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In this work, we present CPT- and Lorentz-violating corrections to observable

quantities in electron-proton scattering. We also show how the theoretical

prediction can be used together with data to establish bounds on a coefficient

for CPT and Lorentz violation in the QCD sector.

Unlike the QED sector of the SME, the quark and gluon sectors of the QCD

extension are not stringently constrained.1 Most of the coefficients of the

QCD sector are effective and obtained from composite objects. One reason

is that the QCD Hilbert space contains baryons and mesons rather than

quarks at low energies. Thus, as a first step, we can consider CPT and

Lorentz violation (LV) in a process where we can access the quark struc-

ture of those composite objects, Deep Inelastic Scattering (DIS). Electron-

proton (e−P ) scattering, for instance, gives us information about QCD and

the quark structure of the proton. It is also a high energy process so that

we can treat the QCD coupling gs perturbatively. The zeroth order, g0s , is

the so-called parton model. Considering the QCD extension,2 a Lorentz-

volating version of the parton model and its radiative corrections can be

obtained from the lagrangian

Lquark = 1

2
i(gµν + c

µν
Q )(ψγµ

←→
D νψ + 2iQfψγµAνψ), (1)

where Dµ = ∂µ + 1

2
igsA

µ
i λi is the covariant derivative and cµνQ is the CPT-

and Lorentz-violating quark coefficient. In the high-energy limit, the pho-

ton energy Q2 = −q2 →∞ and we can neglect gs, considering that quarks

only interact with the photon by means of their charge Qf .

The unpolarized differential cross section of e−P scattering is

d2σ

dxdy
=

α2y

(Q2)2
Lµν Im Wµν , (2)
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where Lµν = 2(kµk′ν + kνk′µ− k · k′gµν) is the lepton tensor, y = P ·q
P ·k

, x =
−q2

2P ·q
is the Bjorken scale and Wµν = i

∑

spins

∫

d4x eiq·x〈P |Jµ(x)Jν(0)|P 〉

is the proton tensor. All the LV information is in the parton-photon cou-

pling, Jµ(x) = Qf ψ̄(x)Γ
µψ(x). The momenta P and k (k′) are the proton

and electron initial (final) energies.

In Eq. (2), we divided by the flux factor F = 2s. Some care is re-

quired in defining F , which is modified by LV.3 However, in the present

situation, the SME is being considered in the CPT-even quark sector. The

DIS process assumes that a short-wavelength photon only sees the quark

structure. We do not have to consider LV in F since it is defined according

to the proton initial state and the whole proton would be perceived only

by a long-wavelength photon. Moreover, the proton coefficient cµνP is well

constrained1 and can be neglected compared to the quark one.

Calculating the explicit form of Wµν is challenging. It represents our

ignorance in the photon-proton interaction. As we stated before, we make

use of perturbation theory, where the parton model is the zeroth order

contribution to the process. It allows us to rewrite Wµν as

Wµν ≈ i

∫

d4x eiq·x
∫

1

0

dξ
∑

f

ff(ξ)

ξ
〈qf (ξP )|J

µ(x)Jν(0)|qf (ξP )〉, (3)

where ff (ξ) is the parton distribution function (PDF), the probability of

finding a parton f carrying a momentum ξP .

In Eq. (3), there is a sum over flavors. The quark sector of the SME

allows a different coefficient for each flavor.2 In this case, it is impractical

to extract the coefficient from the sum over flavors. If we want to consider

one coefficient for each quark, up and down, we find that the up charge

and the two up quarks in the proton make cµνU one order of magnitude

bigger than c
µν
D and so taking only one coefficient is essentially assuming

that cµνQ ≈ c
µν
U .

When we take the imaginary part of Wµν , we find that the full fermion

propagator gives us a delta function corrected by LV, δ(−Q2 + 2ξP · q +

2cqq + 2ξ(cqP + cPq) + 2ξ2cPP ). Consequently, the Bjorken scale is also

corrected by a factor xc = 2

ys
(xcPq + xcqP + cqq), where s = 2k · P and

c
µα
Q pα ≡ cµp. Therefore, the LV correction can be seen as a tree-level

violation of Bjorken scaling. We can also confirm this after computing the
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differential cross section in Eq. (2)

d2σ

dxdy
=
α2y

Q4
Im W2

[1

2

(

1−
2

ys
(cPq + cqP + 2xcPP )

)

s2(1 + (1− y)2)

− 2xyscPP − 2M2(ckk
′

+ ck
′k) +

2s

x
(1− y)ckk + 2s(ck

′P + cPk′

)

−
2s

x
ck

′k′

+ 2s(1− y)(ckP + cPk)
]

−
α2ys2

2Q4
xc
dIm W2

dx
(1 + (1− y)2), (4)

where W2 is one of the proton structure functions. Its derivative comes

from the expansion at first order in c of the whole expression, Im W c
2
=

4π
ys

∑

f Q
2

f(x− xc)ff (x− xc).

We see that Eq. (4) is symmetric on the c indices as it should be, since

its antisymmetric part in the lagrangian (1) can be removed by a field

redefinition. To compare Eq. (4) andW2 with data collected at accelerators,

we first choose a frame. For instance, this can be the proton rest frame

for measurements with the single-arm experiment at SLAC. However, for

current data on the DIS cross section measured at HERA, the proton is

not at rest and has opposite momentum to the initial electron momentum.

We also must consider the sidereal time variation of cµνQ , which oscillates as

the Earth rotates. Therefore, making a transformation between the Earth

frame and the canonical Sun-centered frame, we can determine how the

laboratory components cµνQ change with sidereal time.

We can then use the data collected on the e−P cross section to establish

bounds on cµνQ . As presented above, the LV corrections to this cross section

manifest themselves as a violation of Bjorken scaling. At tree level, we can

verify that the usual SM results for the reduced cross section and νW2 are

independent of Q2. The LV correction to these two quantities introduces

a nontrivial dependence on Q2. If we fit the data on W2 as a straight line,

i.e., νW2(x,Q
2) = a + bQ2, the slope b is very small and can be used to

constrain c
µν
Q . The actual analysis4 considers a nontrivial and unknown

dependence on Q2 and it is used to constrain the components of cµνQ with

precision of 10−5 to 10−7.
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