employed the minimal Higgs-

messenger sector of Section II and considered a two-family scenario in which all MSSM matter

fields were assigned to 2’s of S3. Hence, one possibility for us to explore is to extend this to three

families, using the modified Higgs-messenger sector of the previous section. At the other end of the

spectrum, another possibility is to make the MSSM matter fields inert with respect to S3. There

are also mixed scenarios in which some of the MSSM states are S3 singlets and others are not. We

will not attempt to be systematic and classify all scenarios in this work, but rather focus on a few

representative yet simple examples.

An important model-building requirement is that it is desirable to have the top quark Yukawa

coupling to arise from a renormalizable operator. In general, this means that if the Higgs-messenger

sector consists only of nontrivial representations of G (i.e., it has no G singlets), at least some of

what would be identified as the top quark degrees of freedom would also need to be in nontrivial

representations of G, otherwise G would forbid a renormalizable top quark coupling. However, if

the Higgs-messenger sector includes G singlets, the top quark degrees of freedom can remain inert.

In the S3 models considered here, the analogous situation is that if the Higgs-messenger field

content only includes doublets, we would need to have either Q3 or u3 (or both) as components of

S3 doublets. However, as demonstrated previously, one of the ways to alleviate the µ/Bµ problem

is to include Higgs-messenger fields that are S3 singlets in addition to the Higgs-messenger S3

doublets. Therefore, our Higgs-messenger sector allows for several situations in which we obtain a

renormalizable top quark Yukawa coupling. We can either have this coupling originate from the

coupling to the S3 singlet, H(1)
u , in which case the top quark degrees of freedom are S3 singlets,

or we can have the top quark Yukawa coupling arise from the coupling to the S3 doublet, H(2)
u , in

which case some or all of the top quark degrees of freedom (together with other quark degrees of

freedom) should be embedded in S3 doublets. We will find it useful in what follows to consider

these two different categories of models separately.
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A. Top quark Yukawa coupling from H(1)
u models

In this set of models, the top quark degrees of freedom are inert with respect to S3, such that

Wtop = ytQ3u3H(1)
u , (31)

in which yt is an O(1) number. Using our result for Ru in the ξ → −π/4 limit as given in Eq. (30),

H(1)
u =

Ru


Hu

Mu1

Mu2




3

=
1√
3

(Hu +Mu1 +Mu2), (32)

we obtain equal values for the leading order contributions to the MSSM top quark Yukawa coupling

and the messenger top quark Yukawa couplings,

Wtop = YtQ3u3Hu + YtQ3u3Mu1 + YtQ3u3Mu2, (33)

in which Yt = yt/
√

3. Thus, the messenger Yukawa couplings Y ′t1 and Y ′t2 of the top quark to the

messengers Mu1 and Mu2 are both equal to the top quark Yukawa coupling Yt.

Focusing for simplicity on third family Yukawa couplings only, we can have the b and τ Yukawas

either from similar operators, or they can in principle arise from nonrenormalizable operators (or at

least, these are the dominant contributions). If the b and τ degrees of freedom are also S3 singlets,

the Yukawa couplings arise from the following superpotential, which we will label as WA1:

WA1 = ytQ3u3H(1)
u + ybQ3d3H(1)

d + yτL3e3H(1)
d , (34)

in self-evident notation.Since we have, in analogy with Eq. (32),

H(1)
d =

Rd


Hd

Md1

Md2




3

=
1√
3

(Hd −Md1 +Md2), (35)

the Yukawa interactions of the third generation fields with the Higgs and messengers take the form

WA1 = YtQ3u3Hu + YtQ3u3Mu1 + YtQ3u3Mu2 + YbQ3d3Hd − YbQ3d3Md1 + YbQ3d3Md2

+ YτL3e3Hd − YτL3e3Md1 + YτL3e3Md2, (36)

in which Yb = yb/
√

3 and Yτ = yτ/
√

3, such that the magnitudes of the b and τ messenger Yukawa

couplings are thus also identical to their MSSM counterparts. We will refer to this scenario as
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Model A1. In this scenario, the corrections to the MSSM soft terms due to the messenger Yukawas

are as follows:

δm2
Q33

=
Λ2

(4π)4

[
36(Y 4

t + Y 4
b ) + 8Y 2

b (Y 2
t + Y 2

τ )− 2g̃2
uY

2
t − 2g̃2

dY
2
b

]
δm2

ū33
=

Λ2

(4π)4

[
72Y 4

t + 8Y 2
t Y

2
b − 4g̃2

uY
2
t

]
, δm2

d̄33
=

Λ2

(4π)4

[
72Y 4

b + 8Y 2
b Y

2
t + 16Y 2

b Y
2
τ − 4g̃2

dY
2
b

]
δm2

L33
=

Λ2

(4π)4

[
20Y 4

τ + 24Y 2
b Y

2
τ − 2g̃2

eY
2
τ

]
, δm2

ē33
=

Λ2

(4π)4

[
40Y 4

τ + 48Y 2
b Y

2
τ − 4g̃2

eY
2
τ

]
δm2

Hu
=

Λ2

(4π)4

[
−18Y 4

t − 6Y 2
b Y

2
t

]
, δm2

Hd
=

Λ2

(4π)4

[
−18Y 4

b − 6Y 2
b Y

2
t − 6Y 4

τ

]
Ãu33 = − Λ

(4π)2

[
6Y 3

t + 2Y 2
b Yt
]
, Ãd33 = − Λ

(4π)2

[
6Y 3

b + 2Y 2
t Yb

]
, Ãe33 = − Λ

(4π)2

[
6Y 3

τ

]
, (37)

in which

g̃2
u =

16

3
g2

3 + 3g2
2 +

13

15
g2

1, g̃2
d =

16

3
g2

3 + 3g2
2 +

7

15
g2

1, g̃2
e = 3g2

2 +
9

5
g2

1, (38)

Yt,b,τ denote the MSSM Yukawa couplings, and Λ = |F2,3/M2,3| [43]. The full expressions for the

soft terms also include the standard gauge-mediated contributions (see e.g. [6–9]).

Alternatively, we can envision scenarios in which the b and τ degrees of freedom are S3 singlets,

but couple only to H(2)
d via nonrenormalizable operators. Such operators require the introduction

of additional degrees of freedom that we will denote collectively by ϕ (in practice, there could be

a set of fields ϕi), which are 2’s of S3. We will refer to this scenario as Model A2. In this case, the

following superpotential Yukawa interactions are allowed by the gauge and S3 symmetries:

WA2 = ytQ3u3H(1)
u +

1

Λ̃
ỸbQ3b3(ϕH(2)

d ) +
1

Λ̃
ỸτL3e3(ϕH(2)

d ) + . . . , (39)

in which Λ̃ is a (presumably high) scale, Ỹb,τ are O(1) factors, and we have neglected subdominant

interactions. The detailed couplings depend on the vacuum expectation value of ϕ. More explicitly,

WA2 = ỹtQ3u3H(1)
u +

1

Λ̃
ỸbQ3b3(ϕ1H(2)

d2 + ϕ2H(2)
d1 ) +

1

Λ̃
ỸτL3e3(ϕ1H(2)

d2 + ϕ2H(2)
d1 ) + . . . . (40)

Given that in our scenario for ξ = −π/4, the components of H(2)
d are given by

H(2)
d =

 H(2)
d1

H(2)
d2

 =

 1√
3
Hd + 1

2

(
1 + 1√

3

)
Md1 + 1

2

(
1− 1√

3

)
Md2

1√
3
Hd + 1

2

(
−1 + 1√

3

)
Md1 − 1

2

(
1 + 1√

3

)
Md2

 , (41)

the expression for WA2 takes the form

WA2 = YtQ3u3Hu + YtQ3u3Mu1 + YtQ3u3Mu2 + YbQ3b3Hd + Y ′b1Q3b3Md1 + Y ′b2Q3b3Md2

+ YτL3e3Hd + Y ′τ1L3e3Md1 + Y ′τ2L3e3Md2, (42)
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in which the MSSM and messenger Yukawas are given by

Y ′t1 = Y ′t2 = Yt, Yb =
Ỹb√
3Λ̃

(ϕ1 + ϕ2), Yτ =
Ỹτ√
3Λ̃

(ϕ1 + ϕ2),

Y ′b,τ1 =
Ỹb,τ

2Λ̃
((−1 + 1/

√
3)ϕ1 + (1 + 1/

√
3)ϕ2),

Y ′b,τ2 = − Ỹb,τ
2Λ̃

((1 + 1/
√

3)ϕ1 − (1− 1/
√

3)ϕ2). (43)

Clearly, the b and τ messenger Yukawas depend on the ϕ direction, and generically are similar

in size to their SM counterparts. However, there are points of interest in which there are exact

or near-cancellations, such that these conclusions no longer hold. For example, we note that

if ϕ1 = −ϕ2, the MSSM Yukawas Yb and Yτ are zero, and the messenger Yukawas are equal

(Y ′b1 = Y ′b2, Y ′τ1 = Y ′τ2). Another situation of interest occurs in the case that ϕ1 = (2±
√

3)φ2. In

this limit, either Y ′b1 and Y ′τ1 vanish (plus sign) or Y ′b2 and Y ′τ2 vanish (minus sign), such that the

b and τ couplings are given by

Yb,τ = Ỹb,τ
1 +
√

3

2

ϕ2

Λ̃
= −Y ′b,τ2, Y ′b,τ1 = 0, (ϕ1 → (2 +

√
3)ϕ2)

Yb,τ = Ỹb,τ
−1 +

√
3

2

ϕ2

Λ̃
= Y ′b,τ1, Y ′b,τ2 = 0, (ϕ1 → (2−

√
3)φ2). (44)

For concreteness, we will focus here on the two simpler cases of Eq. (44), which will yield identical

phenomenology. In this situation, the corrections to the soft terms are given by

δm2
Q33

=
Λ2

(4π)4

[
36Y 4

t + 12Y 4
b + 4Y 2

b Y
2
t + 3Y 2

b Y
2
τ − 2g̃2

uY
2
t − g̃2

dY
2
b

]
δm2

ū33
=

Λ2

(4π)4

[
72Y 4

t + 6Y 2
t Y

2
b − 4g̃2

uY
2
t

]
, δm2

d̄33
=

Λ2

(4π)4

[
24Y 4

b + 2Y 2
b Y

2
t + 6Y 2

b Y
2
τ − 2g̃2

dY
2
b

]
δm2

L33
=

Λ2

(4π)4

[
6Y 4

τ + 9Y 2
b Y

2
τ − g̃2

eY
2
τ

]
, δm2

ē33
=

Λ2

(4π)4

[
12Y 4

τ + 18Y 2
b Y

2
τ − 2g̃2

eY
2
τ

]
δm2

Hu
=

Λ2

(4π)4

[
−18Y 4

t − 3Y 2
b Y

2
t

]
, δm2

Hd
=

Λ2

(4π)4

[
−9Y 4

b − 6Y 2
b Y

2
t − 3Y 4

τ

]
Ãu33 = − Λ

(4π)2

[
6Y 3

t + Y 2
b Yt
]
, Ãd33 = − Λ

(4π)2

[
3Y 3

b + 2Y 2
t Yb

]
, Ãe33 = − Λ

(4π)2
3Y 3

τ . (45)

We see that the corrections of Eq. (45) are very similar to the case of Model A1 as given in Eq. (37),

but with smaller corrections in the b and τ sectors, as expected.

B. Top quark Yukawa coupling from H(2)
u models

In this set of models, we must embed at least the top quark degrees of freedom into nontrivial

multiplets of S3 to obtain a renormalizable top quark Yukawa coupling. The question of the extent
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to which the remaining MSSM matter fields are also charged under S3 is a model-building issue;

we will for concreteness focus on a scenario in which the matter fields are embedded in both singlet

and doublet representations of S3, as shown in Table III. Here we note that additional symmetries

will in general need to be introduced to prevent additional messenger-matter couplings, but this

does not provide a significant model-building challenge. For conciseness, we do not display these

constraints explicitly. With this set of charge assignments, we see that without further restrictions

Hu2 Hu1 Hd2 Hd1 Q2 Q1 ū2 ū1 d̄2 d̄1 L2 L1 ē2 ē1 XH

S3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

TABLE III: Charges for an S3 model of the Higgs-messenger fields and the MSSM matter fields.

on the theory, we can have couplings of each to both H(2)
u,d and H(1)

u,d. For example, in the up quark

sector, we have

W
(u)
B = yu

[
(Q2ū2H(2)

u ) + β1(Q2ū1H(2)
u ) + β2(Q2ū2H(1)

u ) + β3(Q1ū2H(2)
u ) + β4(Q1ū1H(1)

u )
]
, (46)

in which the βi are arbitrary coefficients in the absence of further model structure (different UV

completions may of course result in specific relations between some or all of these coefficients).

Using the notation that Q = (Q2, Q1)T and u = (u2, u1)T , we can write W
(u)
B in matrix form as

W
(u)
B = yuQ

T


H(2)
u1 β1H(1)

u β2H(2)
u2

β1H(1)
u H(2)

u2 β2H(2)
u1

β3H(2)
u2 β3H(2)

u1 β4H(1)
u

 ū. (47)

The analogous quantities W
(d)
B , W

(e)
B for the down quark and the charged leptons would have

similar structure. Depending on model details, their couplings can be suppressed by a Frogatt-

Nielsen mechanism. For the sake of simplicity, here we neglect such considerations, as well as the

question of the origin of neutrino masses.

To proceed, we need to specify the coefficients in Eq. (47). In this work, we will focus for

simplicity on the extremely simple (though contrived) situation in which all the coefficients are

equal and set to unity. We will label this scenario as Model B1. In this case, we have

W
(u)
B1 = yuQ

T


Hu21 Hu1 Hu22

Hu1 Hu22 Hu21

Hu22 Hu21 Hu1

 ū. (48)
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In terms of the Higgs and messenger mass eigenstates, for ξ = −π/4 we obtain

W
(u)
B1 =

yu√
3
QT


1 1 1

1 1 1

1 1 1

 ūHu + yuQ
T


−1

2 − 1
2
√

3
1√
3

1
2 − 1

2
√

3

1√
3

1
2 − 1

2
√

3
−1

2 − 1
2
√

3

1
2 − 1

2
√

3
−1

2 − 1
2
√

3
1√
3

 ūMu1

+ yuQ
T


1
2 − 1

2
√

3
1√
3

−1
2 − 1

2
√

3

1√
3

−1
2 − 1

2
√

3
1
2 − 1

2
√

3

−1
2 − 1

2
√

3
1
2 − 1

2
√

3
1√
3

 ūMu2. (49)

The MSSM Yukawa coupling matrix Yu has one nonzero eigenvalue λt =
√

3 and two zero eigen-

values. The nonzero eigenvalue is associated with the eigenvector (1/
√

3)(1, 1, 1). The degenerate

manifold is spanned by linear combinations of the orthornormal basis set (1/
√

2)(−1, 1, 0) and

(−1/
√

6,−1/
√

6,
√

2/3). Defining the diagonalization matrices UL = UR = U , such that

U†YuU = Y (diag)
u = Diag(0, 0,

√
3), (50)

the matrix U = U(α) takes the general form

U(α) =


− cosα√

2
− sinα√

6
− cosα√

6
+ sinα√

2
1√
3

cosα√
2
− sinα√

6
− cosα√

6
− sinα√

2
1√
3√

2
3 sinα

√
2
3 cosα 1√

3

 , (51)

in which α is a continuous parameter that is included for completeness (it will drop out of all

physical observables). In the basis that the quarks are diagonal, we have

W
(u)
B1 = yuQ

T
m


0 0 0

0 0 0

0 0
√

3

 ūmHu

+ yuQ
T
m


−
√

3
2 (cos 2α+ sin 2α)

√
3

2 (− cos 2α+ sin 2α) 0
√

3
2 (− cos 2α+ sin 2α)

√
3

2 (cos 2α+ sin 2α) 0

0 0 0

 ūmMu1

+ yuQ
T
m


√

3
2 (− cos 2α+ sin 2α)

√
3

2 (cos 2α+ sin 2α) 0
√

3
2 (cos 2α+ sin 2α)

√
3

2 (cos 2α− sin 2α) 0

0 0 0

 ūmMu2. (52)

We see from Eq. (52) that the top quark does not couple to the messengers, i.e., (Y ′u1)33 =

(Y ′u2)33 = 0, in stark contrast from the models of the previous subsection. The fact that the field
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with a nonvanishing observable sector Yukawa coupling has a vanishing messenger Yukawa coupling

(and vice versa) is a consquence of the S3 family symmetry (and the enhanced symmetry of taking

equal values for the βi); this feature was also found in PRZ [22].

For this scenario, the soft term contributions from the messenger Yukawas are diagonal in family

space, and have nonzero (and degenerate) entries only in the first two generations, as follows:

δm2
Q11

= δm2
Q22

=
Λ2

(4π)4

[
6Y 4

t + 6Y 4
b + 2Y 2

b Y
2
t + Y 2

b Y
2
τ − g̃2

uY
2
t − g̃2

dY
2
b

]
δm2

ū11
= δm2

ū22
=

Λ2

(4π)4

[
12Y 4

t + 2Y 2
t Y

2
b − 2g̃2

uY
2
t

]
δm2

d̄11
= δm2

d̄22
=

Λ2

(4π)4

[
12Y 4

b + 2Y 2
t Y

2
b + 2Y 2

b Y
2
τ − 2g̃2

dY
2
b

]
δm2

L11
= m2

L22
=

Λ2

(4π)4

[
4Y 4

τ + 3Y 2
b Y

2
τ − g̃2

eY
2
τ

]
δm2

ē11
= δm2

ē22
=

Λ2

(4π)4

[
8Y 4

τ + 6Y 2
b Y

2
τ − 2g̃2

eY
2
τ

]
δm2

Hu
= δm2

Hd
= 0, Ãu = Ãd = Ãe = 0. (53)

We note that the parameter α of Eq. (52) drops out of the messenger contributions (as it should).

As expected, we see from Eq. (53) that the corrections influence only the first two generations,

as it is these fields that couple to the messengers. These corrections are also very likely to be

negative for the squarks, pushing the first and second generation below the third generation. We

note in particular that the trilinear couplings vanish for all generations. For the first and second

generations, this is due to the absence of MSSM Yukawa couplings, while for the third generation,

it is due to the absence of messenger Yukawas.

Clearly, this scenario represents only one possible first step toward any kind of realistic theory

of this type. Different ways to perturb the all-equal coupling constraint will result in different

predictions for the Yukawa couplings of the lighter generations, which in turn will have correlated

predictions for the messenger Yukawas and the soft supersymmetry breaking terms. We defer a

systematic study of these possibilities to future work.

V. RESULTS

We now turn to a phenomenological analysis of each of these scenarios. The parameters shared

by all three models include the messenger scale, which is given by the mass of the two heavy

doublets, Mmess = M2,3 '
√

3/2M , and the scale Λ = F2,3/M2,3 ' F/M . The quantities µ and

b are replaced as usual by tanβ, sign(µ), and the Z boson mass, since we are free to tune them
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independently. While the parameters associated with the messenger triplet sector, MT = 〈XT 〉 and

ΛT ≡ FT /MT , are in principle unrelated to M2,3 and Λ, we set them equal for simplicity. Hence,

in these scenarios there are the usual gauge-mediated terms at the messenger scale M2,3, and the

additional contributions in each case due to the messenger Yukawa couplings. The parameter N ,

labeling the number of messengers, is always given by N = 2, and we will always choose sign(µ)=1.

The renormalization group equations are run using SoftSUSY 4.1.0 [40].

A. Models A1 and A2: Top quark Yukawa coupling from H(1)
u

We begin with an analysis of the expected mass spectra in Models A1 and A2, in which the top

quark Yukawa coupling arises from a renormalizable coupling to the S3 singlet Higgs-messenger

field H(1)
u . In both cases, we see that the corrections to the soft scalar mass-squared parameters

as given in Eqs. (37) and (45) for Models A1 and A2, respectively, have large contributions from

the messenger couplings, especially the top quark messenger couplings. As a result, in both cases,

the gauge part of the corrections will be overwhelmed, leading to positive deflections for the third

generation soft mass-squared parameters, and particularly for the stops. The other large correction

occurs in the up-type Higgs soft mass-squared parameter, which is typically large and negative.
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FIG. 1: A comparison of the mass spectra for Models A1 (left) and A2 (right) with a low messenger scale

of Mmess = 106 GeV, Λ = 2.9× 105 GeV, and tanβ = 10.

These features can easily be seen from direct comparisons of Model A1 and Model A2. In Fig. 1,

we show representative mass spectra for each model for the case of tanβ = 10, Λ = 2.9× 105 GeV,

and a low messenger scale of Mmess = 106 GeV. We see that the two models are highly similar,

with only slight differences among the splittings of the squarks and sleptons. In both cases, the
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FIG. 2: A comparison of the mass spectra for Model A1(left, identical to the left panel of Fig. 1), and

mGMSB with N = 2, Λ = 8.1× 105 GeV, Mmess = 106 GeV, and tanβ = 10 (right).
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FIG. 3: Model A1(left), with Mmess = 1012 GeV, Λ = 3.8× 105 GeV, and tanβ = 10; and mGMSB (right)

with N = 2, Λ = 7.0× 105 GeV, Mmess = 1012 GeV, and tanβ = 10.

NLSP is the lightest neutralino (which is bino-like), and the lightest colored superpartner is the

gluino, with a mass of mg̃ = 3.9 TeV. It is notable that the lightest squark is the sbottom b̃1,

which at mb̃1
= 4.0 TeV is quite close in mass to the gluino. The sbottoms are strongly mixed

(more so than the stops), with b̃1 significantly lighter than t̃1, which has a mass of mt̃1
= 5.5 TeV.

This behavior arises because of the large messenger couplings to the top quark superfield in both

constructions. These large and positive contributions boost the values of the stop mass-squared

parameters such that the mixing is not as prominent as it is in the sbottom sector.

It is illuminating to compare these two nearly identical scenarios with minimal gauge mediation

models with N = 2 that can reproduce the observed Higgs mass value of mh = 125 GeV. As

is well known, the absence of one-loop contributions to the soft trilinear scalar couplings of the

squarks in mGMSB puts strong constraints on the squark mass spectra, particularly for low values

of the messenger scale, where there is generically an insufficient amount of renormalization group



23

evolution to yield an appreciable values of the soft trilinear scalar couplings. This is illustrated in

Fig. 2, for which the left panel shows the Model A1 low scale point also presented in the left panel of

Fig. 1, and the right panel shows a low messenger scale mGMSB point with N = 2, Λ = 8.1× 105

GeV, Mmess = 106 GeV, and tanβ = 10. Clearly the spectra are significantly different in the

two cases, as expected. The mGMSB scenario is characterized by ultraheavy (∼ 10 TeV) squarks

with the lighter stop as the lightest colored superpartner, and a much larger splitting between the

SU(3)c-charged sector and other superpartners than what occurs in Models A1 and A2.
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FIG. 4: Model A1(left), with Mmess = 1016 GeV, Λ = 3.25× 105 GeV, and tanβ = 10; and mGMSB (right)

with N = 2, Λ = 5.7× 105 GeV, Mmess = 1016 GeV, and tanβ = 10.

FIG. 5: A scan over the parameter space for Model A1, with tanβ = 10. The solid lines are the Higgs mass,

the dotted lines are the bino-like neutralino NLSP, and the color is the stop mass.

These features largely persist for higher values of the messenger scale. In Fig. 3,we show example

spectra for Model A1 (Model A2 is roughly identical), with Mmess = 1012 GeV, Λ = 3.8×105 GeV,

and tanβ = 10, and minimal GMSB with N = 2, the same messenger scale of Mmess = 1012 GeV,
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Λ = 7.0 × 105 GeV, and tanβ = 10. For both cases, the bottom squarks and the gluino are now

heavier, while the lighter stop is lighter, than in the case of low messenger scales. In Model A1, we

have heavier sleptons and charginos/neutralinos than in the case of the low messenger scale, while

for mGMSB, the charginos/neutralinos are more strongly split, and the NLSP is now the lightest

(bino-like) neutralino, as in the flavored gauge mediation cases. At values of the messenger scale

near the GUT scale, these trends persist for the same value of tanβ, eventually resulting in the

lightest stop as the lightest colored superpartner for Models A1 and A2, as it is in mGMSB. This

behavior is shown in Fig. 4.

FIG. 6: A scan over the parameter space for Model A1 as a function of tanβ and Mmess, with Λ fixed to

maintain the light Higgs mass prediction. The solid lines are contours in Λ, the dotted lines are the lightest

neutralino mass, and the color is the stop mass.

In Fig. 5, we show a scan over the parameter space for Model A1 with tanβ = 10, with solid and

dotted contours for the Higgs mass and the lightest neutralino, respectively, and the color denoting

the stop mass. Generically, we would detect a binolike NLSP with nearby right-handed sleptons,

and stops in the 4− 6 TeV range, and hence only the left-handed sleptons and the wino would be

accessible at the LHC in the near future. In Fig. 6, we show the effect of changing tanβ and Mmess

for Model A1, with the value of Λ chosen to keep mh = 125 GeV. The solid lines are contours

in Λ, the dotted lines are contours in the mass of the lightest neutralino, and the color denotes

the lightest stop mass. We see that at low values of tanβ, stops are typically heavy, because the

one-loop correction to the Higgs mass is driven up by the logarithmic term with interference from

left-right mixing. This effect is ameliorated for larger values of tanβ, allowing for lighter stops.

Model A2 displays nearly identical behavior, with nearly exact overlap at low tanβ, but allowing

for slightly smaller values of Λ (and hence for the superpartner spectrum) for larger values of tanβ.
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B. Model B1: Top quark Yukawa coupling from H(2)
u

We now turn to the case of Model B1, in which the top quark Yukawa coupling arises from cou-

plings to S3 doublet fields. In this scenario, the MSSM and messenger Yukawas are anticorrelated,

with large MSSM Yukawas for the third family fields, and large and diagonal messenger Yukawas

only for the first and second generations, as seen in Eq. (53).
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FIG. 7: Two example mass spectra for Model B1, with (i) Mmess = 106 GeV, Λ = 6.6 × 105 GeV, and

tanβ = 10 (left), and (ii) Mmess = 1012 GeV, Λ = 5.7× 105 GeV, and tanβ = 10 (right).

FIG. 8: The stop mass distribution for Model B1 with tanβ = 10, with contours of the Higgs mass (solid),

the lightest slepton mass (dotted), and the lightest neutralino mass (dashed).

Two example spectra for Model B1 are shown in Fig. 7. In both cases, the Higgs mass in this
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model is bolstered by heavy stops, because the third generation A terms vanish, resulting in general

in heavier spectra than in Models A1 and A2. In Model B1, the lightest SU(3)c charged particles

are the first and second generation right-handed squarks because the corrections deflect the soft

mass-squared parameters down. In either case, we see that the NLSP will likely be a long-lived

right-handed slepton. The corrections from messenger matter mixing generally push the smuon

and selectron below the stau and because the spectra are split, there are large corrections from the

running at large M from the STr(m2) term in the β function. These models can be constrained by

searches for charged tracks at LHC13 [41]. The lightest neutralino is always binolike and its mass

is generally near the masses of the sleptons.

In Fig. 8, we show a scan of the parameter space for Model B1, with tanβ = 10. The solid lines

are the Higgs mass, the dashed lines are the bino-like neutralino mass, the dotted contours are the

lightest slepton mass, and the color is the stop mass. One interesting feature is the mass of colored

particles at ∼ 7 TeV, heavier than the case of Models A1 and A2 (as expected). These models

are more strongly constrained as a function of tanβ, with the possibility of tachyonic sleptons for

large tanβ and low to intermediate messenger scales once the Higgs mass requirement is imposed.

Here we note that the messenger-matter mixing corrections split the first and second generations

from the third generation at the messenger scale, and this difference is ameliorated by renormal-

ization group running towards an IR fixed point. This “focusing” behavior was found at low scales

in [22] because they had a larger top quark messenger coupling than what is used here.

C. Discussion

We have seen that these models allow for viable superpartner spectra while achieving mh ∼ 125

GeV. For the scenarios in which it is the third family that has nonvanishing messenger Yukawa

couplings (Models A1 and A2), the spectra for tanβ = 10 are characterized by squarks and gluinos

in the 4 − 6 TeV range and a bino-like NLSP neutralino. In the case in which it is the first and

second generations that have nontrivial messenger Yukawas (Model B1), the squarks and gluinos

are heavier (∼ 7 TeV), and the lightest squark is one of the first or second generation squarks.

It is instructive to compare these scenarios with other representative examples of flavored gauge

mediation in the literature, such as the family U(1) benchmark models of [30], all of which involve

messenger Yukawa couplings in the up quark sector only. These benchmark models are of course far

more developed than the toy scenarios considered here, as they have a full treatment of the three-

family MSSM Yukawa couplings and the three-family messenger Yukawa couplings to the up-type
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quarks, which allows for reliable estimates of the flavor-mixing effects in the soft supersymmetry-

breaking scalar mass-squared parameters. Nonetheless, the spectra of some of these benchmark

examples resemble our models to some extent, for example, with the up squark or charm squark

as the lightest SU(3)c-charged superpartner for the non-minimal-flavor-violating cases with a non-

vanishing messenger Yukawa coupling only to the first or second generation up-type quarks, as in

our Model B1 in which there is a diagonal coupling in the first and second generation subblock.

However, one main difference is that the family U(1) benchmark models allow for the possibility

that only one of the messenger fields couples to the up-type quarks, instead of two messenger pairs

as in the scenarios considered here. This feature contributes to the fact that these benchmarks

have viable spectra that reproduce the light Higgs mass with significantly lighter SU(3)c charged

superpartners, resulting in an improved discovery potential at the LHC. In our scenarios, the large

messenger Yukawa contributions to the soft scalar mass-squared parameters of the squarks result

quite generally in large stop masses. Furthermore, our models all include messenger Yukawas in

the slepton sector, which typically results in heavier/more split sleptons.

Another important difference between these models and our scenarios is that while they allow

for the dominant one-loop contributions to the soft supersymmetry breaking terms that generically

arise in flavored gauge mediation, we explicitly forbid these terms through our requirement that

[M,F] = 0. This feature was important in our scenarios for a smooth decoupling of the heavy

messengers from the light electroweak Higgs doublets. However, since the one-loop contributions

are generically negative while the two-loop corrections are typically positive, their inclusion can

also be an important factor for achieving mass spectra that are accessible at the LHC.

VI. CONCLUSIONS

In this paper, we have explored flavored gauge mediation models in which the electroweak Higgs

doublets and the SU(2) messenger doublets are embedded in representations of a Higgs-messenger

discrete symmetry group, which we take for concreteness to be the discrete group S3. The idea

of connecting the Higgs and messenger doublets with a non-Abelian discrete symmetry was first

explored in a two-family context by Perez, Ramond, and Zhang [22], in which they went a step

further and had the same S3 group also serve as a family symmetry group. In these scenarios,

the supersymmetry-breaking field is a doublet representation of S3; the field space directions of

its scalar and F-component vacuum expectation values generically must be misaligned in order

to produce working models with a smooth decoupling of the light Higgs fields from the heavier
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messenger fields. The question was whether the intriguing two-family examples of [22] could be

extended into realistic three-family scenarios. This paper represents a first step in this direction.

We have shown that a model framework of this type, in which the Higgs and doublet messenger

fields are taken to be components of Higgs-messenger fields with S3 quantum numbers, generically

suffers from a severe µ/Bµ problem. The reason is that if there is a coupling of the doublet

messengers to the supersymmetry breaking field, as is generally needed to mediate supersymmetry

breaking, the S3 symmetry dictates that there will also necessarily be a dangerous direct coupling of

the Higgs fields to the supersymmetry breaking field, which results in an incorrect µ/Bµ hierarchy.

This problem can be alleviated by expanding the field degrees of freedom to allow for the possibility

of independently tuning µ and Bµ; we achieve this here by allowing for a larger Higgs-messenger

sector that includes both S3 doublets and S3 singlets. While not a satisfactory solution to the µ/Bµ

problem in that it involves two fine-tunings (that each increase for higher values of the messenger

scale), it does allow for the construction of viable scenarios in which one pair of Higgs-messenger

fields is light and thus is identified as the electroweak Higgs fields, while the others are heavy

messenger fields that have nontrivial Yukawa couplings to the MSSM fields. The addition of the

singlet Higgs-messenger fields also allows for new possibilities for obtaining a renormalizable top

quark Yukawa coupling, which is also a crucial model-building ingredient.

To this end, we have constructed three model scenarios that include only third-family Yukawa

couplings of the MSSM fields to the electroweak Higgs fields. Two of these models (Models A1 and

A2) have the top quark Yukawa coupling arising from the Higgs-messenger singlets and differ only

in their treatment of the bottom and tau Yukawa couplings; both scenarios predict third family

messenger Yukawa couplings of similar size and strength to the MSSM Yukawa couplings. In these

scenarios, there is a one-loop contribution to the trilinear stop coupling, which allows for a viable

prediction of the light Higgs mass without ultraheavy squarks as in minimal gauge mediation. In

the third scenario (Model B1), the MSSM fields are also charged under the S3 symmetry, such

that the top quark Yukawa coupling has a nontrivial contribution from the Higgs-messenger S3

doublets. In this minimal scenario in which only the third family fermions obtain nonzero masses,

the resulting messenger Yukawa couplings are zero for the third family, but nonzero and diagonal

in the first and second generation sector. This results in vanishing soft trilinear scalar couplings,

and hence heavier stops are needed to generate the Higgs mass. The spectra in all cases have

squarks in 4 − 7 TeV range due to the large messenger corrections that arise from the effective

N = 2 structure of the messenger sector. Nonetheless, we find it very encouraging that these toy

scenarios, which each have a very small number of parameters, allow for a variety of viable spectra.
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As stated, these models represent a first step in this direction. Obtaining realistic models re-

quires that the MSSM Yukawa couplings are fully modelled. The question of whether the resulting

correlated messenger Yukawa couplings can survive stringent flavor constraints is not clear (though

it has been pointed out that the flavor-dependent couplings that generically arise in flavored gauge

mediation are not as dangerous as it might naively appear [29, 30]). It is worth noting, however,

that this framework provides a new and potentially fruitful playground for flavor model building,

depending on whether the Higgs-messenger symmetry group also plays the role of a family symme-

try group. There are also other fundamental questions to be addressed, such as possible connections

between the S3 singlet supersymmetry breaking field XT that couples to the messenger SU(3)c

triplet fields and the S3 doublet supersymmetry breaking field XH (in particular, the question of

a supersymmetric CP problem since these degrees of freedom are a priori independent), and the

origin of the needed misalignment between the scalar and F-component vacuum expectation values

and its connection to the µ/Bµ problem. Studies along these lines are underway.

Exploring novel model-building directions is important to ensure we are able to understand

and interpret the outcome of the current unprecedented exploration of the TeV scale at the LHC.

Flavored gauge mediation models quite generally represent a nontrivial extension of minimal gauge

mediation that allows for viable MSSM spectra. In this version in which the Higgs and messenger

doublets are connected by a discrete non-Abelian symmetry, we believe that the first model-building

steps taken here show promise that in a more complete implementation, this approach may provide

useful input for the comprehensive LHC tests of the paradigm of TeV-scale supersymmetry.
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Appendix A: Corrections from having two sets of messengers that couple to matter

Reported below are the corrections to the soft mass parameters when there are multiple Higgs-

messenger pairs, following the general analysis of Evans and Shih [24]. In the limit in which

there is only one pair of messengers, there is a suppressed one-loop contribution as well as the
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two-loop contributions from messenger-matter mixing for each soft mass-squared parameter, as

reported in [21]. For completeness, we reproduce the dominant two-loop corrections to the soft

mass-squared parameters and the one-loop contributions to the soft trilinear scalar couplings in

the case of one messenger pair (here labeled by i, no sum over repeated indices):
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Y ′eiY

′†
ei

+ 3Y ′eiY
′†
ei Y

′
eiY
′†
ei + 2Y ′eiY

†
eiYeiY

′†
ei − 2YeiY

′†
ei Y

′
eiY
†
ei

+ Y ′eiY
†
eiTr

(
3Y †diY

′
di + Y †eiY

′
ei

)
+ YeiY

′†
ei Tr

(
3Y ′†di Ydi + Y ′†ei Yei

)]
,

(A4)

δim
2
ē =

Λ2

(4π)4

[
2

(
Tr

(
3Y ′†di Y

′
di + Y ′†ei Y

′
ei

)
− 3g2

2 − 9

5
g2

1

)
Y ′†ei Y

′
ei

+ 6Y ′†ei Y
′
eiY
′†
ei Y

′
ei + 2Y ′†ei YeiY

†
eiY
′
ei − 2Y †eiY

′
eiY
′†
ei Yei

+ 2Y ′†ei YeiTr
(

3Y †diY
′
di + Y †eiY

′
ei

)
+ 2Y †eiY

′
eiTr

(
3Y ′†di Ydi + Y ′†ei Yei

)]
,

(A5)

δim
2
Hu

=
Λ2

(4π)4

[
− 3Tr

(
Y †uiY

′
uiY

′†
uiYui + Y †uiY

′
diY
′†
di Yui + 2Y †uiYuiY

′†
uiY

′
ui

)]
, (A6)

δim
2
Hd

=
Λ2

(4π)4

[
− 3Tr

(
Y †diY

′
uiY

′†
uiYdi + Y †diY

′
diY
′†
di Ydi + 2Y †diYdiY

′†
di Y

′
di

)
− 3Tr

(
Y †eiY

′
eiY
′†
ei Yei + 2Y †eiYeiY

′†
ei Y

′
ei

)]
,

(A7)
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Ã∗ui = − Λ

(4π)2

((
Y ′uiY

′†
ui + Y ′diY

′†
di

)
Yui + 2YuiY

′†
uiY

′
ui

)
,

Ã∗di = − Λ

(4π)2

((
Y ′uiY

′†
ui + Y ′diY

′†
di

)
Ydi + 2YdiY

′†
diY

′
di

)
,

Ã∗ei = − Λ

(4π)2

(
Y ′eiY

′†
ei Yei + 2YeiY

′†
ei Y

′
ei

)
.

(A8)

In the situation with more than one pair of messengers (in our case Higgs-messenger pairs), in

addition to summing over the index i to include all pairs, there are corrections to the soft mass-

squared parameters of the MSSM matter fields from couplings between the pairs of messengers.

Hence, for each sfermion field f , we have

δm2
f =

∑
i

δim
2
f +

∑
i>j

∑
j

δijm
2
f , (A9)

in self-evident notation. For the case of interest here, in which there are effectively two messenger

pairs upon diagonalizing the Higgs-messenger sector, the corrections δ12m
2
f are given by:

δ12m
2
Q =

Λ2

(4π)4

[
3Y ′u1Y

′†
u2Tr

(
Y ′u2Y

′†
u1

)
+ 3Y ′u2Y

′†
u1Tr

(
Y ′u1Y

′†
u2

)
+ 2

(
Y ′u1Y

′†
u1Y

′
u2Y

′†
u2 + Y ′u2Y

′†
u2Y

′
u1Y

′†
u1

)
(
Y ′u1Y

′†
u2Y

′
u2Y

′†
u1 + Y ′u2Y

′†
u1Y

′
u1Y

′†
u2

)
+

(
Y ′u1Y

′†
d2Y

′
d2Y

′†
u1 + Y ′u2Y

′†
d1Y

′
d1Y

′†
u2

)
+ Y ′d1Y

′†
d2Tr

(
3Y ′d2Y

′†
d1 + Y ′e2Y

′†
e1

)
+ Y ′d2Y

′†
d1Tr

(
3Y ′d1Y

′†
d2 + Y ′e1Y

′†
e2

)
+ 2

(
Y ′d1Y

′†
d1Y

′
d2Y

′†
d2 + Y ′d2Y

′†
d2Y

′
d1Y

′†
d1

)
+

(
Y ′d1Y

′†
d2Y

′
d2Y

′†
d1 + Y ′d2Y

′†
d1Y

′
d1Y

′†
d2

)
+

(
Y ′d1Y

′†
u2Y

′
u2Y

′†
d1 + Y ′d2Y

′†
u1Y

′
u1Y

′†
d2

)]
,

(A10)

δ12m
2
ū =

Λ2

(4π)4

[
6Y ′†u1Y

′
u2Tr

(
Y ′u2Y

′†
u1

)
+ 6Y ′†u2Y

′
u1Tr

(
Y ′u1Y

′†
u2

)
+ 4

(
Y ′†u1Y

′
u1Y

′†
u2Y

′
u2 + Y ′†u2Y

′
u2Y

′†
u1Y

′
u1

)
2
(
Y ′†u1Y

′
u2Y

′†
u2Y

′
u1 + Y ′†u2Y

′
u1Y

′†
u1Y

′
u2

)
+ 2

(
Y ′†u1Y

′
d2Y

′†
d2Y

′
u1 + Y ′†u2Y

′
d1Y

′†
d1Y

′
u2

)]
,

(A11)

δ12m
2
d̄ =

Λ2

(4π)4

[
2Y ′†d1Y

′
d2Tr

(
3Y ′†d2Y

′
d1 + Y ′†e2Y

′
e1

)
+ 2Y ′†d2Y

′
d1Tr

(
3Y ′†d1Y

′
d2 + Y ′†e1Y

′
e2

)
+ 4

(
Y ′†d1Y

′
d1Y

′†
d2Y

′
d2 + Y ′†d2Y

′
d2Y

′†
d1Y

′
d1

)
+ 2

(
Y ′†d1Y

′
d2Y

′†
d2Y

′
d1 + Y ′†d2Y

′
d1Y

′†
d1Y

′
d2

)
+ 2

(
Y ′†d1Y

′
u2Y

′†
u2Y

′
d1 + Y ′†d2Y

′
u1Y

′†
u1Y

′
d2

)]
,

(A12)

δ12m
2
L =

Λ2

(4π)4

[
Y ′e1Y

′†
e2Tr

(
3Y ′d2Y

′†
d1 + Y ′e2Y

′†
e1

)
+ Y ′e2Y

′†
e1Tr

(
3Y ′d1Y

′†
d2 + Y ′e1Y

′†
e2

)
+ 2

(
Y ′e1Y

′†
e1Y

′
e2Y

′†
e2 + Y ′e2Y

′†
e2Y

′
e1Y

′†
e1

)
+

(
Y ′e1Y

′†
e2Y

′
e2Y

′†
e1 + Y ′e2Y

′†
e1Y

′
e1Y

′†
e2

)]
,

(A13)

δ12m
2
ē =

Λ2

(4π)4

[
2Y ′†e1Y

′
e2Tr

(
3Y ′†d2Y

′
d1 + Y ′†e2Y

′
e1

)
+ 2Y ′†e2Y

′
e1Tr

(
3Y ′†d1Y

′
d2 + Y ′†e1Y

′
e2

)
+ 4

(
Y ′†e1Y

′
e1Y

′†
e2Y

′
e2 + Y ′†e2Y

′
e2Y

′†
e1Y

′
e1

)
+ 2

(
Y ′†e1Y

′
e2Y

′†
e2Y

′
e1 + Y ′†e2Y

′
e1Y

′†
e1Y

′
e2

)]
.

(A14)
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The MSSM-like Higgs will not get a correction from having multiple messengers outside of copies

of the single messenger result. The Ã terms are also unmodified.

In the limit in which the Yukawas are all diagonal and real, and have only nonzero third family

entries, these corrections take the form

δ12m
2
Q =

Λ2

128π4
(6Y ′2t Y

′′2
t + 6Y ′2b Y

′′2
b + Y ′′b Y

′
bY
′
eY
′′
e + Y ′2b Y

′′2
t + Y ′2t Y

′′2
b ),

δ12m
2
ū =

Λ2

128π4
(12Y ′2t Y

′′2
t + Y ′2b Y

′′2
t + Y ′2t Y

′′2
b ),

δ12m
2
d̄ =

Λ2

128π4
(12Y ′2b Y

′′2
b + 2Y ′′b Y

′
bY
′
eY
′′
e + Y ′2b Y

′′2
t + Y ′2t Y

′′2
b ),

δ12m
2
L =

Λ2

128π4
(4Y ′2τ Y

′′2
τ + 3Y ′′τ Y

′
τY
′′
b Y
′
b ),

δ12m
2
ē =

Λ2

64π4
(4Y ′2τ Y

′′2
τ + 3Y ′′τ Y

′
τY
′′
b Y
′
b ),

(A15)

in which we have used Y ′t,b,τ to denote the nonzero entries of Yu1,d1,e1, and similarly Y ′′t,b,τ for the

nonvanishing entries of Yu2,d2,e2.

As a trivial example of the consistency of these results, let us consider a simplified scenario

with only leptons and messengers coupling in the superpotential, with messenger Yukawas that are

degenerate and diagonal. The effective superpotential is

W = YeLēHd + Y ′eLēMd1 + Y ′eLēMd2 + (M + θ2F )MuiMdi. (A16)

We introduce two new linear combinations of messengers

Φu/d =
1√
2

(
Mu/d1 +Mu/d2

)
, Θu/d =

1√
2

(
−Mu/d1 +Mu/d2

)
, (A17)

such that

W = YeLēHd +
√

2Y ′eLēΦd + (M + θ2F ) (ΦuΦd + ΘuΘd) . (A18)

The rotation has decoupled the Θ fields, leaving us with messenger-matter mixing through Φ,

resulting in the single messenger case with an additional factor of
√

2. We can look at the structure

of the single messenger corrections δm2
L̃

for instance, and notice that the terms that are quadratic in

the messenger Yukawas will not contribute to the correction from two sets of messengers, but terms

quartic in messenger couplings will have nontrivial contributions. These quartic contributions are

δm2
L̃

(
√

2Y ′) ⊃ Λ2

(4π)4

[
3(
√

2Y ′e )4 + Tr
(

3(
√

2Y ′d)2 + (
√

2Y ′e )2
)

(
√

2Y ′e )2
]
, (A19)

→ Λ2

(4π)4

[
6Y ′4e + 2Tr

(
3Y ′2d + Y ′2e

)
Y ′2e
]

+
Λ2

(4π)4

[
6Y ′4e + 2Tr

(
3Y ′2d + Y ′2e

)
Y ′2e
]
.
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The second term agrees with (A13) taken in the same limit.
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