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Formation time of heavy quarkonia in a homogeneous magnetic field is analyzed by using a
phenomenological ansatz of the vector current correlator. Because the existence of a magnetic field
mixes vector quarkonia (J/ψ, ψ′) and their pseudoscalar partners (ηc, η

′
c), the properties of the

quarkonia can be modified through such a spin mixing. This means that the formation time of
quarkonia is also changed by the magnetic field. We show the formation time of vector quarkonia
is delayed by an idealized constant magnetic field, where the formation time of the excited state
becomes longer than that of the ground state. As a more realistic situation in heavy-ion collisions,
effects by a time-dependent magnetic field are also discussed, where delayed formation of J/ψ and
ψ′ and very early formation of ηc and η′c are found.

PACS numbers: 25.75.-q, 12.40.Yx, 14.40.Pq, 14.65.Dw

I. INTRODUCTION

An intense magnetic field is expected to be produced
by peripheral heavy-ion collision experiments at the BNL
Relativistic Heavy Ion Collider (RHIC) and at the CERN
Large Hadron Collider (LHC) [1–4]. The strength of the
fields, however, could drop instantaneously and it may
be difficult to extract the initial information of such ex-
treme environments. One of the promising candidates
to observe the short-lived magnetic field is through the
magnetically-modified dynamics of heavy (charm or bot-
tom) quarks and heavy (charmed or bottomed) hadrons
because heavy quarks can be produced from initial hard
nucleon-nucleon collisions in a short time and the quarko-
nia created from their quarks can be sequentially ob-
served as a meaningful probe such as dilepton spectra.

Mass spectroscopy of heavy quarkonia modified in a
magnetic field is theoretically being revealed from po-
tential models [5–8], an effective Lagrangian approach
[8–10] and QCD sum rules [9, 10]. These findings could
be related to other interesting subjects of quantum chro-
modynamics (QCD) under magnetic field, such as the
anisotropic confinement [6, 11–17], heavy quark dynam-
ics [18–20] and heavy-light meson spectra [8, 21–23] (see
Ref. [24] for a recent review). In a magnetic field, the
longitudinal components of the vector quarkonia (J/ψ,
ψ′,...) can mix with the pseudoscalar partners (ηc, η

′
c,...)

[5, 9, 10]. As a result of the mixing, in the dilepton (e+e−

or µ+µ−) invariant-mass spectra as measured by exper-
iments, not only usual J/ψ- and ψ′-like peaks but also
“anomalous” ηc- and η′c-like peaks can appear, so that
these can be a qualitative (and quantitative) probe of
the existence of early magnetic field. Therefore, we need
to quantitatively determine whether or not such a probe
can be realized in more realistic situations. One of the
related phenomena is the modification of the quarkonium
formation under magnetic field.

∗ k.suzuki.2010@th.phys.titech.ac.jp
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To discuss the quarkonium formation, we summarize
related time scales below. In experiments, the pairs
of a heavy quark and a heavy antiquark can be pro-
duced by initial nucleon-nucleon collisions. A typical
time scale to create the heavy-quark pairs, which is the
so-called “coherence time”, is naively expected to be
τc ∼ 1/mQQ̄ < 0.1 fm/c in the rest frame of the heavy-
quark pair. After such a creation, the heavy-quarks
propagate in medium for some time and eventually form
hadronic bound states such as quarkonia and heavy-light
mesons, where the “formation time” scale for quarko-
nia in vacuum has been estimated from some approaches
[25–27] and it is still under debate (e.g., τf ∼ 0.44 and
0.91 fm/c for J/ψ and ψ′, respectively [27]). In heavy-
ion collisions at RHIC, we set τ = 0 as the onset of
the overlapping between two charged nuclei. A magnetic
field begins growing up and its strength reaches to the
maximum value at τ ∼ 0.05 fm/c which corresponds to
the maximal overlapping instant of the two nuclei. Af-
ter that, it weakens gradually but its strength with the
order of m2

π will survive up to τ ∼ 0.2 fm/c (see, e.g.,
Refs. [3, 4] for details). Thus, the time scales of quarko-
nium formation can be influenced by the magnetic field
at RHIC.

In Ref. [27], the formation time of vector quarkonia
can be connected to the space-time current-current cor-
relator. From this approach, one can discuss the for-
mation of not only the ground state [J/ψ and Υ(1S)]
but also excited states [ψ′, Υ(2S) and so on]. Further-
more, this approach can be applied to quarkonium for-
mation in medium such as finite temperature [28] and
time-dependent temperature expected in heavy-ion colli-
sions [29] as well as in vacuum, if we can input the form
of the in-medium correlator (or spectral function). In
this paper, by using this approach, we focus on the mod-
ification of quarkonium formation time by magnetic field
effects with the spin mixing. Then we will discuss both
the formation time of vector quarkonia and pseudoscalar
ones newly induced from the vector current correlator.

This paper is organized as follows. In Sec. II, the the-
oretical approach to investigate quarkonium formation
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time is described and it is extended to systems at finite
magnetic field. In Sec. III, our results are shown and the
formation time in a magnetic field is discussed. Section
IV is devoted to our conclusion and outlook.

II. FORMALISM

The approach to evaluate quarkonium formation time
from the correlation function was developed in Ref. [27]
and applied to more realistic situations in Refs. [28, 29].

A. Quarkonium formation time from correlator

We start with the space-time correlation function
Πµν(x) for the heavy-quark vector current Jµ(x) ≡
Q̄γµQ:

Πµν(x) = 〈0|T [Jµ(x)Jν(0)]|0〉

=

∫
d4q

(2π)4
e−iqx(qµqν − gµνq2)Π(q2). (1)

For the correlator in the momentum space, Π(q2), we can
use the following dispersion relation:

Π(q2) =
1

π

∫
ds

ImΠ(s)

s− q2
. (2)

Therefore, after contracting the Lorentz indices, the
space-time correlator can be rewritten as [27, 30]

Π(x) ≡ Πµ
µ(x) =

3

π

∫
dss ImΠ(s)D(s, x2), (3)

where

D(s, τ = −x2) =

√
s

4π2τ
K1(
√
sτ), (4)

is the relativistic causal propagator of a scalar field in
the coordinate space at x2 6= 0 and, τ and K1 are the
Euclidean proper time and the modified Bessel function,
respectively.

In this approach, the whole correlator Π(τ) is phe-
nomenologically decomposed into multiple parts, Π0(τ)+
Π1(τ) + · · · , and they are corresponding to the ith states
and the continuum, respectively. Then the fraction of
the ith state at a time τ is defined by [27]

F0(τ) ≡ Π0(τ)

Π(τ)
, F1(τ) ≡ Π1(τ)

Π(τ)−Π0(τ)
,

F2(τ) ≡ Π2(τ)

Π(τ)−Π0(τ)−Π1(τ)
, · · · . (5)

We note that Fi → 1 at τ →∞ as long as the ith state is
located below the continuum threshold. The derivative
of the fraction with respect to τ is called distribution [27]

Pi(τ) ≡ dFi(τ)

dτ
. (6)

Finally the averaged formation time is defined by the
expectation value of the distribution [27]

〈τform〉i ≡
∫
dττPi(τ)∫
dτPi(τ)

. (7)

The ImΠ(s) in vacuum or in magnetic fields, which are
substituted into the dispersion relation (3), are assumed
to be a spectral function as constructed in the next sec-
tions.

B. Spectral ansatz in vacuum

In vacuum, as the imaginary part of the correlation
function, we adopt the following ansatz: Poles + contin-
uum,

ImΠ(s) = ImΠpole(s) + ImΠcont(s)

=
∑
i

fie
2
Qδ(s−m2

Vi
) +

e2
Q

4π
θ(s− sth), (8)

where fi, mVi , eQ, and
√
sth are the residue and mass

of the ith hadron resonance, the electric charge of the
heavy quarks, and the continuum threshold, respectively.
In this work, we consider only V0 = J/ψ and V1 = ψ′

located below the DD̄ threshold in vacuum. Then the
corresponding residues in vacuum, f0 = 0.545 GeV2 and
f1 = 0.276 GeV2, can be determined by the partial decay
width to the dilepton: fi = 3mVi

Γ(Vi → e+e−)/4α2e2
Q,

where α is the fine-structure constant. The continuum
threshold is twice the D meson mass,

√
sth = 2mD. After

substituting Eq. (8) into the dispersion relation (3), we
obtain

Π(τ) =
∑
i

3fie
2
Qm

3
Vi

4π3τ
K1(miτ)+

3e2
Q

8π4τ6

∫ ∞
√
sthτ

dxx4K1(x).

(9)

C. Spectral ansatz in a magnetic field

Next we construct a spectral ansatz which reproduces
the vector spectral function in a magnetic field. In a mag-
netic field, we add the induced pseudoscalar (ηc) poles
into vector (J/ψ) spectral function. The imaginary part
of the correlator for the vector channel in a magnetic field
is assumed to be

ImΠeB(s) =
∑
i=0,1

fie
2
Q

[
sin2 θi,eBδ(s−m2

Pi,eB) (10)

+ cos2 θi,eBδ(s−m2
Vi,eB)

]
+ ImΠcont(s).

In this work, we consider only P0 = ηc, P1 = η′c, V0 =
J/ψ, and V1 = ψ′. Magnetic field dependences of the
poles are introduced as meson masses (or pole shifts) and
mixing angles θeB which modify the pole residues. Here,
to simplify, we neglect the magnetic field dependence of
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FIG. 1. Mixing angles of charmonia in a magnetic field, which
are defined by Eqs. (13) and (14).

the continuum. We note that, if eB → 0, this functional
form agrees with that in vacuum, Eq. (8).

To obtain charmonium masses in a magnetic field, we
use the following matrix form of the equations of mo-
tion derived from an effective Lagrangian [9, 10]. For ith
pseudoscalar Pi (longitudinal vector Vi‖) state with mass
mPi

(mVi
) in vacuum,(
−ω2 +m2

Pi
−i gPiVi

mi
ωeB

i
gPiVi

mi
ωeB −ω2 +m2

Vi

)(
Pi
Vi‖

)
= 0, (11)

where gPiVi
and mi = (mPi

+mVi
)/2 are the dimension-

less coupling constant and the averaged mass in vacuum,
respectively. If the determinant of this matrix is zero,
except for ω = 0, we can reach a mass formula in a mag-
netic field [9, 10]:

m2
i,eB =

1

2

M2
i+ +

γ2

m2
i

±

√
M4
i− +

2γ2
iM

2
i+

m2
i

+
γ4
i

m4
i

 ,

(12)
where M2

i+ = m2
Vi

+ m2
Pi

, γi = gPiVi
eB and M2

i− =

m2
Vi
− m2

Pi
. The different signs “±” in Eq. (12) corre-

spond to the vector and pseudoscalar channels, respec-
tively. The dimensionless coupling constants, gPiVi

, are
estimated by the experimental values of the radiative de-
cay widths of charmonia (see Refs. [8, 10] for the detailed
procedure): gγηcJ/ψ = 2.0877 and gγη′cψ′ = 3.3762. The
mixing between 1S and 2S states such as ηc-ψ

′ and η′c-
J/ψ can be neglected as long as the magnetic field is
small enough [8].

To obtain the mixing angle between the wave functions
of pseudoscalar and vector, we define the following form.
After substituting the averaged mass in a magnetic field,
ωi = (mPi,eB + mVi,eB)/2 into Eq. (11), we obtain two
eigenvalues and the corresponding eigenvectors, (iA,B)
and (iC,D), where A, B, C, and D correspond to the
wave functions of the vector or pseudoscalar component

in the mixed state, respectively. Then an approximated
mixing angle is defined as follows:

sin2 θi,eB ≡
B2

A2 +B2
=

C2

C2 +D2
, (13)

cos2 θi,eB ≡
A2

A2 +B2
=

D2

C2 +D2
, (14)

which satisfies the normalization condition sin2 θi,eB +
cos2 θi,eB = 1 for the ith pseudoscalar-vector state. The
estimated mixing angle is plotted in Fig. 1. From these
results, we see that the mixing between the excited states
is more sensitive than that of the ground states, which
means that the residues of poles for the excited states
can be also modified more drastically.

After substituting the imaginary part (10) to the dis-
persion relation (3), we finally obtain

ΠeB(τ) =
∑
i=0,1

3fie
2
Q

4π3

[
sin2 θi,eBm

3
Pi

τ
K1(mPi

τ)

+
cos2 θi,eBm

3
Vi

τ
K1(mVi

τ)

]
+ Πcont(τ), (15)

where the continuum part Πcont(τ) is same as that in
Eq. (9).

III. NUMERICAL RESULTS

From the constructed correlator, Eq. (9) or (15), we
can investigate the fraction Fi, distribution Pi, and for-
mation time 〈τform〉i for the ith state. In a finite magnetic
field, the mass (or peak position) hierarchy on the spec-
tral function is mηc < mJ/ψ < mη′c

< mψ′ as long as
there is no level crossing (see Refs. [7, 8] for a detail).
Therefore, we can define Fi by that order from the orig-
inal definition (5).

A. Constant magnetic field

First we discuss quarkonium formation time in a con-
stant magnetic field. In vacuum, the lowest state is J/ψ
and its contribution dominates the whole correlator at
τ → ∞. On the other hand, at finite magnetic field, ηc
becomes the lowest states while J/ψ should behave as an
excited state.

As an example, the fraction and distribution at eB =
0.2 GeV2 are shown in Fig. 2. From the upper panel of
Fig. 2, we find that the Fi and Pi for ηc, as shown by the
blue lines, are distributed in the region of 0 < τ < 6 fm/c.
These behaviors are different from those for J/ψ which
is located in the faster region of 0 < τ < 2 fm/c. As a
result, the induced ηc state has a longer formation time
than J/ψ although ηc appears as the lowest state. Such
a behavior arises from its small residue in the magnetic
field and we expect that, in a larger magnetic field where
the mixing becomes strong enough, the formation time of
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FIG. 2. Examples of fraction Fi and distribution Pi for char-
monia in a constant magnetic field. Upper: J/ψ in vacuum
and J/ψ-ηc at eB = 0.2 GeV2. Lower: ψ′ in vacuum and
ψ′-η′c at eB = 0.2 GeV2.

ηc becomes shorter. For J/ψ as shown by the red lines,
we find that Fi and Pi is slightly shifted to the larger τ
region, which leads to a longer formation time of J/ψ.

Next we discuss the excited states. In vacuum, Pi
for ψ′ is distributed in the wider range of τ than J/ψ,
which leads to longer formation time. In a magnetic field,
since the longitudinal component of ψ′ mixes with η′c,
the correlator (after subtracting ηc and J/ψ) is domi-
nated by both the η′c and ψ′. We comment that Fi for
η′c approaches to Fi → 1 at τ → ∞ while that for ψ′

does not. This behavior means that the mass of ψ′ at
eB = 0.2 GeV2 exceeds the DD̄ threshold. Then the
correlator at τ → ∞ is dominated not by the ψ′ contri-
bution but by the continuum. Therefore, in this region,
we cannot define the formation time of ψ′ from our ap-
proach, where ψ′ is no longer a bound state.

The average formation time in a magnetic field is sum-
marized in Fig. 3. We find that the formation times of
J/ψ and ψ′ become slower with increasing magnetic field.
In particular, the formation time of the excited state ψ′

is more sensitive than the ground state. In contrast to
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FIG. 3. Quarkonium formation time 〈τform〉i in a constant
magnetic field.

the vector states, the formation time of the pseudoscalar
states becomes faster as the mixing in a magnetic field
increases their residues.

B. Time-dependent magnetic field

Next we investigate the effect by the time-dependent
magnetic fields as created in relativistic heavy-ion col-
lisions. We input the time evolution of the magnetic
field estimated from the HIJING model in Ref. [4], which
corresponds to Au + Au collisions at

√
s = 200 GeV in

RHIC. The maximal magnetic field perpendicular to the
reaction plane was estimated to be eBmax ∼ 5m2

π ∼
0.1 GeV2 for peripheral collisions with the impact pa-
rameter b = 10 fm. The magnetic field at a time τ ′ is
parametrized as follows [31] 1:

eB(τ ′) =
eBmax

[1 + (τ ′ − τ0)2/τ2
B ]

3/2
, (16)

where τ0 = 0.05 fm/c and τB = 0.065 fm/c [31] are the
time from the initial contact to the maximal overlapping
between the two nuclei and the lifetime of the magnetic
fields, respectively.

Here we define the normalized distribution and nor-
malized fraction in a time-dependent magnetic field as

1 Here, τ ′ is not Euclidean time but real one. Since Fi(τ) defined
by Eq. (5) is a function of Euclidean time τ , τ ′ has to be trans-
formed to τ . In this work, Eqs. (17)–(20) should be regarded as
simplified quantities estimated from the magnetic field eB(τ ′) as
the snapshot at a real time τ ′.
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i and distribution P nor

i , de-
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pendence of magnetic field, given by Eq. (16). Upper: J/ψ
and ψ′. The gray dashed (solid) line stands for Fi (Pi) in
vacuum. Lower: ηc and η′c.

follows:

P nor
Pi

(τ) ≡
dFPi

(τ, eB(τ ′)) sin2 θi,eB(τ ′)

dτ

∣∣∣∣∣
τ ′=τ

, (17)

P nor
Vi

(τ) ≡
dFVi

(τ, eB(τ ′)) cos2 θi,eB(τ ′)

dτ

∣∣∣∣
τ ′=τ

, (18)

F nor
Pi

(τ) ≡
∫ τ

0

dτ ′P nor
Pi

(τ ′), (19)

F nor
Vi

(τ) ≡
∫ τ

0

dτ ′P nor
Vi

(τ ′). (20)

The normalization condition is given by F nor
Pi

(τ) +
F nor
Vi

(τ) ' 1 at τ → ∞. We note that these definitions
are different from those by Eq. (5) in which FPi

(τ) = 1
and FVi

(τ) = 1 at τ →∞.
Numerical results are shown in Fig. 4. In the upper

figure, we find that the fraction and distribution for J/ψ
and ψ′ are modified by the time-dependent magnetic field
which has the peak of the strength at τ ∼ 0.05 fm/c and
is distributed at the time region of τ < 0.4 fm/c. In

particular, the distribution of ψ′ is shifted to the later
time and the change is larger than that of J/ψ, which is
caused by the different mixing ratios between the ground
and excited states.

In the lower figure, we can see the behaviors of ηc and
η′c produced from the mixing by the short pulse of the
magnetic field. The ground state ηc is produced at about
τ ∼ 0.065 fm/c while the excited state η′c is located at the
later time τ ∼ 0.073 fm/c. This is because the distribu-
tions (or formation times) of J/ψ which is the mixing
partner with ηc, is faster than those of ψ′. Furthermore,
the strength of the distribution η′c is larger than that of ηc
because of their mixing rates. At τ →∞, the normalized
fractions, F nor

Pi
(τ), of ηc and η′c reach at saturation values

of 0.01% and 0.2%, respectively. These values correspond
to the ratios of the pseudoscalar charmonia created only
from the vector current correlator: 0.01% of the original
J/ψ can be transformed into ηc and 0.2% of ψ′ into η′c.

It should be noted that the yield of ηc and η′c estimated
in this work is a part of all the ηc production. Actually,
almost all of the ηc can be also produced from the usual
pseudoscalar current correlator. At the same time, we
can also expect a few J/ψ production through the mixing
in the pseudoscalar correlator.

In particular, magnetically-induced ηc and η′c compo-
nents from the vector current can show “anomalous” de-
cay modes such as ηc, η

′
c → e+e−(µ+µ−) in the presence

of an external magnetic field. Therefore, in heavy-ion col-
lisions, we can observe early formation of ηc and η′c from
the vector current in the dilepton spectra. On the other
hand, the J/ψ and ψ′ components formed from the pseu-
doscalar current through mixing can decay to dileptons.
Thus, we can identify the difference between charmonia
created from the vector or pseudoscalar currents.

As a result, the quarkonium formation times in the
magnetic field are estimated as 〈τform〉eB = 0.086, 0.408,
0.095 and 0.980 fm/c for ηc, J/ψ, η′c and ψ′, respec-
tively. Here we find that the formation times of J/ψ
and ψ′ become slightly slower than the values in vacuum,
〈τform〉J/ψ = 0.407 fm/c and 〈τform〉ψ′ = 0.971 fm/c. In
addition, we emphasize that ηc and η′c from the vector
current can appear at very early time because of the ex-
istence of the very early magnetic field. Therefore, the
early formed mixed states (or ηc and η′c) might carry in-
formation about early stage of the collision before the
thermalization.

We note that our analysis does not take into ac-
count the electric conductivity of the thermal medium
(or quark-gluon plasma) created after the collisions. The
electric conductivity can increase the lifetime of a mag-
netic field [32–37], so that the quarkonium formation time
in more realistic situations could be longer. In particu-
lar, it could be important to adopt the magnetic field (or
time) dependence of the conductivity [38–40].
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IV. CONCLUSION AND OUTLOOK

In this paper, we investigated the quarkonium forma-
tion time modified in a magnetic field from the space-time
correlator of the heavy-quark vector current. Under con-
stant magnetic field, we found that the formation times
of the vector charmonia become slower, while those of the
pseudoscalar partners become faster with increasing mag-
netic field. In the time-dependent magnetic field which is
more realistic at RHIC, we showed the slightly slow for-
mation time for vector charmonia and the early forma-
tion of pseudoscalar charmonia from the vector current
correlator. Such early formed ηc and η′c can be promis-
ing observables in the dilepton spectra as a probe of the
existence of early magnetic field.

Furthermore, we have established the new formalism
with “a normalized distribution” and “a normalized frac-
tion” as Eqs. (17)–(20). It enables us to quantitatively
estimate the absolute fraction of the vector and pseu-
doscalar quarkonia produced from the initially created
heavy-quark pair. Another important point is that al-
though we have estimated the production and mixing
from the evolution of the vector current, it is essentially
calculating the evolution and formation from a color-
singlet charm-quark pair produced at the same point with
spin 1. Hence, our result represents a typical example of
how the effect of magnetic fields will influence the for-
mation time from any initial production of heavy-quark

pair, so that it will be useful for investigations of the
other channels.

It is also interesting to investigate the interplay be-
tween hot medium (or QGP) and magnetic field effects
in relativistic heavy-ion collisions. For example, if J/ψ
formation time becomes longer by a magnetic field, heavy
quarks with a low momentum can pass through the
medium before the thermalization, and the formed J/ψ
could not been affected by the initial hot thermal effects,
which could lead to the enhancement of J/ψ survivabil-
ity from temperature effects. To discuss such thermal
effects for formation time, we can make use of a hybrid
approach between this work and Refs. [28, 29], which will
be a topic for future studies.

Our results can provide new ingredients to the J/ψ
production [21, 41, 42] and collective flow of heavy fla-
vors [18, 20, 42] under magnetic field. It may be also
important to discuss how our results influence J/ψ sup-
pression at finite temperature and magnetic field, as dis-
cussed in Refs. [15, 17, 43], and the dissociation from
other processes such as the Lorentz ionization [44] and
the anomalous flow by the chiral anomaly [45].
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