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Abstract
The Standard Model has been effective way beyond expectations in foreseeing
the result of almost all the experimental tests done up so far. In it, neutrinos
are massless. Nonetheless, in recent years we have collected solid proofs indi-
cating little but non zero masses for the neutrinos (when contrasted with those
of the charged leptons). These masses permit neutrinos to change their flavor
and oscillate, indeed a unique treat. In these lectures, I discuss the properties
and the amazing potential of neutrinos in and beyond the Standard Model.

1 Introduction
Last decade witnessed a brutal transformation in neutrino physics. It has been experimentally observed
that neutrinos have nonzero masses, implying that leptons blend. This fact was demonstrated by the
experimental evidence that neutrinos can change from one state, or “flavour”, to another. All the in-
formation we have accumulated about neutrinos, is quite recent. Less that twenty years old. Neutrino
physics as a solid science is in its teenage years and therefore as any adolescence, in a wild and very
exciting (and excited) state.

However, before jumping into the late "news" about neutrinos, lets understand how and why neu-
trinos were conceived.

The ’20s saw the death of numerous sacred cows, and physics was no exemption. One of physic’s
most holly principles, energy conservation, apparently showed up not to hold inside the subatomic world.

For some radioactive nuclei, it appeared that a non-negligible fraction of its energy simply van-
ished, leaving no trace of its presence.

In 1920, in a (by now famous) letter to a meeting [1], Pauli quasi apologetically wrote,"Dear
radioactive Ladies and Gentlemen, ... as a desperate remedy to save the principle of energy conservation
in beta decay, ... I propose the idea of a neutral particle of spin half". Pauli hypothesised that the
missing energy was taken off by another particle, whose properties were such that made it invisible and
impossible to detect: it had no electric charge, no mass and only very rarely interacted with matter. Along
these lines, the neutrino was naturally introduced to the universe of particle physics.

Before long, Fermi postulated the four-Fermi Hamiltonian in order to describe beta decay utilising
the neutrino, electron, neutron and proton. Another field was born: weak interactions took the stage to
never leave it.

Closing the loop, twenty years after Pauli’s letter, Cowan and Reines got the experimental signa-
ture of anti-neutrinos emitted by a nuclear power plant.

As more particles who participated in weak interactions were found in the years following neutrino
discovery, weak interactions got credibility as an authentic new force of nature and the neutrino got to be
a key element of it.

Further experimental tests through the span of the following 30 years demonstrated that there were
not one but three sort, or “flavours” of neutrinos (electron neutrinos (νe), muon neutrinos (νµ) and tau
neutrinos (ντ )) and that, to the extent we could test, had no mass (and no charge) whatsoever.

The neutrino adventure could have easily finish there, however new analyses in neutrinos coming
from the sun shown us that the neutrino saga was just beginning....
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In the canonical Standard Model, neutrinos are completely massless and as a consequence are
flavour eigenstates,

W+ −→ e+ + νe ; Z −→ νe + ν̄e

W+ −→ µ+ + νµ ; Z −→ νµ + ν̄µ (1)

W+ −→ τ+ + ντ ; Z −→ ντ + ν̄τ

Precisely because they are massless, they travel at the speed of light and accordingly their flavour does
not change from generation up to detection. It is evident then, that as flavour is concerned, zero mass
neutrinos are not an attractive object to study, specially when contrasted with quarks.

However, if neutrinos were massive, and these masses where not degenerate (degenerate masses
flavour-wise is identical to the zero mass case) would mean that neutrino mass eigenstates exist νi, i =
1, 2, . . ., each with a massmi. The impact of leptonic mixing becomes apparent by looking at the leptonic
decays, W+ −→ νi + `α of the charged vector boson W . Where, α = e, µ, or τ , and `e refers to the
electron, `µ the muon, or `τ the tau.

We call particle `α as the charged lepton of flavour α. Mixing basically implies that when the
charged boson W+ decays to a given kind of charged lepton `α, the neutrino that goes along is not
generally the same mass eigenstate νi. Any of the different νi can appear.

The amplitude for the decay of a vector boson W+ to a particular mix `α + νi is given by U∗
αi.

The neutrino that is radiated in this decay alongside the given charged lepton `α is then

|να >=
∑
i

U∗
αi |νi > . (2)

This specific mixture of mass eigenstates yields the neutrino of flavour α.

The different Uαi can be gathered in a unitary matrix (in the same way they were collected in the
CKM matrix in the quark sector) that receives the name of the leptonic mixing matrix orUPNMS [2]. The
unitarity of U ensures that each time a neutrino of flavour α through its interaction produces a charged
lepton, the produced charged lepton will always be `α, the charged lepton of flavour α. That is, a νe
produces exclusively an e, a νµ exclusively a µ, and in a similar way ντ a τ .

The expression (2), portraying each neutrino of a given flavour as a linear combination of the
three mass eigenstates, can be easily inverted to depict every mass eigenstate νi as an analogous linear
combination of the three flavours:

|νi >=
∑
α

Uαi |να > . (3)

The amount of α-flavour (or the α-fraction) of νi is obviously |Uαi|2. When a νi interacts and creates a
charged lepton, this α-content (or fraction) expresses the probability that the created charged lepton be
of flavour α.

2 Neutrino Oscillations basics
The phenomenon of neutrino morphing, flavour transition or in short oscillation, can be understood in
the following form.

A neutrino is created or emitted by a source along with a charged lepton `α of flavour α. In this
way, at the emission point, the neutrino does have a definite flavour. It is a να. After that point, after
production, the neutrino covers some length (propagates thorough a distance) L until it is absorbed.

At this point, when it has already covered the distance to the target, the neutrino interacts and these
interactions create another charged lepton `β of flavour β, which we can detect. In this way, at the target,
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we can know that the neutrino is again a neutrino of definite flavour, a νβ . Of course there is a chance
that β 6= α (for instance, if `α is a µ however `β is a τ ), then, all along his journey from the source to the
identification point, the neutrino has morphed or transformed from a να into a νβ .

This transition from one flavour to the other, να −→ νβ , is a canonical case of the widely known
quantum-mechanical effect present in a variety of two state systems and not a particular property of
neutrinos.

Since, as shown clearly by Eq. (2), a να is truly a coherent superposition of the three mass eigen-
states νi, the neutrino that travels since it is born until it is detected, can be any of the three νi’s. Because
of that, we should include the contributions of each of the νi in a coherent way. As a consequence, the
transition amplitude, Amp(να −→ νβ) receives a contribution of each νi and turns out to be the product
of three pieces. The first factor is the amplitude for the neutrino created at the generation point along
with a charged lepton `α to be, particularly, a νi. And as we have said already, it is given by U∗

αi.

The second component of our product is the amplitude for the νi made by the source to cover the
distance up to the detector . We will name this element Prop(νi) for the time being and will postpone the
calculation of its value until later. The last (third) piece is the amplitude for the charged lepton born out
of the interaction of the neutrino νi with the target to be, particularly, a `β .

Being the Hamiltonian that describes the interactions between neutrinos, charged leptons and
charged bosons W bosons hermitian (otherwise probability won’t be conserved), it follows that if
Amp(W −→ `ανi) = U∗

αi, then Amp (νi −→ `βW ) = Uβi. In this way, the third and last compo-
nent of the product the νi contribution is given by Uβi, and

Amp(να −→ νβ) =
∑
i

U∗
αi Prop(νi) Uβi . (4)

Fig. 1: Neutrino flavour change (oscillation) in vacuum

It still remains to be established the value of Prop(νi). To determine it, we’d better study the νi in
its rest frame. We will label the time in that system τi. If νi does have a rest mass mi, then in this frame
of reference its state vector satisfies the good old Schrödinger equation

i
∂

∂τi
|νi(τi) > = mi|νi(τi) > . (5)

whose solution is given clearly by

|νi(τi) > = e−imiτi |νi(0) > . (6)

Then, the amplitude for a given mass eigenstate νi to travel freely during a time τi, is simply the amplitude
< νi(0)|νi(τi) > for observing the initial state νi, |νi(0) > after some time as the evoluted state |νi(τi) >,
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ie. exp[−imiτi]. Thus Prop(νi) is only this amplitude where we have used that the time taken by νi to
cover the distance from the source to the detector is just τi, the proper time.

Nevertheless, if we want Prop(νi) to be of any use to us, we must write it first in terms of variables
we can measure, this means to express it, in variables in the lab frame. The natural choice is obviously
the distance, L, that the neutrino covers between the source and the detector as seen in the lab frame,
and the time, t, that slips away during the journey, again in the lab frame. The distance L is set by the
experimentalists through the selection of the place of settlement of the source and that of the detector
and is unique to each experimental setting. Likewise, the value of t is selected by the experimentalists
through their election for the time at which the neutrino is made and that when it dies (or gets detected).
Therefore, L and t are determined (hopefully carefully enough) by the experiment design, and are the
same for all the νi in the beam. The different νi do travel through an identical distance L, in an identical
time t.

We still have two additional lab frame variables to determine, the energy Ei and three momentum
pi of the neutrino mass eigenstate νi. By using the Lorentz invariance of the four component inter-
nal product (scalar product), we can obtain the expression for the miτi appearing in the νi propagator
Prop(νi) in terms of the (easy to measure) lab frame variable we have been looking for, which is given
by

miτi = Eit− piL . (7)

At this point however one may argue that, in real life, neutrino sources are basically constant in
time, and that the time t that slips away since the neutrino is produced till it dies in the detector is actually
not measured. This argument is absolutely right. In reality, an experiment smears over the time t used
by the neutrino to complete its route. However, lets consider that two constituents of the neutrino beam,
the first one with energy E1 and the second one with energy E2 (both measured in the lab frame), add
up coherently to the neutrino signal produced in the detector. Now, let us call t to the the time used by
the neutrino to cover the distance separating the production and detection points. Then by the time the
constituent whose energy is Ej (j = 1, 2) arrives to the detector, it has raised a phase factor exp[−iEjt].
Therefore, we will have an interference between the E1 and E2 beam participants that will include a
phase factor exp[−i(E1 − E2)t]. When smeared over the non-observed travel time t, this factor goes
away, except when E2 = E1. Therefore, only those constituents of the neutrino beam that share the same
energy contribute coherently to the neutrino oscillation signal [3,4]. Specifically, only the different mass
eigenstates constituents of the beams that have the same energy weight in. The rest gets averaged out.

Courtesy to is dispersion relation, a mass eigenstate νi, with mass mi, and energy E, has a three
momentum pi whose absolute value is given by

pi =
√
E2 −m2

i
∼= E − m2

i

2E
. (8)

Where, we have utilised that as the masses of the neutrinos are miserably small, m2
i � E2 for a typical

energy E attainable at any experiment (the lowest energy neutrinos have MeV energies and sub-eV
masses). From Eqs. (7) and (8), it is easy to see that at a given energy E the phase miτi appearing in
Prop(νi) takes the value

miτi ∼= E(t− L) +
m2
i

2E
L . (9)

As the phase E(t − L) appears in all the interfering terms it will eventually disappear when calculating
the transition amplitude. After all is a common phase factor (its absolute value is one). Thus, we can get
rid of it already now and use

Prop(νi) = exp[−im2
i

L

2E
] . (10)
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Plugging this into Eq. (4), we can obtain that the amplitude for a neutrino born as a να to be
detected as a νβ after covering a distance L with energy E yields

Amp(να −→ νβ) =
∑
i

U∗
αi e

−im2
i

L
2EUβi . (11)

The expression above is valid for an arbitrary number of neutrino flavours and an identical number of
mass eigenstates, as far as they travel through vacuum. The probability P(να −→ νβ) for να −→ νβ can
be found by squaring it, giving

P(να −→ νβ) = |Amp(να −→ νβ)|2

= δαβ − 4
∑
i>j

<(U∗
αiUβiUαjU

∗
βj) sin2

(
∆m2

ij

L

4E

)

+2
∑
i>j

=(U∗
αiUβiUαjU

∗
βj) sin

(
∆m2

ij

L

2E

)
, (12)

with
∆m2

ij ≡ m2
i −m2

j . (13)

In order to get Eq. (12) we have used that the mixing matrix U is unitary.

The oscillation probability P(να −→ νβ) we have just obtained corresponds to that of a neutrino,
and not to an antineutrino, as we have used that the oscillating neutrino was produced along with a
charged antilepton ¯̀, and gives birth to a charged lepton ` once it reaches the detector. The corresponding
probability P(να −→ νβ) for an antineutrino oscillation can be obtained from P(να −→ νβ) taking
advantage of the fact that the two transitions να −→ νβ and νβ −→ να are CPT conjugated processes.
Thus, assuming that neutrino interactions respect CPT [5],

P(να −→ νβ) = P(νβ −→ να) . (14)

Then, from Eq. (12) we obtain that

P(νβ −→ να; U) = P(να −→ νβ; U∗) . (15)

Therefore, if CPT is a good symmetry (as far as neutrino interactions are concerned), Eq. (12) tells us
that

P( ( )να −→ ( )νβ) = δαβ − 4
∑
i>j

<(U∗
αiUβiUαjU

∗
βj) sin2

(
∆m2

ij

L

4E

)

+(−) 2
∑
i>j

=(U∗
αiUβiUαjU

∗
βj) sin

(
∆m2

ij

L

2E

)
. (16)

These expressions make it clear that if the mixing matrix U is complex, P(να −→ νβ) and P(να −→ νβ)
will not be identical, in general. As να −→ νβ and να −→ νβ are CP conjugated processes, P(να −→
νβ) 6= P(να −→ νβ) would provide evidence of CP violation in neutrino oscillations (if Nature has
chosen its mixing parameters so that the mixing matrix is indeed complex). Until now, CP violation has
been observed only in the quark sector, so its measurement in neutrino physics would be quite exciting.

So far, we have been working in natural units. A fact that becomes transparent by looking at the
dispersion relation Eq. (9). If we restore now the ~’s and c factors (we have happily set to one) into the
oscillation probability we find that

sin2

(
∆m2

ij

L

4E

)
−→ sin2

(
∆m2

ijc
4 L

4~cE

)
(17)
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Having done that, it is easy and instructive to explore the semi-classical limit, ~ −→ 0. In this limit the
oscillation length goes to zero (the oscillation phase goes to infinity) and the oscillations are averaged
to 1/2. The interference pattern is lost. A similar situation appears if we let the mass difference ∆m2

become large. This is exactly what happens in the quark sector (and the reason why we never study quark
oscillations despite knowing that mass eigenstates do not coincide with flavour eigenstates).

In terms of real life units (which are not "natural" units), the oscillation phase is given by

∆m2
ij

L

4E
= 1.27 ∆m2

ij(eV2)
L (km)

E (GeV)
. (18)

then, since sin2[1.27 ∆m2
ij(eV2)L (km)/E (GeV)] can be experimentally observed (ie. not smeared

out) only if its argument is in a ballpark around one, an experimental set-up with a baseline L
(km) and an energy E (GeV) is sensitive to neutrino mass squared differences ∆m2

ij(eV2) of order
∼ [L (km)/E (GeV]−1. For example, an experiment with a baseline of L ∼ 104 km, roughly the size
of Earth’s diameter, and E ∼ 1 GeV would explore mass differences ∆m2

ij down to ∼ 10−4 eV2. This
fact makes it clear that neutrino long-baseline experiments can test even miserably small neutrino mass
differences. It does so by exploiting the quantum mechanical interference between amplitudes whose rel-
ative phases are given precisely by these super tiny neutrino mass differences, which can be transformed
into sizeable effects by choosing L/E appropriately.

But let’s keep analysing the oscillation probability and see whether we can learn more about
neutrino oscillations by studying its expression.

It is clear from P( ( )να −→ ( )νβ) that if neutrinos have zero mass, in such a way that all ∆m2
ij = 0,

then, P( ( )να −→ ( )νβ) = δαβ . Therefore, the experimental observation that neutrinos can morph from one
flavour to a different one indicates that neutrinos are not only massive but also that their masses are not
degenerate. Actually, it was precisely this evidence the one that proved beyond any reasonable doubt that
neutrinos are massive.

However, every neutrino oscillation seen so far has involved at some point neutrinos that travel
through matter. But the expression we derived is valid only for flavour change in vacuum, and does not
take into account any interaction between the neutrinos and the matter traversed between their source
and their detector. Thus, the question remains whether it may be that some unknown flavour changing
interactions between neutrinos and matter are indeed responsible of the observed flavour transitions, and
not neutrino masses. Regarding this question, a couple of things should be said. First, although it is true
that the Standard Model of elementary particle physics contains only massless neutrinos, it provides an
amazingly well corroborated description of weak interactions, and therefore of all the ways a neutrino
interacts. Such a description does not include flavour change. Second, for some of the processes experi-
mentally observed where neutrinos do change flavour, matter effects are expected to be miserably small,
and on those cases the evidence points towards a dependence on L and E in the flavour transition prob-
ability through the combination L/E, as anticipated by the oscillation hypothesis. Modulo a constant,
L/E is precisely the proper time that goes by in the rest frame of the neutrino as it covers a distance L
possessing an energy E. Therefore, these flavour transitions behave as if they were a true progression of
the neutrino itself over time, and not a result of an interaction with matter.

Now, lets explore the case where the leptonic mixing were trivial. This would imply that in the
charged boson decay W+ −→ `α + νi, which as we established has an amplitude U∗

αi, the emerging
charged antilepton `α of flavour α comes along always with the same neutrino mass eigenstate νi. That
is, if U∗

αi 6= 0, then due to unitarity, Uαj becomes zero for all j 6= i. Therefore, from Eq. (16) it is clear
that, P( ( )να −→ ( )νβ) = δαβ . Thus, the observation that neutrinos morph indicates non trivial a mixing
matrix.

Then, we are left with basically two ways to detect neutrino flavour change. The first one is to
observe, in a beam of neutrinos which are all created with the same flavour, say α, some amount of
neutrinos of a new flavour β that is different from the flavour α we started with. This goes under the
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name of appearance experiments. The second way is to start with a beam of identical ναs, whose flux
is either measured or known, and observe that after travelling some distance this flux is depleted. Such
experiments are called disappearance experiments.

As Eq. (16) shows, the transition probability in vacuum does not only depend on L/E but also
oscillates with it. It is because of this fact that neutrino flavour transitions are named “neutrino oscilla-
tions”. Now notice also that neutrino transition probabilities do not depend on the individual neutrino
masses (or masses squared) but on the squared-mass differences. Thus, oscillation experiments can only
measure the neutrino mass squared spectrum. Not its absolute scale. Experiments can test the pattern but
cannot determine the distance above zero the whole spectra lies.

It is clear that neutrino transitions cannot modify the total flux in a neutrino beam, but simply alter
its distribution between the different flavours. Actually, from Eq. (16) and the unitarity of the U matrix,
it is obvious that ∑

β

P( ( )να −→ ( )νβ) = 1 , (19)

where the sum runs over all flavours β, including the original one α. Eq. (19) makes it transparent that
the probability that a neutrino morphs its flavour, added to the probability that it keeps the flavour it had
at birth, is one. Ergo, flavour transitions do not modify the total flux. Nevertheless, some of the flavours
β 6= α into which a neutrino can oscillate into may be sterile flavours; that is, flavours that do not take
part in weak interactions and therefore escape detection. If any of the original (active) neutrino flux turns
into sterile, then an experiment able to measure the total active neutrino flux—that is, the flux associated
to those neutrinos that couple to the weak gauge bosons: νe, νµ, and ντ— will observe it to be not
exactly the original one, but smaller than it. In the experiments performed up today, no flux was ever
missed.

In the literature, description of neutrino oscillations normally assume that the different mass eigen-
states νi that contribute coherently to a beam share the same momentum, rather than the same energy as
we have argued they must have. While the supposition of equal momentum is technically wrong, it is an
inoffensive mistake, since, as can easily be shown, it conveys to the same oscillation probabilities as the
ones we have obtained.

A relevant and interesting case of the (not that simple) formula for P(να −→ νβ) is the case where
only two flavours participate in the oscillation. The only-two-neutrino scenario is a rather rigorous
description of a vast number of experiments. In fact only recently (and in few experiments) a more
sophisticated (three neutrino description) was needed to fit observations. Lets assume then, that only two
mass eigenstates, which we will name ν1 and ν2, and two reciprocal flavour states, which we will name
νµ and ντ , are relevant, in such a way that only one squared-mass difference, m2

2 −m2
1 ≡ ∆m2 arises.

Even more, neglecting phase factors that can be proven to have no impact on oscillation probabilities,
the mixing matrix U can be written as(

νµ
ντ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ν1
ν2

)
(20)

The unitary mixing matrix U of Eq. (20) is just a 2×2 rotation matrix, and as such , parameterized by
a single rotation angle θ which is named (in neutrino physics) as the mixing angle. Plugging the U
of Eq. (20) and the unique ∆m2 into the general formula of the transition probability P(να −→ νβ),
Eq. (16), we can readily see that, for β 6= α, when only two neutrinos are relevant,

P(να −→ νβ) = sin2 2θ sin2

(
∆m2 L

4E

)
. (21)

Moreover, the survival probability, ie. the probability that the neutrino remains with the same flavour its
was created with is, as expected, one minus the probability that it changes flavour.
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3 Neutrino Oscillations in a medium
When we create a beam of neutrinos on earth through an accelerator and send it up to thousand kilome-
tres away to a meet detector, the beam does not move through vacuum, but through matter, earth matter.
The beam of neutrinos then scatters from the particles it meets along the way. Such a coherent forward
scattering can have a large effect on the transition probabilities. We will assume for the time being that
neutrino interactions with matter are flavour conserving, as described by the Standard Model, and com-
ment on the possibility of flavour changing interactions later. Then as there are only two types of weak
interactions (mediated by charged and neutral currents) the would be accordingly only two possibilities
for this coherent forward scattering from matter particles to take place. Charged current mediated weak
interactions will occur only if and only if the incoming neutrino is an electron neutrino. As only the νe
can exchange charged boson W with an Earth electron. Thus neutrino-electron coherent forward scatter-
ing via W exchange opens up an extra source of interaction energy VW suffered exclusively by electron
neutrinos. Obviously, this additional energy being from weak interactions origin has to be proportional
to GF , the Fermi coupling constant. In addition, the interaction energy coming from νe − e scattering
grows with the number of targets, Ne, the number of electrons per unit volume (given by the density of
the Earth). Putting everything together it is not difficult to see that

VW = +
√

2GF Ne , (22)

clearly, this interaction energy affects also antineutrinos (in a opposite way though). It changes sign if
we switch the νe by νe.

The interactions mediated by neutral currents correspond to the case where a neutrino in matter
interacts with a matter electron, proton, or neutron by exchanging a neutral Z boson. According to the
Standard Model weak interactions are flavour blind. Every flavour of neutrino enjoys them, and the
amplitude for this Z exchange is always the same. It also teaches us that, at zero momentum transfer,
electrons and protons couple to the Z boson with equal strength. The interaction has though, opposite
sign. Therefore, counting on the fact that the matter through which our neutrino moves is electrically
neutral (it contains equal number of electrons and protons), the contribution of both, electrons and protons
to coherent forward neutrino scattering through Z exchange will add up to zero. Consequently only
interactions with neutrons will survive so that, the effect of the Z exchange contribution to the interaction
potential energy VZ reduces exclusively to that with neutrons and will be proportional toNn, the number
density of neutrons. It goes without saying that it will be equal to all flavours. This time, we find that

VZ = −
√

2

2
GF Nn , (23)

as was the case before, for VW , this contribution will flip sign if we replace the neutrinos by anti-
neutrinos.

But if, as we said, the Standard Model interactions do not change neutrino flavour, neutrino flavour
transitions or neutrino oscillations point undoubtedly to neutrino mass and mixing even when neutrinos
are propagating through matter. Unless non-Standard-Model flavour changing interactions play a role.

Neutrino propagation in matter is easy to understand when analysed through the time dependent
Schrödinger equation in the lab frame

i
∂

∂t
|ν(t) > = H|ν(t) > . (24)

where, |ν(t)> is a (three component) neutrino vector state, in which each neutrino flavour corresponds
to one component. In the same way, the Hamiltonian H is a (tree × three) matrix in flavour space. To
make our lives easy, lets analyse the case where only two neutrino flavours are relevant, say νe and νµ.
Then

|ν(t) > =

(
fe(t)
fµ(t)

)
, (25)
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with fi(t)2 the amplitude of the neutrino to be a νi at time t. This time the Hamiltonian, H, is a 2×2
matrix in neutrino flavour space, i.e., νe − νµ space.

It will prove to be clarifying to work out the two flavour case in vacuum first, and add matter
effects afterwards. Using Eq. (2) to express |να > as a linear combination of mass eigenstates, we can
see that the να − νβ matrix element of the Hamiltonian in vacuum,HVac, can be written as

< να|HVac|νβ > = <
∑
i

U∗
αiνi|HVac|

∑
j

U∗
βjνj >

=
∑
j

UαjU
∗
βj

√
p2 +m2

j . (26)

where we are supposing that the neutrinos belong to a beam where all its mass components (the mass
eigenstates) share the same definite momentum p. As we have already mentioned, despite this suppo-
sition being technically wrong, it leads anyway to the right transition amplitude. In the second line of
Eq. (26), we have used that the neutrinos νj with momentum p, the mass eigenstates, are the asymptotic
states of the hamiltonian,HVac for which constitute an orthonormal basis, satisfy

HVac|νj >= Ej |νj > (27)

and have the standard dispersion relation, Ej =
√
p2 +m2

j .

As we have already mentioned, neutrino oscillations are the archetype quantum interference phe-
nomenon, where only the relative phases of the interfering states play a role. Therefore, only the relative
energies of these states, which set their relative phases, are relevant. As a consequence, if it proves to
be convenient (and it will), we can feel free to happily remove from the HamiltonianH any contribution
proportional to the identity matrix I . As we have said, this subtraction will leave unaffected the differ-
ences between the eigenvalues of H, and therefore will leave unaffected the prediction of H for flavour
transitions.

It goes without saying that as in this case only two neutrinos are relevant, there are only two mass
eigenstates, ν1 and ν2, and only one mass splitting ∆m2 ≡ m2

2 − m2
1, and therefore there should be,

as before a unitary U matrix given by Eq. (20) which rotates from one basis to the other. Inserting it
into Eq. (26), and assuming that our neutrinos have low masses as compared to their momenta, i.e.,
(p2 + m2

j )
1/2 ∼= p + m2

j/2p, and removing from HVac a term proportional to the the identity matrix (a
removal we know is going to be harmless), we get

HVac =
∆m2

4E

(
− cos 2θ sin 2θ

sin 2θ cos 2θ

)
. (28)

To write this expression, the highly relativistic approximation, which says that p ∼= E is used. Where E
is the average energy of the neutrino mass eigenstates in our neutrino beam of ultra high momentum p.

It is not difficult to corroborate that the HamiltonianHVac of Eq. (28) for the two neutrino scenario
would give an identical oscillation probability , Eq. (21), as the one we have already obtained in a
different way. An easy way to do it is to analyse the transition probability for the process νe −→ νµ.
From Eq. (20) it is clear that in terms of the mixing angle, the electron neutrino state composition is

|νe > = |ν1 > cos θ + |ν2 > sin θ , (29)

while that of the muon neutrino is given by

|νµ > = −|ν1 > sin θ + |ν2 > cos θ . (30)

In the same way, we can also write the eigenvalues of the vacuum hamiltonian HVac, Eq.25, in terms of
the mass squared differences as

λ1 = −∆m2

4E
, λ2 = +

∆m2

4E
. (31)

9



The mass eigenbasis of this Hamiltonian, |ν1 > and |ν2 >, can also be written in terms of flavour
eigenbasis |νe > and |νµ > by means of Eqs. (29) and (30). Therefore, the Schrödinger equation of
Eq. (24), with the identification ofH in this case withHVac tells us that if at time t = 0 we begin from a
|νe >, then once some time t elapses this |νe > will progress into the state given by

|ν(t) > = |ν1 > e+i
∆m2

4E
t cos θ + |ν2 > e−i

∆m2

4E
t sin θ . (32)

Thus, the probability P(νe −→ νµ) that this evoluted neutrino be detected as a different flavour νµ, from
Eqs. (30) and (32), is given by,

P(νe −→ νµ) = | < νµ|ν(t) > |2

= | sin θ cos θ(−ei
∆m2

4E
t + e−i

∆m2

4E
t)|2

= sin2 2θ sin2

(
∆m2 L

4E

)
. (33)

Where we have substituted the time t travelled by our highly relativistic state by the distance L it has
covered. The flavour transition or oscillation probability of Eq. (33), as expected, is exactly the same we
have found before, Eq. (21).

We can now move on to analyse neutrino propagation in matter. In this case, the 2×2 Hamiltonian
representing the propagation in vacuumHVac receives the two additional contributions we have discussed
before, and becomesHM , which is given by

HM = HVac + VW

(
1 0
0 0

)
+ VZ

(
1 0
0 1

)
. (34)

In the new Hamiltonian, the first additional contribution corresponds to the interaction potential due to the
charged bosons exchange, Eq. (22). As this interaction is suffered only by νe, this contribution is different
from zero only in the HM (1,1) element or the νe − νe element. The second additional contribution, the
last term of Eq. (34) comes from the Z boson exchange, Eq. (23). Since this interaction is flavour blind,
it affects every neutrino flavour in the same way, its contribution to HM is proportional to the identity
matrix, and can be safely neglected. Thus

HM = HVac +
VW
2

+
VW
2

(
1 0
0 −1

)
, (35)

where (for reasons that are going to become clear later) we have divided the W -exchange contribution
into two pieces, one proportional to the identity (that we will disregarded in the next step) and, a piece
that it is not proportional to the identity, that we will keep. Disregarding the first piece as promised, we
have from Eqs. (28) and (35)

HM =
∆m2

4E

(
−(cos 2θ −A) sin 2θ

sin 2θ (cos 2θ −A)

)
, (36)

where we have defined

A ≡ VW /2

∆m2/4E
=

2
√

2GFNeE

∆m2
. (37)

Clearly, A parameterizes the relative size of the matter effects as compared to the vacuum contribution
given by the neutrino squared-mass splitting and signals the situations when they become important.

Now, if we introduce (a physically meaningful) short-hand notation

∆m2
M ≡ ∆m2

√
sin2 2θ + (cos 2θ −A)2 (38)

10



and

sin2 2θM ≡ sin2 2θ

sin2 2θ + (cos 2θ −A)2
, (39)

then the Hamiltonian in a mediumHM turns out to be

HM =
∆m2

M

4E

(
− cos 2θM sin 2θM

sin 2θM cos 2θM

)
. (40)

and can be diagonalised by inspection, i.e., as a result of our choice, the Hamiltonian in a medium ,HM ,
becomes formally indistinguishable to the vacuum one,HVac, Eq. (28). The difference being that in this
case what used to be the vacuum parameters ∆m2 and θ are presently given by the matter ones, ∆m2

M

and θM , respectively.

Obviously, the mass eigenstates and eigenvalues (which determine the mixing angle) of HM are
not identical to the ones in vacuum. The mass squared difference of the matter eigenstates is not the same
as the vacuum ∆m2, and the same happens with the mixing angle. The eigenstates in matter, ie. the files
of the unitary matrix that rotates from the flavour basis to the mass basis, are different from the vacuum
eigenvalues that form the vacuum mixing matrix, and therefore θM is not θ. But, the matter Hamiltonian
HM does indeed contain all about the propagation of neutrinos in matter, in the same wayHVac contains
all about the propagation in vacuum.

According to Eq. (40), HM has the same functional dependence on the matter parameters ∆m2
M

and θM as the vacuum HamiltonianHVac, Eq. (28), on the vacuum ones, ∆m2 and θ. Therefore, ∆m2
M

can be identified with an effective mass squared difference in matter, and accordingly θM can be uniden-
tified with an effective mixing angle in matter.

In a typical experimental set-up where the neutrino beam is generated by an accelerator and sent
away to a detector that is, say, several hundred, or even thousand kilometres away, it traverses through
earth matter, but only superficially , it does not get deep into the earth. Then, during this voyage the
matter density encountered by such a beam can be taken to be approximately constant 1. But if the
density of the earth’s matter is constant, the same happens with the electron density Ne, and the A
parameter in which it is incorporated, which after all is determined by it. And it is also true about the
Hamiltonian HM . They all become approximately constant, and therefore quite identical to the vacuum
HamiltonianHVac, except for the particular values of their parameters. By comparing Eqs. (40) and (28),
we can immediately conclude that exactly in the same way HVac gives rise to vacuum oscillations with
probability P(νe −→ νµ) of Eq. (33),HM must give rise to matter oscillations with probability

PM (νe −→ νµ) = sin2 2θM sin2

(
∆m2

M

L

4E

)
. (41)

Namely, the transition and survival probabilities in matter are the same as those in vacuum, except that
the vacuum parameters ∆m2 and θ are now replaced by their matter counterparts, ∆m2

M and θM .

In theory, judging simply by its potential, matter effects can have very drastic repercussions in
the oscillation probabilities. The exact impact (if any) can be estimated only after the details of the
experimental set-up of the experiment in question are given. As a rule of thumb, to guess the importance
of matter effects, we should keep in mind that for neutrinos propagating through the earth’s mantle (not
deeper than 200 km below the surface) and if the kinematic phase associated to the solar mass difference
is still negligible,

A ∼=
E

13 GeV
(42)

so that only for beam energies of several GeV matter effects do matter.
1This approximation is clearly not valid for neutrinos that cross the Earth
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And how much do they matter? They matter a lot! From Eq. (39) for the matter mixing angle, θM ,
we can appreciate that even when the vacuum mixing angle θ is incredible small, say, sin2 2θ = 10−4,
if we get to have A ∼= cos 2θ, i.e., for energies of a few tens of GeV, then sin2 2θM can be brutally
enhanced as compared to its vacuum value and can even reach maximal mixing, ie. sin2 2θM = 1. This
wild enhancement of a small mixing angle in vacuum up to a sizeable (even maximal) one in matter is the
“resonant” enhancement, the largest possible version of the Mikheyev-Smirnov-Wolfenstein effect [6–9].
In the beginning of solar neutrino experiments, people entertained the idea that this brutal enhancement
was actually taking place while neutrinos crossed the sun. Nonetheless, as we will see soon the mixing
angle associated with solar neutrinos is quite sizeable (∼ 34◦) already in vacuum [10]. Then, although
matter effects on the sun are important and they do enhance the solar mixing angle, unfortunately they
are not as drastic as we once dreamt. Nevertheless, for long-baselines they will play (they are already
playing!) a key role in the determination of the ordering of the neutrino spectrum.

4 Evidence for neutrino oscillations
4.1 Atmospheric and Accelerator Neutrinos
Almost twenty years have elapsed since we were presented solid and convincing evidence of neutrino
masses and mixings, and since then, the evidence has only grown. SuperKamiokande (SK) was the first
experiment to present compelling evidence of νµ disappearance in their atmospheric neutrino fluxes,
see [11] . In Fig. 2 the zenith angle (the angle subtended with the horizontal) dependence of the multi-
GeV νµ sample is shown together with the disappearance as a function of L/E plot. These data fit
amazingly well the naive two component neutrino hypothesis with

∆m2
atm = 2− 3× 10−3eV2 and sin2 θatm = 0.50± 0.13 (43)

Roughly speaking SK corresponds to an L/E for oscillations of 500 km/GeV and almost maximal mix-
ing (the mass eigenstates are nearly even admixtures of muon and tau neutrinos). No signal of an in-
volvement of the third flavour, νe is found so the assumption is that atmospheric neutrino disappearance
is basically νµ −→ ντ . Notice however, that the first NOvA results seem to point toward a mixing angle
which is not maximal (excluding maximal mixing at the 2 sigma level).

Fig. 2: Superkamiokande’s evidence for neutrino oscillations both in the zenith angle and L/E plots

After atmospheric neutrino oscillations were established, a new series of neutrino experiments
were built, sending (man-made) beams of νµ neutrinos to detectors located at large distances: the K2K
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(T2K) experiment [12,13], sends neutrinos from the KEK accelerator complex to the old SK mine, with a
baseline of 120 (235) km while the MINOS (NOvA) experiment [14,15], sends its beam from Fermilab,
near Chicago, to the Soudan mine (Ash river) in Minnesota, a baseline of 735 (810) km. All these
experiments have seen evidence for νµ disappearance consistent with the one found by SK. Their results
are summarised in Fig. 3.

Fig. 3: Allowed regions in the ∆m2
atm vs sin2 θatm plane for MINOS data as well as for T2K data and two of

the SK analyses. MINOS’s best fit point is at sin2 θatm = .51 and ∆m2
atm = 2.37 × 10−3eV2. Notice that new

NOvA data seem to exclude maximal mixing at the 2 sigma level

4.2 Reactor and Solar Neutrinos
The KamLAND reactor experiment, an antineutrino disappearance experiment, receiving neutrinos from
sixteen different reactors, at distances ranging from hundred to thousand kilometres, with an average
baseline of 180 km and neutrinos of a few eV, [16, 17], has seen evidence of neutrino oscillations . Such
evidence was collected not only at a different L/E than the atmospheric and accelerator experiments but
also consists on oscillations involving electron neutrinos, νe, the ones which were not involved before.
These oscillations have also been seen for neutrinos coming from the sun (the sun produces only electron
neutrinos). However,in order to compare the two experiments we should assume that neutrinos (solar)
and antineutrinos (reactor) behave in the same way, ie. assume CPT conservation. The best fit values in
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the two neutrino scenario for the KamLAND experiment are

∆m2
� = 8.0± 0.4× 10−5eV2 and sin2 θ� = 0.31± 0.03 (44)

In this case, the L/E involved is 15 km/MeV which is more than an order of magnitude larger than the
atmospheric scale and the mixing angle, although large, is clearly not maximal.

Fig. 4 shows the disappearance probability for the ν̄e for KamLAND as well as several older
reactor experiments with shorter baselines 2.The second panel depicts the flavour content of the 8Boron
solar neutrino flux (with GeV energies) measured by SNO, [18], and SK, [19]. The reactor outcome
can be explained in terms of two flavour oscillations in vacuum, given that the fit to the disappearance
probability, is appropriately averaged over E and L..

Fig. 4: Disappearance of the ν̄e observed by reactor experiments as a function of distance from the reactor. The
flavour content of the 8Boron solar neutrinos for the various reactions for SNO and SK. CC: νe+d −→ e−+p+p,
NC:νx + d −→ νx + p+ n and ES: να + e− −→ να + e−

The analysis of neutrinos originating from the sun is marginally more complex that the one we
did before because it should incorporate the matter effects that the neutrinos endure since they are born
(at the centre of the sun) until they abandon it, which are imperative at least for the 8Boron neutrinos.
The pp and 7Be neutrinos are less energetic and therefore are not significantly altered by the presence
of matter and leave the sun as though it were ethereal. 8Boron neutrinos on the other hand, leave the
sun unequivocally influenced by the presence of matter and this is evidenced by the fact that they leave
the sun as ν2, the second mass eigenstate and therefore do not experience oscillations. This distinction
among neutrinos coming from different reaction chains is, as mentioned, due mainly to their disparities
at birth. While pp (7Be) neutrinos are created with an average energy of 0.2 MeV (0.9 MeV), 8B are born
with 10 MeV and as we have seen the impact of matter effects grows with the energy of the neutrino.

However, we ought to emphasise that we do not really see solar neutrino oscillations. To trace
the oscillation pattern, to be able to test is distinctive shape, we need a kinematic phase of order one
otherwise the oscillations either do not develop or get averaged to 1/2. In the case of neutrinos coming
from the sun the kinematic phase is

∆� =
∆m2

�L

4E
= 107±1. (45)

Consequently, solar neutrinos behave as "effectively incoherent" mass eigenstates once they leave the
sun, and remain so once they reach the earth. Consequently the νe disappearance or survival probability

2Shorter baseline reactor neutrino experiments, which has seen no evidence of flux depletion suffer the so-called reactor
neutrino anomaly, which may point toward the existence of light sterile states
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is given by

〈Pee〉 = f1 cos2 θ� + f2 sin2 θ� (46)

where f1 is the ν1 content or fraction of νµ and f2 is the ν2 content of νµ and therefore both fractions
satisfy

f1 + f2 = 1. (47)

Nevertheless, as we have already mentioned, solar neutrinos originating from the pp and 7Be chains are
not affected by the solar matter and oscillate as in vacuum and thus, in their case f1 ≈ cos2 θ� = 0.69
and f2 ≈ sin2 θ� = 0.31. In the 8B a neutrino case, however, the impact of solar matter is sizeable and
the corresponding fractions are substantially altered, see Fig. 5.

Fig. 5: The sun produces νe in the core but once they exit the sun thinking about them in the mass eigenstate basis
is useful. The fraction of ν1 and ν2 is energy dependent above 1 MeV and has a dramatic effect on the 8Boron
solar neutrinos, as first observed by Davis.

In a two neutrino scenario, the day-time CC/NC measured by SNO, which is roughly identical to
the day-time average νe survival probability, 〈Pee〉, reads

CC

NC

∣∣∣∣
day

= 〈Pee〉 = f1 cos2 θ� + f2 sin2 θ�, (48)

where f1 and f2 = 1 − f1 are the ν1 and ν2 contents of the muon neutrino, respectively, averaged over
the 8B neutrino energy spectrum appropriately weighted with the charged current current cross section.
Therefore, the ν1 fraction (or how much f2 differs from 100% ) is given by

f1 =

(
CC
NC

∣∣
day − sin2 θ�

)
cos 2θ�

=
(0.347− 0.311)

0.378
≈ 10% (49)

where the central values of the last SNO analysis, [18], were used. As there are strong correlations
between the uncertainties of the CC/NC ratio and sin2 θ� it is not obvious how to estimate the uncertainty
on f1 from their analysis. Note, that if the fraction of ν2 were 100%, then CC

NC

∣∣
day = sin2 θ�.

Utilising the analytic analysis of the Mikheyev-Smirnov-Wolfenstein (MSW) effect, gave in [20],
one can obtain the mass eigenstate fractions in a medium, which are given by

f2 = 1− f1 = 〈sin2 θM� + Px cos 2θM� 〉8B, (50)

with θM� being the mixing angle as given at the νe production point and Px is the probability of the
neutrino to hop from one mass eigenstate to the second one during the Mikheyev-Smirnov resonance
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crossing. The average 〈...〉8B is over the electron density of the 8B νe production region in the centre
of the Sun as given by the Solar Standard Model and the energy spectrum of 8B neutrinos has been
appropriately weighted with SNO’s charged current cross section. All in all, the 8B energy weighted
average content of ν2’s measured by SNO is

f2 = 91± 2% at the 95 % C.L.. (51)

Therefore, it is obvious that the 8B solar neutrinos are the purest mass eigenstate neutrino beam known
so far and SK super famous picture of the sun taken (from underground) with neutrinos is made with
approximately 90% of ν2, ie. almost a pure beam of mass eigenstates.

On March 8, 2012 a newly built reactor neutrino experiment, the Daya Bay experiment, located in
China, announced the measurement of the third mixing angle [21], the only one which was still missing
and found it to be

sin2(2θ12) = 0.092± 0.017 (52)

Following this announcement, several experiments confirmed the finding and during the last years the
last mixing angle to be measured became the best (most precisely) measured one. The fact that this
angle, although smaller that the other two, is still sizeable opens the door to a new generation of neutrino
experiments aiming to answer the open questions in the field.

5 ν Standard Model
Now that we have comprehended the physics behind neutrinos oscillations and have leaned the experi-
mental evidence about the parameters driving these oscillations, we can move ahead and construct the
Neutrino Standard Model:

– it comprises three light (mi < 1 eV) neutrinos, ie. it involves just two mass differences
∆m2

atm ≈ 2.5× 10−3eV2 and ∆m2
solar ≈ 8.0× 10−5eV2 .

– so far we have not seen any solid experimental indication (or need) for additional neutrinos 3. As
we have measured long time ago the invisible width of the Z boson and found it to be 3, within
errors, if additional neutrinos are going to be incorporated into the model, they cannot couple to
the Z boson, ie. they cannot enjoy weak interactions, so we call them sterile. However, as sterile
neutrinos have not been seen (although they may have been hinted), and are not needed to explain
any solid experimental evidence, our Neutrino Standard Model will contain just the three active
flavours: e, µ and τ .

– the unitary mixing matrix which rotates from the flavour to the mass basis, called the PMNS matrix,
comprises three mixing angles (the so called solar mixing angle:θ12, the atmospheric mixing angle
θ23, and the last to be measured, the reactor mixing angleθ13) , one Dirac phase (δ) and potentially
two Majorana phases (α, β) and is given by

| να〉 = Uαi | νi〉

Uαi =

 1
c23 s23
−s23 c23

 c13 s13e
−iδ

1
−s13eiδ c13

 c12 s12
−s12 c12

1

 1
eiα

eiβ


where sij = sin θij and cij = cos θij . Courtesy of the hierarchy in mass differences (and to a less
extent to the smallness of the reactor mixing angle) we are permitted to recognise the (23) label in
the three neutrino scenario as the atmospheric ∆m2

atm we obtained in the two neutrino scenario, in

3Although it must be noted that there are several not significant hint pointing in this direction
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Fig. 6: Flavour content of the three neutrino mass eigenstates (not including the dependence on the cosine of the
CP violating phase δ).If CPT is conserved, the flavour content must be the same for neutrinos and anti-neutrinos.
Notice that oscillation experiments cannot tell us how far above zero the entire spectrum lies.

a similar fashion the (12) label can be assimilated to the solar ∆m2
�. The (13) sector drives the νe

flavour oscillations at the atmospheric scale, and the depletion in reactor neutrino fluxes see [23].
According to the experiments done so far, the three sigma ranges for the neutrino mixing angles
are

0.267 < sin2 θ12 < 0.344 ; 0.342 < sin2 θ23 < 0.667 ; 0.0156 < sin2 θ13 < 0.0299

while the corresponding ones for the mass splittings are

2.24× 10−3eV2 < | ∆m2
32 | < 2.70× 10−3eV2

and

7.× 10−5eV2 < ∆m2
21 < 8.09× 10−5eV2.

These mixing angles and mass splittings are summarised in Fig. 6.
– As oscillation experiments only explore the two mass differences, two ordering are possible, as

shown in Fig. 6. They are called normal and inverted hierarchy and roughly identify whether the
mass eigenstate with the smaller electron neutrino content is the lightest or the heaviest.

– The absolute mass scale of the neutrinos, or the mass of the lightest neutrino is not know yet, but
cosmological bounds already say that the heaviest one must be lighter than about .5 eV.

– As transition or survival probabilities depend on the combination U∗
αiUβi no trace of the Majorana

phases could appear on oscillation phenomena, however they will have observable effects in those
processes where the Majorana character of the neutrino is essential for the process to happen, like
neutrino-less double beta decay.

6 Neutrino mass and character
6.1 Absolute Neutrino Mass
The absolute mass scale of the neutrino, ie. the mass of the lightest/heaviest neutrino, cannot be obtained
from oscillation experiments, however this does not mean we have no access to it. Direct experiments like
tritium beta decay, or neutrinoless double beta decay and indirect ones, like cosmological observations,
have potential to feed us the information on the absolute scale of neutrino mass, we so desperately need.
The Katrin tritium beta decay experiment, [24], has sensitivity down to 200 meV for the "mass" of νe
defined as

mνe =| Ue1 |2 m1+ | Ue2 |2 m2+ | Ue3 |2 m3. (53)
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Fig. 7: The effective mass measured in double β decay, in cosmology and in Tritium β decay versus the mass of
the lightest neutrino. Below the dashed lines, only the normal hierarchy is allowed. Notice that while double β
decay experiments bound the neutrino mass only in the Majorana case, Planck bounds apply for either case

Neutrino-less double beta decay experiments, see [25] for a review, do not measure the absolute
mass of the neutrino directly but a particular combination of neutrino masses and mixings,

mββ =|
∑

miU
2
ei |=| mac

2
13c

2
12 +m2c

2
13s

2
12e

2iα +m3s
2
13e

2iβ |, (54)

where it is understood that neutrinos are taken to be Majorana particles, ie. truly neutral particles (having
all their quantum numbers to be zero). The new generation of experiments seeks to reach below 10 meV
for mββ in double beta decay.

Cosmological probes (CMB and Large Scale Structure experiments) measure the sum of the neu-
trino masses

mcosmo =
∑
i

mi. (55)

and may have a say on the mass ordering (direct or inverted spectrum) as well as test other neutrino
properties like neutrino asymmetries [26]. If

∑
mi ≈ 10 eV, the energy balance of the universe saturates

the bound coming from its critical density. The current limit, [27], is a few % of this number, ∼ .5
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eV. These bounds are model dependent but they do all give numbers of the same order of magnitude.
However, given the systematic uncertainties characteristic of cosmology, a solid limit of less that 100
meV seems way too aggressive.

Fig. 7 shows the allowed parameter space for the neutrino masses (as a function of the absolute
scale) for both the normal and inverted hierarchy.

6.2 Majorana vs Dirac
A fermion mass is nothing but a coupling between a left handed state and a right handed one. Thus, if we
examine a massive fermion at rest, then one can regard this state as a linear combination of two massless
particles, one right handed and one left handed. If the particle we are examining is electrically charged,
like an electron or a muon, both particles, the left handed as well as the right handed must have the same
charge (we want the mass term to be electrically neutral). This is a Dirac mass term. However, for a
neutral particle, like a sterile neutrino, a new possibility opens up, the left handed particle can be coupled
to the right handed anti-particle, (a term which would have a net charge, if the fields are not absolutely
and totally neutral) this is a Majorana mass term.

Thus a truly and absolutely neutral particle (who will inevitably be its own antiparticle) does have
two ways of getting a mass term, a la Dirac or a la Majorana, and if there are no reasons to forbid one of
them, will have them both, as shown in Fig. 6.2.

In the case of a neutrino, the left chiral field couples to SU(2) × U(1) implying that a Majorana
mass term is forbidden by gauge symmetry. However, the right chiral field carries no quantum numbers,
is totally and absolutely neutral. Then, the Majorana mass term is unprotected by any symmetry and it is
expected to be very large, of the order of the largest scale in the theory. On the other hand, Dirac mass
terms are expected to be of the order of the electroweak scale times a Yukawa coupling, giving a mass of
the order of magnitude of the charged lepton or quark masses. Putting all the pieces together, the mass
matrix for the neutrinos results as in Fig. 8.

Fig. 8: The neutrino mass matrix with the various right to left couplings, MD is the Dirac mass terms while 0 and
M are Majorana masses for the charged and uncharged (under SU(2)× U(1)) chiral components

To get the mass eigenstates we need to diagonalise the neutrino mass matrix. By doing so, one is
left with two Majorana neutrinos, one super-heavy Majorana neutrino with mass ' M and one super-
light Majorana neutrino with mass m2

D/M , ie. one mass goes up while the other sinks, this is what

19



we call the seesaw mechanism, [28–30]4. The light neutrino(s) is(are) the one(s) observed in current
experiments (its mass differences) while the heavy neutrino(s) are not accessible to current experiments
and could be responsible for explaining the baryon asymmetry of the universe through the generation
of a lepton asymmetry at very high energy scales since its decays can in principle be CP violating (they
depend on the two Majorana phases on the PNMS matrix which are invisible for oscillations). The super
heavy Majorana neutrinos being their masses so large can play a role at very high energies and can be
related to inflation [31].

If neutrinos are Majorana particles lepton number is no longer a good quantum number and a
plethora of new processes forbidden by lepton number conservation can take place, it is not only neutrino-
less double beta decay. For example, a muon neutrino can produce a positively charged muon. However,
this process and any processes of this kind, would be suppressed by (mν/E)2 which is tiny, 10−20, and
therefore, although they are technically allowed, are experimentally unobservable. To most stringent
limit nowadays comes from KamLAND-zen [32], and constraints the half-life of neutrino-less double
beta decay to be T 0ν

1/2 > 1.07 × 1026 years at 90% C.L. Forthcoming experiments such as GERDA-
PhaseII, Majorana, SuperNEMO, CUORE, and nEXO will improve this sensitivity by one order of mag-
nitude.

Recently low energy sew saw models [33] have experienced a revival and are actively being ex-
plored [34]. In such models the heavy states, of only few tens of TeV can be searched for at the LHC.
The heavy right handed states in these models will be produced at LHC either through Yukawa couplings
of through gauge coupling to right handed gauge bosons. Some models contain also additional scalar
that can be looked for.

7 Conclusions
The experimental observations of neutrino oscillations, meaning that neutrinos have mass and mix, an-
swered questions that had endured since the establishment of the Standard Model. As those veils have
disappeared, new questions open up and challenge our understanding

– what is the true nature of the neutrinos ? are they Majorana particles or Dirac ones ? are neutrinos
totally neutral ?

– is there any new scale associated to neutrinos masses ? can it be accessible at colliders ?
– is the spectrum normal or inverted ? is the lightest neutrino the one with the least electron content

on it, or is it the heaviest one ?
– is CP violated (is sin δ 6= 0 ) ? if so, is this phase related at any rate with the baryon asymmetry of

the Universe ? what about the other two phases ?
– which is the absolute mass scale of the neutrinos ?
– are there new interactions ? are neutrinos related to the open questions in cosmology, like dark

matter and/or dark energy ? do (presumably heavy) neutrinos play a role in inflation ?
– can neutrinos violate CPT [35]? what about Lorentz invariance ?
– if we ever measure a different spectrum for neutrinos and antineutrinos (after matter effects are

properly taken into account), how can we distinguish whether it is due to a true (genuine) CTP
violation or to a non-standard neutrino interaction ?

– are these intriguing signals in short baseline reactor neutrino experiments (the missing fluxes) a
real effect ? Do they imply the existence of sterile neutrinos ?

We would like to answer these questions. For doing it, we are doing right now, and we plan to do
new experiments. These experiments will, for sure bring some answers and clearly open new, pressing
questions. Only one thing is clear. Our journey into the neutrino world is just beginning.

4Depending on the envisioned high energy theory, the simplest see saw mechanism can be categorised into three different
classes or types (as they are called) depending on their scalar content.
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