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Description of hadronic reactions at high energies is conventionally done in the framework of
QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-
perturbative contributions and perturbative evolution of those inputs. We construct inputs for
the gluon-hadron scattering amplitudes in the forward kinematics and, using the Optical theorem,
convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized
and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for
the inputs should obey and then suggest a model satisfying those criteria. This model is based on
a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators
becomes unstable and therefore it can be described through factors of the resonance type, so we
call it Resonance Model. We use it to obtain non-perturbative inputs for gluon distributions in
unpolarized and polarized hadrons for all available types of QCD factorization: Basic, KT - and
Collinear Factorizations.
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I. INTRODUCTION

Description of hadronic reactions at high energies requires the use of QCD in the perturbative and non-perturbative
domains. It is well-known that such calculations cannot be carried out in the straightforward way because the non-
perturbative QCD is poorly-known. The most efficient approximation approach to theory of hadronic reactions is QCD
factorization, where perturbative QCD calculations are complemented by phenomenological fits or model expressions
which mimic non-perturbative QCD contributions. Throughout the present paper we will address those expressions as
non-perturbative inputs. Technically speaking, such inputs act as initial conditions for the evolution equations which
account for perturbative contributions. The inputs are supposed to approximately describe short-time dissociations
of each of the interacting hadrons into active partons and spectators. Depending on the number of the active partons
emitted by each hadron, there can be Single-Parton Scattering (SPS) and Multi-Parton Scattering (MPS). An example
of the factorized amplitude for the scattering of hadrons under the SPS approximation is depicted in Fig. 1. When such
amplitudes are conjugated with the mirror amplitudes, the intermediate states consist of two partons. For instance,
QCD factorization of the hadronic tensor Wµν for DIS off a hadron with momentum p is represented in Fig. 2, where
the s-cut is implied. The lowest blob stands for a non-perturbative input describing emition/absorption of the active
partons with momentum k from the initial hadron while the upper blob corresponds to DIS off the active partons.

A1

B

A2

h1

h2

FIG. 1. Amplitude for the Single-Parton Scattering of hadrons h1 and h2 , with active partons being gluons. Blobs A1,2 denote
emission of the active gluons. Interaction of those gluons is depicted by blob B, where the outgoing arrows denote the produced
partons. The outgoing double arrows on blobs A1,2 stand for the final state spectators.

When the s-cut (s = (p+ q)2) in Fig. 2 is not implied, Fig. 2 represents factorization of the amplitude Aµν of the
elastic Compton scattering off the hadron in the forward kinematics, with two-parton t-channel intermediate states
between the blobs.

Wµν ≈ ∑

p p

k k

q q

k:{quarks,

gluons}

FIG. 2. QCD factorization for the DIS hadronic tensor. The s-cut of the graph is implied. The lowest blob includes the
non-perturbative input while the upper blob corresponds to DIS off the active parton.

The Optical theorem relates the elastic scattering amplitudes in the forward kinematics to cross-sections. For
example, it relates Aµν to Wµν :

Wµν =
1

π
ℑsAµν . (1)

So, in order to calculate cross-sections or parton distributions under the SPS approximation, it is sufficient to
calculate the related elastic amplitudes with two-parton intermediate partons in the t-channel only. In order to
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avoid misunderstanding, we note that t-channel intermediate states inside the upper (perturbative) blob can involve
unlimited number of partons. Despite that there is a quite extensive literature on MPS scenario, the SPS scenario is
still the most popular. By this reason we focus on it in the present paper.
There are different kinds of QCD factorization in the literature and each of them is tailored to a specific perturbative

approach. For example, when DGLAP[1] or its generalization[2] to the small-x region are used to calculate Wµν , the
first step is to introduce an arbitrary mass scale µ acting as a starting point of the perturbative k2

⊥
-evolution from

µ2 to Q2, with Q2 ≫ µ2. This scale is called the factorization scale. At the same moment, µ can act as a cut-off for
infrared-divergent perturbative contributions. In Collinear Factorization[3], transverse components of momentum k in
Fig. 2 are neglected, so these partons are regarded as collinear to the incoming hadrons and therefore one-dimensional
non-perturbative inputs can be used.
In contrast, BFKL[4] is free of infrared divergences and because of that integrations over transverse momenta

in the BFKL ladders run down to zero. This approach operates with essentially non-collinear initial partons, which
excludes neglecting their transverse components and as a result, it excludes a simple matching of BFKL with Collinear
Factorization. By this reason, KT -Factorization[5] named also High-Energy Factorization[6] was suggested. These
factorizations use different ways of parametrization of momenta k of the connecting partons. In Collinear Factorization,
the parametrization of k is one-dimensional:

k = βp, (2)

with β being the longitudinal momentum fraction. KT -Factorization involves the same longitudinal parameter β and,
in addition, accounts for the transverse momentum k⊥:

k = βp+ k⊥. (3)

There are different ways to construct the non-perturbative inputs in Collinear and KT - Factorizations. Quite
often, see e.g. Ref. [7], the inputs applied in the context in Collinear Factorization are introduced entirely on basis
of practical reasons without any theoretical grounds. In contrast, there also are the models with solid theoretical
background. In particular, the models in Ref. [8] are actually based on various theoretical approaches to approximate
the problem of confinement: the chiral quark-soliton model, diquark model, etc. An overview of the most popular
models of hadrons can be found in Ref. [9]. The features of the saturation model[10] are used in Refs. [11, 12] for
modeling the inputs in the context of KT - Factorization while the model in Ref. [13] combines features of a variety
of models for the Fock space wave function on the light cone. Some features of this model are similar to the results
obtained in Ref. [14]. Another interesting approach is the lattice calculations. They are a complementary method to
study the non-perturbative inputs for parton distributions. Some of the recent results of the lattice calculations can
be found is Ref. [15].
Although the parametrization of momentum k in KT - Factorization is more general than in Collinear Factorization,

it misses one more parameter for the longitudinal component of k, which can be seen from comparison of Eq. (3) to
the standard Sudakov parametrization[16]:

k = −αp′ + βq′ + k⊥, (4)

where the light-cone (i.e. p′2 = q′2 = 0) momenta p′, q′ are made of the external momenta p and q satisfying the
inequality |pq| ≫ |p2|, |q2| (for instance, they can be the momenta p, q introduced in Fig. 2):

p′ = p− xpq, q′ = q − xqp, xp ≈ p2/w, xq ≈ q2/w, w = 2p′q′ ≈ 2pq. (5)

In Ref. [17] we presented a new kind of QCD factorization: Basic Factorization. It accounts for dependence of the
factorized blobs on all components of momentum k and because of that it is the most general form of factorization.
We proved that Basic Factorization can step-by-step be reduced to KT -Factorization and to Collinear Factorization.
Doing so, we considered the non-perturbative inputs in the most general form, without specifying them. In Ref. [17]
we inferred general theoretical constraints on the non-perturbative inputs. They follow from the obvious requirement:
despite the integrands in the factorization convolutions for forward scattering amplitudes have both infra-red (IR)
and ultra-violet (UV) singularities, integrations over k in the factorization convolutions must yield finite results. This
is possible only if the non-perturbative inputs kill all divergences, which leads to restrictions on the non-perturbative
inputs. In Ref. [18] we suggested a model for the non-perturbative inputs to quark distributions in hadrons. This
model is based on a simple observation: after emitting an active parton off the hadron, the set of remaining quarks
and gluons (usually named spectators) becomes unstable, so it can be described by expressions of the resonance type.
Because of that we named this model in Ref, [18] the Resonance Model. We used the Resonance Model model so
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as to obtain the quark distributions in the hadrons whereas the very important case of gluon distribution was left
uninspected in Ref. [18].
There is a certain similarity between handling quarks and gluons in Perturbative QCD. It allows us to believe that

main features of non-perturbative inputs for gluons and quarks can be alike. However, the quark and gluon inputs
cannot coincide. Firstly, they have different polarization structure: the quark input should be a spinor whereas the
gluon one should be a tensor. Secondly, the well-known difference between the high-energy behavior of the gluon and
quark perturbative amplitudes can lead to an essential difference between the quark and gluon inputs.
We think that this issue needs a thorough investigation and do it in the present paper. In the first place we

obtain restrictions on the gluon inputs which guarantee both IR and UV stability of the factorization convolutions
in Basic Factorization and then use those restrictions so as to extend the Resonance Model to description of the
non-perturbative inputs for the gluon distributions in the hadrons. We consider here both polarized and unpolarized
hadrons. Our strategy is to calculate the gluon-hadron elastic scattering amplitudes in the forward kinematics and,
using the Optical theorem, to arrive at the gluon distributions in the hadrons in Basic Factorization. Then we
reduce them down to the expressions which can be used in KT - and Collinear Factorizations. As is well-known, KT -
Factorization (High-Energy Factorization) by definition can be used in the Regge (small-x) kinematics, so throughout
the present paper we will consider the parton distributions in this region only.
Our paper is organized as follows: In Section II we study the elastic gluon-hadron amplitudes for the forward

kinematic region in the Born approximation, and then analyze the impact of radiative corrections. We investigate
the convergence of the factorization convolutions, using a general form for the non-perturbative inputs, to determine
constraints on the non-perturbative inputs. In Section III we formulate general criteria for the non-perturbative
inputs in Basic Factorization and use them to construct a Resonance Model. Transition from the Basic Factorization
to KT - Factorization is considered in Sect. IV. In this Sect. we also compare our results with the ones available in
the literature. In Sect. V we reduce the inputs in KT - Factorization down to the ones in Collinear Factorization. We
focus here on comparing our results with the standard DGLAP-fits. At last, Sect. VI is for our concluding remarks.

II. ELASTIC GLUON-HADRON SCATTERING AMPLITUDES IN THE FORWARD KINEMATICS

In this Sect. we consider the elastic gluon-hadron amplitude A in the forward kinematics and inspect integrability of
convolutions for such amplitude in Basic Factorization. We study the convolutions involving two-gluon intermediate
t-channel states only because we presume the approximation of Single-Parton Scattering for the gluon distributions.
The convolutions describing the gluon-hadron amplitude are depicted by the sum of two graphs1: the graph in Fig. 3
and a similar graph, where q is replaced by −q.

p p

k k

q q

FIG. 3. Factorization of amplitudes of hadron-gluon scattering in the forward kinematics, with intermediate partons being
gluons. The upper blob corresponds to amplitudes of the elastic gluon scattering.

Our aim here is to obtain mathematical restrictions on the non-perturbative inputs. In order to do it, we use the
obvious reasoning: Integration over momentum k in the factorization convolutions (see Fig. 3) runs over the whole
phase space and it should yield a finite result. Features of perturbative components of the convolutions are known, at
least qualitatively, so integrability requirement can be used to establish necessary restrictions on the non-perturbative
inputs in a general form. Then any model for the inputs should meet these restrictions. Therefore, the restrictions
can be used as criteria for accepting or rejecting the models. To begin with, we consider amplitude A in the Born

1 Throughout the paper we consider the t-channel color singlets only.
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approximation and then examine an impact of the radiative corrections. We show that, in contrast to the concepts of
KT - and Collinear Factorizations, Basic Factorization allows the simple scenario, where the upper blob in in Fig. 3
can be regarded as altogether perturbative one while the lowest blob includes non-perturbative contributions only.

A. Gluon-hadron scattering amplitudes in the Born approximation

Let us consider the simplest case of the factorization convolutions for the gluon-hadron amplitude, where the non-
perturbative input is convoluted with the gluon-gluon perturbative amplitude in the Born approximation. In this case
the upper blob in Fig. 3 is represented by two simple graphs, each with the single-gluon exchange. The first graph,
with a non-zero imaginary part in s, is depicted in Fig. 4 and the second graph, with a non-zero imaginary part in u,
can be obtained from the first one by replacement q → −q.

p p

k k

q q

FIG. 4. Factorization for amplitude of hadron-gluon scattering in the Born approximation.

A remarkable feature of Basic Factorization is that the analytic expression corresponding to the convolution graphs
can be obtained with the use of the standard Fetnman rules. Applying these rules to the graph in Fig. 4 and
complementing the result by the exchange q → −q, we arrive at the following expression for the Born gluon-hadron
amplitude AB in Basic Factorization:

AB =
4παsN

(2π)4

∫
d4k lµl

′

ν

[
Hµνλρ(q, k)

s2 + ıǫ
+

Hνµλρ(−q, k)

u2 + ıǫ

]
1

k2k2
Tλρ(k, p, S), (6)

where

s2 = (q + k)2, u2 = (q − k)2, (7)

N = 3 is the color factor and S denotes the hadron spin. The term in squared brackets corresponds to the Born
amplitude for gluon-gluon scattering, lµ(q) and l′ν(q) denote the polarization vectors of the external gluons, the terms
1/k2 correspond to propagators of the connecting gluons and the input Tλρ contains non-pertrurbative contributions
only. Throughout the paper we use the Feynman gauge. Let us notice that both Tλρ and the term in the squared
brackets are dimensionless. The perturbative term Hµνλρ in Eq. (6) is

Hµνλρ = [(−q − 2k)µgλσ + (2q + k)λgµσ + (k − q)σgµλ] [(q + 2k)νgρσ + (−2q − k)ρgνσ + (q − k)σgνρ] . (8)

We remind that in the present paper we consider the gluon-hadron scattering amplitudes and parton distributions
in the small-x region. The point is that we are going to reduce Basic Factorization to KT - Factorization which is
defined in the small-x region only. It is easy to check that AB with Hµνλρ given by Eq. (8) is gauge-invariant in the
small-x, though approximately2

2 The gauge invariance for the quark-hadron scattering amplitudes was considered in Ref. [18].
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In order to make further progress we should specify Tλρ. First of all, we should fix its polarization (tensor) structure.
For instance, when the hadron and the gluons are unpolarized, Tλρ should be symmetric in λ, ρ. The general form of

such a tensor, T
(gen)
λρ is

T
(gen)
λρ = gλρA+ pλpρB + (pλkρ + kλpρ)C + kλkρD, (9)

but it involves four arbitrary invariant amplitudes A, ..,D. Trying to diminish their number, we recall an instance
from perturbative QCD, namely that, when the hadron is replaced by a bare quark, Tλρ is replaced by the quark-gluon
Born amplitude Qλρ. It consists of the unpolarized part QU

λρ and the spin-dependent part QS
λρ:

Qλρ = QU
λρ +QS

λρ, (10)

with

QU
λρ = (2pλpρ − kλpρ + pλkρ − pk gλρ)

(
−8παsCF

(p− k)2 −m2
q + ıǫ

)
, (11)

QS
λρ = ımqǫλρστkσ(Sq)τ

(
−8παsCF

(p− k)2 −m2
q + ıǫ

)
,

wheremq is the quark mass, Sq is the quark spin and CF = 4/3. We suggest the simplest generalization of Eqs. (10,11),
for the hadrons: we presume that Tλρ keeps the polarization structure of Qλρ. It means that

Tλρ = TU
λρ + T S

λρ, (12)

with

TU
λρ = (2pλpρ − kλpρ − pλkρ + pk gλρ)MU (s1, k

2), (13)

T S
λρ = ıMhǫλρστkσSτMS(s1, k

2),

where Mh, S are the hadron mass and spin respectively, and

s1 = (p− k)2. (14)

The invariant amplitudes MU and MS may either coincide or differ from each other. Substituting TU,S
λρ in Eq. (6), we

obtain:

AB
U =

4παsN

(2π)4

∫
d4k

k2k2

[
N

(1)
s

s2 + ıǫ
+

N
(1)
u

u2 + ıǫ

]
MU (s1, k

2), (15)

AB
S =

4παsN

(2π)4

∫
d4k

k2k2

[
N

(2)
s

s2 + ıǫ
+

N
(2)
u

u2 + ıǫ

]
MS(s1, k

2), (16)

with

N (1)
s = 4k2(2m2

h + 2pk)− 16(2(pq)2 + 2(pq)(pk)− q2(pk)) + u2(2M
2
h − 2pk), (17)

N (2)
s = ıMhǫλρστSτ

[
8qρ (l

′

λkσ(kl)− lλkσ(kl
′))− u2kσlλl

′

ρ

]
.

We have done summation over the gluon polarizations in the expression for N
(1)
s in Eq. (17). In what follows we

will use the Sudakov variables defined in Eq. (4). In their terms

2pk = −αw + βxpw, 2qk = βw − αxw, k2 = −αβw + k2
⊥
. (18)
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B. Analysis of IR and UV singularities of the Born amplitudes

Let us consider integrability of the Born amplitudes in Eqs. (15,16). Integration over momentum k in both convo-
lutions runs over the whole phase space and result of the integration must be finite despite the integrands may have
singularities which must be regulated. First of all, let us note that the expressions in parentheses in Eqs. (15,16) stand
for the gluon perturbative amplitudes in the Born approximation, which are obviously free of divergences. In contrast,
the factors 1/k2 in Eqs. (15,16) become divergent at k2 = 0. We cannot implement any IR cut-off to regulate those
singularities because there is no physical reason to restrict the integrations regions. It leaves us with the only option:
amplitudes MU,S in Eqs. (15,16) at small k2 must decrease rapidly enough in order to kill these IR singularities.
Therefore we infer that MU,S should satisfy the following restrictions at k2 → 0:

MU,S(s1, k
2) ∼

(
k2
)1+η

, (19)

with η > 0. Eq. (19) sets IR stability for the integrals in Eqs. (15,16). Then, there may be UV singularities in
Eqs. (15,16) at large |k|, i.e. at large |α| in terms of the Sudakov variables, when the integration over α goes first. It
is easy to see that the integrands in Eqs. (15,16) at large |α| behave as

∼
α2

α3
MU,S (20)

which can be UV-divergent. In order to kill this divergence, MU,S should decrease at large α:

MU,S ∼ α−χ, (21)

with χ > 0. In other words, the non-perturbative inputs should decrease, when their invariant energy s1 grows. Also,
we note that the restrictions in Eqs. (19,21) are valid at any choice of the polarization structure of Tλρ, including the
most general parametrization in Eq. (9).

C. Gluon-hadron scattering amplitudes beyond the Born approximation

Diagrammatically, accounting for the radiative corrections to the Born amplitudes AB
U,S of Eqs. (15,16) means

adding more quark and gluon propagators to the single-gluon exchange in Fig. 4 and summing up contributions

of such graphs. This procedure converts the Born perturbative amplitudes of Eqs. (15,16) into amplitudes A
(pert)
U,S

(the upper blob in Fig. 3) but keeps unchanged the non-perturbative inputs MU,S (the lowest blob in Fig. 3). Such
natural separation of the perturbative and non-perturbative contributions is a remarkable feature of our approach
and perfectly agrees with the factorization concept.

Replacing the Born amplitudes in Eqs. (15,16) by the amplitudes A
(pert)
U,S , we arrive at the gluon-hadron amplitudes

AU , AS beyond the Born approximation:

AU,S =

∫
d4k

k2k2
A

(pert)
U,S

(
s2/q

2, s2/k
2
)
MU,S(s1, k

2). (22)

Applying the Optical theorem to Eq. (22), we obtain the spin-independent, DU , and polarized, DS , distributions of
gluons in the hadrons:

DU,S =

∫
d4k

k2k2
D

(pert)
U,S

(
s2/q

2, s2/k
2
)
GU,S(s1, k

2), (23)

where

D
(pert)
U,S (s2, q

2, k2) = ℑs2A
(pert)
U,S , GU,S(s1, k

2) = ℑs1MU,S(s1, k
2). (24)

We remind that the invariant sub-energies s1,2 are defined as follows: s1 = (q + p)2, s2 = (k − p)2.
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Now we prove that the difference between perturbative amplitudes A
(pert)
U,S and their Born values does not changes

the conditions (19,21) of IR and UV stability. Before doing it, let us notice that A
(pert)
U,S depends on s2, k

2, q2, so,
being dimensionless, it can be parameterized, for instance, as follows:

A
(pert)
U,S (s2, q

2, k2) = A
(pert)
U,S

(
s2/q

2, s2/k
2
)
. (25)

Perturbative higher-loop contributions can induce both IR and UV divergences in A
(pert)
U,S . All those divergences

should be regulated before using A
(pert)
U,S in the factorization convolutions (22). We start with considering regularization

of IR divergences in A
(pert)
U,S . They appear from integrations of gluon loops over the regions, where some of the virtual

gluons are soft. In addition, the problem of IR divergences is essential for soft quarks when their masses are neglected.
The ways of regulating IR divergences are different for the amplitudes with on-shell and off-shell external partons.
We will address such amplitudes as the on-shell and off-shell amplitudes respectively. For the on-shell amplitudes,
the IR divergences are regulated by suitable IR cut-offs, while virtualities of the external partons play the role of
natural IR cut-offs for the off-shell amplitudes. The latter was shown first in Ref. [16] and then was used in numerous

calculations. Therefore, q2 and k2 can be used as IR cut-offs for A
(pert)
U,S .

Now let us consider regulation of the UV divergences in A
(pert)
U,S . This problem is solved easily. The point is that

QCD is a renormalizable theory, so all UV divergences are automatically absorbed by appropriate redefinitions of αs

and masses of involved quarks and gluons.

Unfortunately, regulating IR singularities of A
(pert)
U,S does not eliminate the IR divergences of the factorization

convolutions (22). Indeed, the IR-sensitive contributions in A
(pert)
U,S are ∼ lnn(wβ/k2) (or ∼ lnn(q2/k2)), so these

contributions are IR stable at k2 6= 0 but become divergent at the point k2 = 0. Integration in Eqs. (22) covers the
whole phase space, so the integration region includes the point k2 = 0. Such logarithmic divergences were addressed as
mass singularities in the pioneer studies[3] of QCD hard processes in the framework of Collinear Factorization, where
the mass singularities were moved from the hard part to universal structure functions. However, such a treatment
of the mass singularities becomes unproductive in the Regge (small-x) kinematics which we pursuit throughout this
paper. Furthermore, the logarithmic singularities are the only kind of IR divergences in Collinear Factorization but in
Basic Factorization we should handle both them and the power singularity ∼ 1/(k2k2) (see Eqs. (22)). In Sect. IIB we
demonstrated that the power singularity 1/(k2k2) can be regulated by the condition (19). Obviously, this condition
persists when the singularity 1/(k2k2) is accompanied by the logarithmically divergent terms. It is worth noticing
here that the well-known power factor s/k2 in the spin-independent amplitude appears in the lowest order in αs,
borrowing k2 from the denominator in Eqs. (22), so its impact on IR stability was taken into account in Eq. (19).
Finally, it is easy to prove that accounting for the perturbative radiative corrections does not change the condition

(21) of UV stability of the factorization convolutions at large |α|. Indeed, the fact that the perturbative QCD is

renormalizable means that the fastest-growing with energy terms in amplitudes A
(pert)
U,S are of logarithmic kind, i.e.

∼ lnn
(
wα/q2

)
, lnn

(
wα/k2

)
, so such logarithmic divergences can be regulated by the power restriction in Eq. (21).

III. MODELING THE NON-PERTURBATIVE INVARIANT AMPLITUDES MU,S

In this Sect. we consider first the Resonance Model for non-perturbative amplitudes MU,S and then proceed to the
non-perturbative inputs for the gluon distributions. Our models is based on simple and clear-cut physical arguments
which we list below and call them criteria which any model for MU,S should satisfy. Although constructing such a
model cannot be done unambiguously, any proposed model should satisfy the following criteria:

A. General criteria for modeling non-perturbative inputs

Criterion (i) Expressions for MU,S should satisfy the requirements of IR and UV stability of the factorization
convolutions given in Eqs. (19,21).

Criterion (ii) Expressions for MU,S should have non-zero imaginary parts in s1 to make possible the use of the
Optical theorem. It is necessary in order to proceed from elastic gluon-hadron amplitudes to gluon distributions in
the hadrons.
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Criterion (iii) Expressions for MU,S should enable the step-by-step reduction of Basic Factorization down to KT -
and Collinear Factorizations. Such a reduction was suggested in general in Ref. [17].

B. Specifying non-perturbative gluon inputs in Basic Factorization

We suggest the following model expressions for the amplitudes MU,S(s1, k
2) :

MU (s1, k
2) = RU

(
k2
)
ZU (s1) , MS(s1, k

2) = RS

(
k2
)
ZS (s1) . (26)

Eq. (26) reads that dependences on s1 and k2 are separated. This is done for the sake of simplicity. We could assume
that R = R(k2, s1) but we find it unnecessary. As handling MU and MS is much the same, we skip the subscripts
U, S and will work with the generic notations

M(s1, k
2) = R(k2)Z(s1) (27)

instead of Eq. (26). In order to satisfy Eq. (19), R in Eq. (27) should exhibit such a behavior:

R ∼
(
k2

)1+η
(28)

at small k2. According to Eq. (21), RZ ∼ α−χ at large |α|. A behavior of R at large |α| is unknown. However, it can
be that the small-k2 behavior at large |α| is again R ∼ (k2)1+η, i.e. according to Eq. (18)

R ∼ α1+η. (29)

This is the most UV divergent case which should not be ignored, so in order to satisfy Eqs. (21,29), Z should behave
as follows: at large |α|

Z ∼ α−1−η−χ. (30)

If R does not grow at large |α|, we can all the same use Z obeying Eq. (30). In order to specify Z, we suggest the
guiding idea: After emitting an active parton by the initial hadron, the remaining set of quark and gluons pick up a
color and therefore it cannot be stable. Unstable states, in general, are known to be often modeled by expressions of
the resonance type. In particular, we can approximate Z in Eq. (27) by the following expression:

Z(s1) ≈ Zn(s1) =
n∏

r=1

1

(s1 −M2
r + ıΓr)

, (31)

with arbitrary positive integer n. In order to get Zn(s1) satisfying Eq. (30), we should choose n > 1. For the sake
of simplicity, we consider the minimal value n = 2. Obviously, Z2 can also be written as an interference of two
resonances:

Z(s1) =
1

(∆M2
12 + ı∆Γ12)

[
1

(s1 −M2
1 + ıΓ1)

−
1

(s1 −M2
2 + ıΓ2)

]
, (32)

with ∆M2
12 = M2

1 −M2
2 , ∆Γ12 = Γ1 − Γ2. In terms of the Sudakov variables,

M(wα, k2) =
R(k2)

CZ

[
1

(wα − µ2
1 + k2 + ıΓ1)

−
1

(wα − µ2
2 + k2 + ıΓ2)

]
, (33)

where CZ =
(
∆M2

12 + ı∆Γ12

)
and µ2

1,2 = M2
1,2 − p2. Applying the Optical theorem to Eq. (33) allows us to obtain

the non-perturbative contribution G to the gluon distributions in the hadrons:

G = −ℑs1T =
R(k2)

CZ

[
Γ1

(wα+ k2 − µ2
1)

2
+ Γ2

1

−
Γ2

(wα+ k2 − µ2
2)

2
+ Γ2

2

]
. (34)

Obviously, this expression is of the Breit-Wigner type.



10

IV. NON-PERTURBATIVE GLUON INPUTS IN KT - FACTORIZATION

The expression for the gluon-hadron scattering amplitudeM(α, β, k2) in Eq. (33) corresponds to Basic Factorization.
In order to reduce M(α, β, k2) to the amplitude MKT (β, k

2
⊥
) of the same process in KT -Factorization, we should

integrate out the α-dependence of M(α, β, k2). In principle, as soon as However, in factorization convolutions (see
e.g. Figs. 2,3,4 ) both the upper and the lowest blobs depend on α, so one cannot integrate M(α, β, k2) only, without
integration of the perturbative blob. Therefore, M(β, k2

⊥
) cannot be derived from M(α, β, k2) in the straightforward

way, which makes impossible a straightforward reduction of Basic Factorization to KT -Factorization. Nevertheless, it
can be done approximately. The perturbative blobs (the upper blob in Figs. 2,3,4) approximately do not depend on
α in the region

w|αβ| ≪ k2
⊥

(35)

and the non-perturbative blobs in this region are independent of β. Indeed, the upper blob depends on α through
k2 only and in the region (35) k2 ≈ −k2

⊥
. At the same time, the region (35) is known to be the region for gaining

the perturbative contributions most essential at small x. For instance, all BFKL logarithms come from this region.
So, Eq. (35) makes possible to integrate M

(
α, β, k2

)
independently of perturbative contributions. It is convenient to

define the non-perturbative input MKT in KT Factorization as follows:

k2
⊥
MKT (β, k

2
⊥
) =

∫ α0

−α0

dαM(α, β, k2), (36)

with

α0 ≪ k2⊥/(wβ). (37)

So, Eq. (37) is satisfied when

α0 = ξk2
⊥
/β, (38)

with a positive ξ obeying the inequality ξ ≪ 1. Combining Eqs. (33,36,38) we arrive at the following expression for
the non-perturbative input MKT in KT -Factorization:

MKT ≈
R
(
k2
⊥

)

k2
⊥

[
1

ξk2
⊥
/β − µ2

1 + ıΓ1
+

1

ξk2
⊥
/β − µ2

2 + ıΓ2
+

1

ξk2
⊥
/β + µ2

1 − ıΓ1
+

1

ξk2
⊥
/β + µ2

2 − ıΓ2

]
(39)

= RKT

(
k2⊥

) [ 1

k2
⊥
/β − µ′2

1 + ıΓ′

1

+
1

k2
⊥
/β − µ′2

2 + ıΓ′

2

+
1

k2
⊥
/β + µ′2

1 − ıΓ′

1

+
1

k2
⊥
/β + µ′2

2 − ıΓ′

2

]
,

where RKT = R/(ξk2
⊥
CZ) and

µ′2
1,2 = µ2

1,2/ξ, Γ′

1,2 = Γ1,2/ξ. (40)

We also used the well-known observation that the most essential region in the factorization convolutions is the
small-β region, where ξ/β is not far from x. Eq. (39) is valid when

wα0 ≫ µ2
1,2, Γ1,2 ≫ ∆µ2,∆Γ, (41)

i.e. when k2
⊥
/β is pretty far from the resonance region k2

⊥
/β ∼ µ′2

1,2. The closer k2
⊥
/β is to µ′2

1,2 the greater are
corrections to Eq. (39). It means that transition from Basic Factorization to KT -Factorization considered in Ref. [17]
is straightforwardly done outside the resonance region. After that, Eq. (39) can be analytically continued in the
resonance region. As a result, we arrive at the gluon-hadron amplitude AKT and the gluon distribution DKT in
KT -Factorization:
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AKT =

∫
dβ

β

dk2
⊥

k2
⊥

A
(pert)
KT (wβ, q2, k2

⊥
)MKT (β, k

2
⊥
) (42)

DKT =

∫
dβ

β

dk2
⊥

k2
⊥

D
(pert)
KT (wβ, q2, k2⊥)GKT (β, k

2
⊥), (43)

where A
(pert)
KT and D

(pert)
KT = ℑA

(pert)
KT are the perturbative contributions whereas MKT and GKT = ℑMKT (cf.

Eq. (24)) are the non-perturbative inputs. It is convenient to represent GKT in the following form:

GKT = GR +GB, (44)

with

GR = RKT

(
k2⊥

)( Γ′
1

(k2
⊥
/β − µ′2

1)
2 + Γ′2

1

+
Γ′
2

(k2
⊥
/β − µ′2

2)
2 + Γ′2

2

)
(45)

and

GB = RKT

(
k2
⊥

)( Γ′

1

(k2
⊥
/β + µ′2

1)
2 + Γ′2

1

+
Γ′

2

(k2
⊥
/β + µ′2

2)
2 + Γ′2

2

)
. (46)

GR and GB obviously consist of expressions of the Breit-Wigner type. Signs of µ′2
1 and µ′2

2 cannot be fixed a priory,

but GR ⇆ GB when µ′2
1,2 → −µ′2

1,2, so we can consider the case of positive µ′2
1,2 without loss of generality. We

remind that k2
⊥
/β > 0, so GR is within the resonant region k2

⊥
/β ∼ µ′2

1,2 while GB is out of that region. Eqs. (45,46)

allows us to represent the gluon distribution DKT in KT -Factorization as the sum of its resonance part DR
KT and

the background contribution DB
KT :

DKT = DR
KT +DB

KT , (47)

with

DR
KT =

∫
dβ

β

dk2
⊥

k2
⊥

D
(pert)
KT (wβ, q2, k2

⊥
)GR(β, k

2
⊥
) (48)

and

DB
KT =

∫
dβ

β

dk2
⊥

k2
⊥

D
(pert)
KT (wβ, q2, k2

⊥
)GB(β, k

2
⊥
). (49)

Representation of DKT through the resonance DR
KT and background DB

KT contributions is similar to the structure
of expressions in the Duality concept.

A. Discussion of the distribution GKT

First of all, let us compare the mass parameters µ1,2 of the gluon distribution D of Eq. (34) in Basic Factorization
and the parameters µ′

1,2 of the gluon distribution DKT of Eq. (43) in KT - Factorization. They are related by Eq. (40).
As ξ ≪ 1, Eq. (40) means that µ′

1 ≫ µ1, µ′

2 ≫ µ2. It means that despite the non-perturbative input G is defined in
Basic Factorization within the non-perturbative domain, the resonance maximums of GKT are located at perturbative
values of k2

⊥
/β > 0. Then, we would like to comment on the factor RKT in Eqs. (39,45,46). This factor describes a

dependence of GKT on k2
⊥
. Refs. [10–13] suggest the exponential form of RKT :

R′ ∼ N exp[−λk2
⊥
], (50)
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with N and λ in Eq. (50) being parameters. However, Eq. (50) contradicts to the general requirement of IR stability
(cf. Eq. (28)) stating that

RKT ∼
(
k2
⊥

)η
(51)

at k2
⊥
→ 0, so R′ in Eq. (50) must be modified. The simplest modification compatible with Eq. (51) is

RKT = N
(
k2⊥

)η
exp[−λk2⊥], (52)

which agrees with the expressions used in Refs. [11, 12]. So, Eqs, (45,46,52) present the complete set of formulas to
describe the non-perturbative input GKT for the gluon distributions in KT Factorization. It is interesting to note
a further similarity of our expressions in Eqs. (45,46) and the model suggested in Ref. [13], where non-perturbative
distributions for the five-quark state are studied. The quark distributions in Ref. [13] involve both a Gaussian (though

without the power factor
(
k2
⊥

)η
) and propagators ∼ (k2

⊥
/β −m2 + ıε)−1 of the five quarks. The latter resembles our

factor Z in Eq. (32) save the difference between the factors ıε and ıΓ1,2. The quarks in Ref. [13] are assumed to be
free and stable, the gluon content is dropped. In contrast to Ref. [13], we do not specify the content of the spectators
but describe the whole set of spectators through the resonances and background contributions.

V. GLUON DISTRIBUTIONS IN COLLINEAR FACTORIZATION

Our next aim is to reduce DKT of Eq. (43) to the gluon distribution Dcol in Collinear Factorization and bring the
gluon distribution to the following form:

Dcol =

∫
dβ

β
D

(pert)
col (x/β, µ2

F )ϕcol(β, µ
2
F ), (53)

with D
(pert)
col being the perturbative contribution and ϕ being the non-perturbative input; µF is the factorization

scale. To this end, the k⊥-dependence in Eq. (43) should be integrated out. At the first sight, such a reduction is

impossible: D
(pert)
KT and GKT in Eq. (43) explicitly depend on k⊥, so they both must be integrated and because of

that the integration can yield some entangled mixture of the perturbative and non-perturbative terms instead of their
product as represented in Eq. (53). However, the specific form of the inputs in Eq. (45,46) allows us to reduce DKT

to Dcol though approximately. According to Eq. (47), DKT consists of DR
KT and DB

KT . Let us consider first the
resonance component, DR

KT given by Eq. (48). Integration over ζ therein runs in the resonance region, so only GR

must be integrated:

DR
KT =

∫ 1

x

dβ

β

∫ ζ0

0

dζ

ζ
D

(perp)
KT (x/β, q2/ζ)GR(β, ζ) (54)

≈

∫ 1

x

dβ

β
D

(perp)
col (x/β, µ′2

1 )ϕR(β, µ
′2
1 ) +O

(
Γ′

1/µ
′2
1

)

+

∫ 1

x

dβ

β
D

(pert)
col (x/β, µ′2

2 )ϕR(β, µ
′2
2 ) +O

(
Γ′

2/µ
′2
2

)
,

where ζ0 = w(1 − x/β) ≈ w, with w = 2pq as defined in Eq. (5). We presume that the resonances are narrow:

Γ′

1/µ
′2
1 ≪ 1, Γ′

2/µ
′2
2 ≪ 1. (55)

In Eq. (54) the notationsD
(pert)
col (x/β, µ′2

r ), with r = 1, 2, stand for the perturbative components while non-perturbative
inputs ϕR(β, µ

′2
r ) are

ϕR(β, µ
′2
r ) = R(µ2

rβ)/µ
2
r = N

(
µ2
r

)η−1
βηe−λβµ2

r ≈ Nrβ
η (1− Crβ) . (56)

In Eq. (56) we have denoted Nr = N
(
µ2
r

)η−1
and Cr = λµ2

r . Besides, we presumed that λµ2
r < 1 to truncate the

series of the power expansion of the exponential. In contrast to DR
KT , integration over k⊥ (over ζ in fact) in Eq. (49)
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runs outside the resonance region and therefore it necessitates integration of both GB and D
(perp)
KT . Because of that

the outcome scarcely can be represented in the factorized form of Eq. (53), which violates the reduction to Collinear
Factorization. Fortunately, this violation is small. Indeed,

DB
KT =

∫
dβ

β

dζ

ζ
D

(perp)
KT (x/β, q2/ζ)GB(β, ζ) ∼ O

(
Γ′

1/µ
′2
1 ,Γ

′

2/µ
′2
2

)
, (57)

so when the resonance input GR
KT is narrow, i.e. when Γ′

1,2 ≪ µ′2
1,2, we can neglect all contributions ∼ Γ′

1/µ
′2
1 ,Γ

′
2/µ

′2
2

in Eqs. (54,57), thereby arriving at the following expression for the gluon distribution Dcol in Collinear Factorization:

Dcol ≈

∫
dβ

β

[
D

(pert)
col (x/β, µ′2

1 )ϕR(β, µ
′2
1 ) +D

(pert)
col (x/β, µ′2

2 )ϕR(β, µ
′2
2 )

]
. (58)

The integrand in Eq. (58) looks similar to the conventional one in Eq. (53) but does not coincide with it. It is easy
to bring Eq. (58) to the conventional form (53) with the perturbative evolution in the k⊥ -space. It can be done in
two steps: First, let us introduce a scale µF so that |q2| > µF > µ′

1,2. Then, using DGLAP (or another evolution

approach) we evolve ϕR(β, µ
′2
1 ) and ϕR(β, µ

′2
2 ) in Eq. (58) from their scales up to the scale µF , keeping β fixed. This

procedure automatically sets D
(pert)
col (x/β, µ′2

1,2) in Eq. (58) on the scale µF . As a result, we convert Eq. (58) into
Eq. (53), where ϕcol is related to the non-perturbative input ϕR by the operator E of the DGLAP-evolution:

ϕcol(β, µ
2
F ) = E(µ2

F , µ
2
1)⊗ ϕR(β, µ

2
1) + E(µ2

F , µ
2
2)⊗ ϕR(β, µ

2
2). (59)

The evolution operator E in the Mellin (momentum) space is expressed in terms of the DGLAP anomalous dimen-
sions. In contrast to the non-perturbative inputs ϕR(β, µ

′2
r ), the input ϕcol comprises both non-perturbative (through

operators E) and perturbative (through ϕR) contributions.

A. Comparison of Eq. (56) to the standard DGLAP fits

Let us compare the non-perturbative input ϕR with the standard DGLAP fit ϕ̃. Quite often (see e.g. Ref. [7]) ϕ̃
is chosen in the following form:

ϕ̃(β, µ2
F ) = Nβ−a(1− β)b(1 + cβd), (60)

where N, a, b, c, d are phenomenological parameters defined from analysis of experimental data. All these parameters
implicitly depend on the factorization scale µF . Its value can be chosen arbitrary but factorization convolutions,
where ϕ̃ participates, do not depend on µF .
First of all, let us note that the singular factor β−a in Eq. (60) provides the fast growth of the parton distributions

at small x and leads to their Regge asymptotics. We proved (see e.g. the overview [2]) that the singular factors in the
DGLAP fits mimic accounting for the total resummation of lnn(1/x). When such resummation is taken into account,
the factors β−a become irrelevant and should be dropped. On the other hand, our analysis does not exclude the factor
βη in Eq. (56) because η is positive.
The factor (1 − β)b of Eq. (60) looks as the large-x asymptotics of of the parton distributions at x → 1. By this

reason, we suggest that the origin of this factor also is perturbative, so the factor (1 − β)b can be excluded from the
fit when the total resummation of lnn(1− x) is taken into account.
After the factors β−a and (1− β)b have been excluded from Eq. (60), it becomes quite similar to the input ϕR.

VI. SUMMARY

In the present paper we have performed the detailed study of the general structure of the gluon non-perturbative
inputs for the gluon distributions in hadrons and applied the Resonance Model to construct the gluon inputs. These
inputs can also apply to description of various hadronic high-energy processes, including the DIS structure functions.
We constructed the gluon inputs in Basic Factorization and then calculated the gluon inputs in the reduced forms so
as to use them in KT - and Collinear Factorizations.



14

We began with constructing the non-perturbative inputs for the elastic gluon-hadron scattering amplitudes in the
forward kinematics, where we considered the cases of polarized and non-polarized hadrons. Then, the Optical theorem
allowed us to proceed to the gluon distributions in the hadrons.

Before specifying our model, we derived general theoretical restrictions (19,21) on the non-perturbative inputs, which
are obligatory for any model. These restrictions follow from the obvious requirement: integrating the factorization
convolutions must yield finite results, i.e. the integrands of the convolutions must be free of IR and UV divergences.

We used those restrictions as criteria for modeling the inputs in Basic Factorization and reduced them step-by-step to
KT - and Collinear Factorizations. Our model presumes that the gluon non-perturbative inputs in Basic Factorization
consist of the polarization structures and invariant amplitudes MU,S. For the sake of simplicity, we suggested in
Eq. (27) separation of the k2- and s1- dependence in the expressions for MU,S, representing these amplitudes as
products of the factors R(k2) and Z(s1). Then for specifying the factors Z(s1) we proposed the Resonance Model
and represented in Eqs. (33,34) the inputs through superpositions of the resonances.

Transition from Basic Factorization to KT - Factorization caused reducing the inputs of Eqs. (33,34) down to the
expressions in Eqs. (39,44). Eqs. (39,44) demonstrate that the inputs in KT -Factorization are again given by the
terms of the resonance type. However, some of the resonances have maximums far beyond the region of integration
over k⊥, so they can be regarded as a background. Using the models suggested in Refs. [10–13], we assumed the
exponential (Gaussian) form for the factor R introduced in Eq. (27). Confronting it to Eq. (51) following from the
requirement of IR stability allowed us to exclude a part of these models.

Moving from KT - Factorization to Collinear Factorization, we reduced the expression for the gluon non-perturbative
input in Eq. (44) down to Eq. (56) and compared it with the conventional expression (60) for integrated parton
distributions.

Finally, we conclude that our calculations prove that the only difference between the gluon inputs and quark inputs
obtained in Ref. [18] is the difference between their polarization structures whereas the invariant amplitudes MU,S

can be the same. Our study points out that there is a certain universality between the non-perturbative quark and
gluon inputs in each of the available forms of QCD factorization.
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